XAVIER VIENNOT
  • PART I
    • abstract
    • contents
    • Ch0 Introduction to the course
    • Ch1 Ordinary generating functions
    • Ch2 The Catalan garden
    • Ch3 Exponential structures and genarating functions
    • Ch4 The n! garden
    • Ch5 Tilings, determinants and non-intersecting paths
    • list of bijections
    • index
  • PART II
    • abstract
    • contents
    • Ch1 Commutations and heaps of pieces: basic definitions
    • Ch2 Generating functions of heaps of pieces
    • Ch3 Heaps and paths, flows and rearrangements monoids
    • Ch4 Linear algebra revisited with heaps of pieces
    • Ch5 Heaps and algebraic graph theory
    • Ch6 Heaps and Coxeter groups
    • Ch7 Heaps in statistical mechanics
    • Some lectures related to the course
  • PART III
    • abstract
    • contents
    • Ch0 overview of the course
    • Ch1 RSK The Robinson-Schensted-Knuth correspondence
    • Ch2 Quadratic algebra, Q-tableaux and planar automata
    • Ch3 Tableaux for the PASEP quadratic algebra
    • Ch4 Trees and tableaux
    • Ch5 Tableaux and orthogonal polynomials
    • Ch6 Extensions: tableaux for the 2-PASEP quadratic algebra
    • Lectures related to the course
    • references, comments and historical notes
  • PART IV
    • introduction
    • contents
    • Ch0 Overview of the course
    • Ch1 Paths and moments
    • Ch2 Moments and histories
    • Ch3 Continued fractions
    • Ch4 Computation of the coefficients b(k) lambda(k)
    • Ch5 Orthogonality and exponential structures
    • Ch6 q-analogues
    • Lectures related to the course
    • Complements
    • references
  • Epilogue

The Art of Bijective Combinatorics    

Combinatorial theory of orthogonal polynomials and continued fractions

The Institute of Mathematical Sciences, Chennai, India  (2016- 2019) 

Epilogue

 

March 14 , 2019

 

slides of the Epilogue  (pdf 38 Mo )                

 

video Epilogue  link to YouTube  (from IMSc Matsciencechanel Playlist)

 

This lecture a repetition of the lecture I gave for the 60th birthday of Christian Krattenthaler, SLC81 (Séminaire Lotharigien de Combinatoire), Strobl, Austria, 11 September 2018,

+ some additionnal slides at the beginning and the end in the context of an Epilogue (which can also be considered as an introduction) to the four parts I, II,  III, IV of the course at IMSc "the Art of bijective Combinatorics".

 

abstract

 The PASEP (partially asymmetric exclusion process) is a toy model in the physics of dynamical systems with a very rich underlying combinatorics in relation with orthogonal polynomials culminating in the combinatorics of the moments of the Askey-Wilson polynomials. I will begin with a tour of the PASEP combinatorial garden with many objects such as alternative, tree-like and Dyck tableaux, Laguerre and subdivided Laguerre histories, all of them enumerated by n!. Using several bijections relating these objects, Josuat-Vergès gave the most simple interpretation of the partition function of the 3 parameters PASEP in terms of permutations related to the moments of the Al-Salam-Chihara polynomials.

        This beautiful interpretation can be "explained" by introducing a new object called "Laguerre heaps of segments" having a central position among the several bijections of the PASEP garden. I will discuss some relations between these bijections and extract what can be called the "essence" of these bijections, some of them having the same "essence" as the Robinson-Schensted correspondence expressed with Fomin growth diagrams.

 

 

Presentation of the course ABjC  "The Art of Bijective Combinatorics" (IMSc, Chennai, 2016-2019)   3-7    2:02

Lagrange about Euler: going back to the sources   8   8:43

Krattenthalerfest, SLC 81, Strobl, Austria   9   9:50

Growth diamgrams (Fomin)  (part III of ABjC)   13    12:04

Heaps of segments   (part II of ABjC)   20   14:48

Laguerre (part IV of ABjC)   23   15:09

PASEP (part III of ABjC)   27   16:04

Combinatorial theory of orthogonal polynomials   32   20:36

The notion of histories, example: Hermite histories   42   24:49

q-analogue of Hermite histories   67   30:21

Combinatorics of the PASEP   73   32:32

Alternative tableaux   76   33:22

Enumeration of alternative tableaux   88   41:31

Interpretation of the 3-parameters partition function

first bijection tableaux -- permutations  (Steingrimsson-Williams)    95   44:24   

Bijection  permutations -- subdivided  Laguerre  histories (de Médicis, X.V.)   104   50:55

Interpretation of the 3-parameters partition function

Second bijection: tableaux— permutations (Corteel, Nadeau)   121   53:30

Josuat-Vergès interpretation   124   55:47

Bijection Laguerre histories -- permutations (Françon - X.V.)   128   57:55

The essence of the parameter  31-2   134   1:02:50

The essence of bijections: growth diagrams and the RS bijection   146   1:08:07

The bijection Laguerre histories -- alternative tableaux

(from local rules related to the PASEP algebra) (X.V.) 155   1:12:55   

Third bijection tableaux -- permutations

with tree-like tableaux (Aval, Boussicault, Nadeau)  172   1:16:17

Laguerre heaps of segments (X.V.)   203   1:23:28

Bijection permutations -- Laguerre heaps of segments   208   1:25:59

Bijection (restricted) Laguerre histories (of the inverse permutation) and Laguerre heaps of segments   233   1:29:14

What about the approach by physicists ?   250   1:33:38

5 parameters PASEP with the Askey-Wilson polynomials (Corteel, Williams)   256   1:34:07

Why to insist on the 3 parameters model: symmetries ...my dream !   269   1:38:45

The Askey-wilson integral   279   1:39:59

Dyck tableaux as Laguerre subdivided histories (Aval, Boussicault, Dasse-Hartaut)   287   1:40:54

Direct biejction permutations -- Dyck tableaux   291   1:41:39

Contractions in continued fractions   305   1:42:15

Epilogue (of the Epilogue): The essence of bijecions   314   1:42:43

The bijection Dyck path -- semi-pyramid of dimers (violin: G. Duchamp)   319   1:43:40

The essence of 3 bijections in parallel (violin: G. Duchamp)   328   1:47:19

Many thanks   344

   सरस्वती  Saraswati, the goddess of  knowledge, music, art, wisdom and learning   345