XAVIER VIENNOT
  • PART I
    • abstract
    • contents
    • Ch0 Introduction to the course
    • Ch1 Ordinary generating functions
    • Ch2 The Catalan garden
    • Ch3 Exponential structures and genarating functions
    • Ch4 The n! garden
    • Ch5 Tilings, determinants and non-intersecting paths
    • list of bijections
    • index
  • PART II
    • abstract
    • contents
    • Ch1 Commutations and heaps of pieces: basic definitions
    • Ch2 Generating functions of heaps of pieces
    • Ch3 Heaps and paths, flows and rearrangements monoids
    • Ch4 Linear algebra revisited with heaps of pieces
    • Ch5 Heaps and algebraic graph theory
    • Ch6 Heaps and Coxeter groups
    • Ch7 Heaps in statistical mechanics
    • Some lectures related to the course
  • PART III
    • abstract
    • contents
    • Ch0 overview of the course
    • Ch1 RSK The Robinson-Schensted-Knuth correspondence
    • Ch2 Quadratic algebra, Q-tableaux and planar automata
    • Ch3 Tableaux for the PASEP quadratic algebra
    • Ch4 Trees and tableaux
    • Ch5 Tableaux and orthogonal polynomials
    • Ch6 Extensions: tableaux for the 2-PASEP quadratic algebra
    • Lectures related to the course
    • references, comments and historical notes
  • PART IV
    • introduction
    • contents
    • Ch0 Overview of the course
    • Ch1 Paths and moments
    • Ch2 Moments and histories
    • Ch3 Continued fractions
    • Ch4 Computation of the coefficients b(k) lambda(k)
    • Ch5 Orthogonality and exponential structures
    • Ch6 q-analogues
    • Lectures related to the course
    • Complements
    • references
  • Epilogue

The Art of Bijective Combinatorics    Part II

Commutations and heaps of pieces with interactions in physics, mathematics and computer science

 

The Institute of Mathematical Sciences, Chennai, India  (January-March 2017)

Ch 3  Heaps and Paths,  Flows and Rearrangements monoids

 Ch 3a

30 January 2017

slides_Ch3a        (pdf   16 Mo )             video Ch3a

 

Cartier and Foata  3

the flow monoid  4

        definition of the flow monoid  F(X)  6

        notation: flow, biword and heap of «half-edges»  9

        the rearrangement monoid  R(X)  13

        rearrangement: an example  15

paths and flows monoid  16

        path: definition and notation  17

        weight of a path  18

        the map  f  from path to flow

algorithm  «following a flow»  22

        example  24-33

        reconstructing the path from the flow  34-37

rearrangements and heaps of cycles  39

        the heaps of cycles monoid  HC(X)  42-44

        basic lemma: isomorphism  f  between rearrangements  R(X) and heaps of cycles  HC(X)  51

        construction of the reciprocal map g  52-53

paths and heaps of cycles  54

        visual intuitive idea of the fact that path = heap of cycles + self avoiding path  56-64

        the third basic lemma of the course relating path and heaps of cycles  65

        the special case of circuits  (path going from u to v with u=v)  68

an example with Dyck paths

        animation of the bijection with violin  (violin: G.Duchamp)  70

the end  71

Ch 3b

2 February  2017

slides_Ch3b        (pdf  19 Mo)             video Ch3b

 

from the previous lecture  3-13

variation of the proof rearrangements = heaps of cycles 14

        correction to slide 17

remark on species endofunctions  20

        an exercise 25

paths and heaps of cycles  26

        the bijection  khi  27

        definition of the bijection khi  29-31

        description of the reverse bijection  33-36

        second proof  37

        the bijection khi for circuits  38

a example with Dyck paths  40

        animation with violin  (G. Duchamp)  41

        description of the reverse bijection 44-58

        relation with lexicographic normal form  59

        exercise 1 bilateral Dyck paths  61

        exercise 2 non-backtracking paths 62

        exercise 3 tree-like paths  65

complements: LERW  (loop erased random walks)  66

        first amazing fact (reversing the path)  70

        spanning tree of a graph

        second amazing fact: random spanning tree and LERW  75

        spanning tree associated to path  78

        research problem  79

 

complements: Wilson’s algorithm for random spanning tree of a graph  80

        description of the algorithm  81-88

        animation of the algorithm on the video  (by Mike Rostock)  89

        research problem 2  90-91

the end  92