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Abstract

The parameterized feedback vertex (arc) set problem is to find whether there are
k vertices (arcs) in a given graph whose removal makes the graph acyclic. The pa-
rameterized complexity of this problem in general directed graphs is a long standing
open problem. We investigate the problems on tournaments, a well studied class of
directed graphs. We consider both weighted and unweighted versions.

We also address the parametric dual problems which are also natural optimization
problems. We show that they are fixed parameter tractable not just in tournaments
but in oriented directed graphs (where there is at most one directed arc between
a pair of vertices). More specifically, the dual problem we show fixed parameter
tractable are: Given an oriented directed graph, is there a subset of k vertices (arcs)
that forms an acyclic directed subgraph of the graph?

Our main results include:

• an O((2.4143)knω) 1 algorithm for weighted feedback vertex set problem, and an
O((2.415)knω) algorithm for weighted feedback arc set problem in tournaments;

• an O((e2k/k)kk2 + min{m lg n, n2}) algorithm for the dual of feedback vertex
set problem (maximum vertex induced acyclic graph) in oriented directed graphs,
and an O(4kk +m) algorithm for the dual of feedback arc set problem (maximum

arc induced acyclic graph) in general directed graphs.

We also show that the dual of feedback vertex set is W [1]−hard in general directed
graphs and the feedback arc set problem is fixed parameter tractable in dense di-
rected graphs. Our results are the first non trivial results for these problems.

Key words: tournaments, feedback vertex set, feedback arc set, parameterized
complexity

1 ω is the exponent of the best matrix multiplication algorithm.
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1 Introduction and Motivation

Given a directed graph on n vertices and an integer parameter k, the feedback
vertex (arc) set problem is to determine whether the given graph has a set
of k vertices (arcs) whose removal results in an acyclic directed graph. In the
weighted version of the problem we are given non negative weights on vertices
(arcs) and the problem asks whether the graph has a set of vertices (arcs)
of weight at most k, whose removal makes the graph acyclic. While these
problems in undirected, unweighted graphs are known to be fixed parameter
tractable [15,16] (the edge version in undirected graphs can be trivially solved),
the parameterized complexity of these problems in directed graphs is a long
standing open problem in the area. In fact, there are problems on sequences
and trees in computational biology, that are related to the directed feedback
vertex set problem [7].

In this paper, we consider these problems in the well studied special class of
directed graphs, tournaments. A tournament T = (V, E) is a directed graph
in which there is exactly one directed arc between every pair of vertices. Feed-
back vertex set problem is NP-complete in tournaments [19]. Feedback arc
set problem is not known to be (but conjectured to be) NP-complete in un-
weighted tournaments while it is NP-complete for weighted tournaments [5].
We give efficient fixed parameter tractable algorithms for the feedback vertex
set and feedback arc set problem in weighted tournaments.

Weighted feedback arc set problem in tournaments finds application in rank
aggregation methods. Dwork et.al [5] have shown that the problem of com-
puting the so called Kemeny optimal permutation for k full lists, where k is
an odd integer, is reducible to the problem of computing a minimum feedback
arc set problem on a weighted tournament with weights between 1 and k − 2.

Since a tournament has a directed cycle if and only if it has a directed triangle
[1], the feedback vertex set problem in a tournament is a set of vertices that
hits all the triangles in the tournament. Hence one can first find a directed
triangle in the tournament, and then branch on each of its three vertices to
get an easy recursive O(3kn3) algorithm to find a feedback vertex set of size at
most k (or determine its absence). This algorithm generalises for the weighted
feedback vertex set problem with weights at least 1. We can also write the
unweighted feedback vertex set problem in tournaments as a 3-hitting set
problem (hitting set of all directed triangles) and can apply the algorithm of
[13] to get an O(2.27k + n3) algorithm. However, this algorithm uses some
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preprocessing rules which don’t naturally generalize for the weighted hitting
set problem. In section 2, we give improved algorithms for the weighted version
of the feedback vertex set problem in tournaments. We consider the following
variants of the weighted feedback vertex set (WFVS) problem:

(1) Integer-WFVS, where the weights are arbitrary positive integers,
(2) Real-WFVS, where the weights are real numbers ≥ 1, and
(3) General-WFVS, where the weights are positive real numbers.

We show that the Integer-WFVS in a directed graph can be solved as fast as
feedback vertex set problem in an unweighted directed graph. Since the reduc-
tion here preserves the tournament structure, Integer-WFVS can be solved as
fast as the feedback vertex set problem in an unweighted tournament, which
currently has running time of O((2.27)k +n3) [13]. We show that Real-WFVS
can be solved in O((2.4143)knω) time and that General-WFVS is not fixed
parameter tractable (FPT ) unless P = NP .

There are parameterized reductions between feedback vertex set problem (FVS)
and feedback arc set problem (FAS) in weighted directed graphs (actually the
reductions to show NP-complete for these problems are parameterized reduc-
tions [6]), but they don’t preserve the tournament structure. Also, it is not
sufficient to hit all triangles by arcs to get a feedback arc set in a tournament
(for example, in the tournament in figure 2, S = {{1, 3}, {4, 2}} hits all the tri-
angles, but S does not hit the cycle {1, 2, 3, 4}). Furthermore, after we remove
an arc from a tournament, we no longer have a tournament. Hence it is not
straightforward to apply the ideas of the fixed parameter tractable algorithms
for feedback vertex set to the arc set problem. In Section 3, we give three

different algorithms for the FAS problem. We first develop an O(
√

k
k
nω log n)

time algorithm for FAS using the fact that a directed graph G with at most
k arcs away from a tournament T (i.e., T can be obtained from G by adding
at most k arcs to it) has a cycle of length at most O(

√
k). In Section 3.2, we

first show that if a subset F of arcs forms a minimal feedback arc set in a di-
rected graph then the graph formed after reversing these arcs is acyclic. Such a
characterization helps us to maintain the tournament structure (since in every
recursive step we reverse but not delete arcs). We apply this characterization
to develop an algorithm for FAS in tournaments taking O(3knω) time. We
then improve this by using a branching technique to obtain an O((2.415)knω)
time algorithm. We observe that the algorithm, and hence the bound, applies
for the FAS problem in weighted tournaments as well, where weights on the
arcs are at least 1. In Section 4, we show that FAS is fixed parameter tractable
even for dense directed graphs (graphs having at least

(

n

2

)

− n1+o(1) arcs).

In Section 5, we consider the parametric duals of feedback set problems in
directed graphs. More specifically the dual problems are : Given a directed
graph G, (a) is there a set of at least k vertices of G that induces a directed
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acyclic graph, and (b) is there a directed acyclic subgraph of G with at least
k arcs? In undirected graphs, the former ((a)) question is W [1]-complete [11]
while the latter question is easily solvable in polynomial time (since in any
connected graph on n vertices and m edges, it is necessary and sufficient to
remove m − (n + 1) edges to make it acyclic).

In directed graphs where cycles of length 2 are allowed, we show that the
parametric dual of the feedback vertex set problem is W [1]-hard, while it is
fixed parameter tractable for oriented directed graphs (where cycles of length 2
are not allowed). We show that the dual of the feedback arc set problem is fixed
parameter tractable in general directed graphs. We also consider variations of
these problems where the parameter is above the default lower bound.

In section 6, we conclude with some remarks and open problems. Throughout
this paper, by log n and ω, we mean, respectively, the logarithm to the base 2
of n and the exponent of the running time of the best matrix multiplication
algorithm. By rev(x), where x = (u, v) is an arc of a directed graph, we
mean the arc (v, u). By an oriented directed graph, we mean a directed graph
where there is at most one directed arc between every pair of vertices. By an
inneighbour of a vertex x in a directed graph G, we mean a vertex y such
that there is a directed arc from y to x in G. An outneighbour of a vertex is
similarly defined.

2 Feedback Vertex Set Problem in Tournaments

We recall that by writing feedback vertex set in tournaments as a hitting set
of all triangles, we have the following using [13] :

Lemma 1 [13] Given a tournament T = (V, E), we can determine whether
T has a feedback vertex set of size at most k in O((2.27)k + n3) time.

2.1 Integer-WFVS

Integer-WFVS is a variant of weighted feedback vertex set problem, where
weights are arbitrary positive integers.

Theorem 1 There exists a parameterized many-one reduction from Integer-

WFVS to unweighted feedback vertex set in directed graphs.

Proof: Let G be an integer weighted directed graph. Any vertex having weight
strictly more than k can not be a part of any minimal feedback vertex set of
weight at most k. So given the weight function π if some vertex v has π(v) > k
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then we make π(v) = k + 1. It is easy to see that G has a feedback vertex
set of weight at most k if and only if it has a feedback vertex set of weight at
most k with the modified weight function.

We will construct a new directed graph G′ from G as follows: replace each
vertex v having weight π(v) = w > 1 with a cluster V ′ consisting of w vertices.
If there is an arc (u, v) in the original graph G then we add an arc from every
vertex of the cluster U ′ to every vertex in V ′. For every cluster V ′, we add intra
cluster arcs such that G[V ′] is a transitive tournament. Here G[V ′] represents
the induced directed graph on V ′.
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Fig. 1. A Witness Cycle

We claim that G has a feedback vertex set (FV S) of weight at most k if and
only if G′ has a FVS of size at most k. Let {v1, v2, · · · , vl} be a FVS of weight at
most k in G. Then the vertices of the corresponding clusters {V ′

1 , V
′

2 , · · · , V ′

l }
form a FV S of size at most k in G′. The other direction follows from the
observation that every minimal feedback vertex set (F ) of size at most k in
G′ has either all the vertices of any cluster or none of them. To see this,
assume that there is a cluster V ′ such that there is a vertex v ∈ V ′ in F and
a u ∈ V ′ not in F . Since v ∈ F , and F is minimal, there exists a witness
cycle C such that F ∩ C = {v}. Now if u /∈ C then we get a cycle C ′ in T ′

by replacing v with u in C such that C ′ ∩ F = ∅ contradicting the definition
of F . If u is part of this cycle then the length of the cycle is at least 4. Let C
be {u, · · · , v, w, · · · , x} and construct C ′ as {u, w, · · · , x}. Then C ′ ∩ F = ∅ a
contradiction. This proves the other direction. The number of vertices in the
new instance of the graph is bounded by (k + 1)n and this instance can be
obtained in polynomial time from G. 2

Corollary 1 Integer − WFVS in tournaments can be solved in O((2.27)k +
(kn)3) time.

Proof: Let T ′ be the graph obtained from T by applying Theorem 1. Then
clearly T ′ is a tournament if T is. Now corollary follows from Lemma 1. 2
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2.2 Real- and General-WFVS

If the weights are arbitrary reals, but at least 1, then the algorithm for un-
weighted tournament can not be directly applied. Here we give an algorithm
which attains O((2.4143)knω) bound.

We will need the following observations to prove the correctness and the run-
time of the algorithm.

Lemma 2 [1] A tournament T = (V, E) has a directed cycle if and only if it
has a directed triangle.

Let M be the adjacency matrix of an oriented directed graph T . Then T has
a directed triangle if and only if for some i, j such that 1 ≤ i < j ≤ n,
M2[i, j] ≥ 1 and M [j, i] = 1. This can be determined in O(nω) time. If such a
pair (i, j) exists, then there exists a k such that M [i, k] = M [k, j] = 1 which
can also be determined in O(n) time. Such a triple {i, j, k} forms a triangle.
Further, T has a directed cycle of length 4 if and only there exists a pair (i, j)
such that 1 ≤ i < j ≤ n, M2[i, j] ≥ 1 and M2[j, i] ≥ 1. If such a pair exists,
then as before, the witness 4-cycle can also be found in O(n) time. So we have

Lemma 3 Let T be an oriented directed graph on n vertices. Then we can
find a directed triangle or a directed cycle of length 4 in T , if it exists, in
O(nω) time.

We need the following lemma for our algorithm.

Lemma 4 Let T = (V, A) be a weighted tournament that does not contain a
directed cycle of length 4. Then the minimum weight feedback vertex and arc
set problems are solvable in T in O(nω) time.

Proof: It is easy to see that if a tournament does not have directed cycle of
length 4 then no pair of directed triangles in the tournament has a vertex in
common. Hence the minimum weight feedback vertex or arc set is obtained
by finding all triangles, and picking a minimum weight vertex/arc from each
of them.

Finding all triangles in such a tournament can be done in O(nω) time as fol-
lows. First compute M2, the square of the adjacency matrix of the tournament.
Since the tournament can have at most n/3 triangles, there can be at most
n/3 pairs (i, j) such that 1 ≤ i < j ≤ n and M2[i, j] ≥ 1 and M [j, i] = 1. For
each such pair, the corresponding witness triangle can be found in O(n) time.

2

We remark here that a tournament T has a directed cycle of length 4 if and
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only if it has a subgraph isomorphic to F1 (see figure 2) and F1 can be found
in O(nω) time.

1 2

34

Fig. 2. F1

Algorithm TFVS(T , k, π, F )(*T is a tournament, k ≥ 0, π is a weight
function on V , F is a set of vertices*)
(Returns ‘true’ and a minimal feedback vertex set of weight at most k, if exists
and returns ‘no’ otherwise. F contains vertices of a partial feedback vertex
set that are deleted from the original T . Initially the algorithm is called by
TFVS(T, k, π, ∅).)

Step 0: If T does not have a directed triangle and k ≥ 0, then return ‘true’
and F and ‘exit’.

Step 1: If k = 0 and T has a triangle, then answer ‘no’ and ‘exit’.
Step 2: Find an induced subgraph on 4 vertices isomorphic to F1 (as in figure

2) with vertex set, say {1, 2, 3, 4} and the adjacencies be as in figure 2. If
no such subgraph exists, then go to Step 4.

Step 3: If any of the following recursive calls results in true, then return
‘true’ and the corresponding F and ‘exit’, else return ‘no’ and ‘exit’. In the
following, T ′ is obtained by deleting the ‘newly included’ vertices in F .
(1) TFV S(T ′, k − π(3), π, F ∪ {3}),
(2) TFV S(T ′, k − π(4), π, F ∪ {4}),
(3) TFV S(T ′, k − π(1) − π(2), π, F ∪ {1, 2})

Step 4: Find a minimum weight feedback vertex set S for the resultant tour-
nament using Lemma 4 in polynomial time. If π(S) > k then return ‘no’
and ‘exit’ else return ‘true’ and F ∪ S and ‘exit’. Here π(S) =

∑

v∈S π(v).

Correctness of Step 0 and 1 follow from Lemma 2. In Step 3, we branch on all
possible minimal solutions of F1. Step 4 follows from Lemma 4.

Since the weight of each vertex is at least 1, the time taken by the algorithm
is bounded by the following recurrence:

T (n, k) ≤ 2T (n − 1, k − 1) + T (n − 2, k − 2) + O(nω)

which solves to O((2.4143)knω). So we have following theorem:

Theorem 2 Given a tournament T = (V, E), and a weight function π : V →

7



<+, such that π(v) is at least 1 for every v ∈ V , we can determine whether T
has a feedback vertex set of weight at most k in O((2.4143)knω) time.

General-WFVS problem, where weights can be arbitrary positive reals, is not
fixed parameter tractable unless P = NP . We show this by proving that it is
NP -complete for some fixed constant k (in fact, for k = 1). Our reduction is
from the NP -complete unweighted feedback vertex set problem [19] in tourna-
ments. Let T be a tournament on n vertices where we are interested in finding
a FVS of size k′. Define the weight function π to be π(v) = 1/k′ for all v ∈ V .
Then the original tournament has a FV S of size k′ if and only if the resulting
weighted tournament has a FV S of weight 1. This implies that there cannot
be a f(k)nO(1) or even an nO(k) time algorithm for General-WFVS problem
unless P = NP . This result is true for general directed graph since unweighted
feedback arc set problem is NP -complete for general directed graphs.

Theorem 3 General-WFVS problem is not fixed parameter tractable in gen-
eral directed graphs unless P = NP .

3 Feedback Arc Set Problem in Tournaments

3.1 Feedback Arc Set Problem in Tournaments is FPT

We will first obtain a bound on the length of a shortest cycle in a graph with
at most k arcs away from a tournament.

Lemma 5 Let G = (V, E) be a directed graph such that |V | = n and |E| ≥
(

n

2

)

− k, for some non-negative integer k. Then either G is acyclic or has a

directed cycle of length at most c
√

k for some positive constant c.

Proof: Assume G is not acyclic and choose c such that c2k−3c
√

k ≥ 2k (c = 3
suffices for k ≥ 2). Note that the shortest directed cycle C of G is chordless;
i.e. for all non-adjacent pairs of vertices u, v in C, there is no arc (u, v) or (v, u)
since otherwise that arc between u and v will give rise to a shorter directed
cycle. Suppose that the length l of the shortest directed cycle C in G is strictly
greater than c

√
k. Then G misses

(

l

2

)

− l = l(l − 3)/2 > (c2k − 3c
√

k)/2 ≥ k

arcs. This is a contradiction since G has at least
(

n

2

)

− k arcs. 2

Now we are ready to show the following theorem.

Theorem 4 Given a tournament T = (V, E), we can determine whether it

has a feedback arc set of size at most k in O((c
√

k/e)
k

nω lg n) time, where
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c is a positive constant. I.e. the feedback arc set problem is fixed parameter
tractable in tournaments. (Here e is the base of natural logarithm.)

Proof: We give an algorithm TFES which constructs a search tree for which
each node has at most c

√
k children. Each node in the tree is labelled with a

set of vertices S that represents a partially constructed feedback arc set.

Algorithm TFES(T = (V, E), k, F ) (* k ≥ 0 *)
(Returns ‘true’ and a feedback arc set of size at most k, if exists and returns
‘no’ otherwise. F contains the arcs of a partial feedback arc set. Initially the
algorithm is called by TFES(T, k, ∅).)

Step 1: Find a shortest cycle C in T , if exists.
Step 2: If T is acyclic, then return ‘true’ and ∅ and ‘exit’.
Step 3: If k = 0, then answer ‘no’ and ‘exit’.
Step 4: If for some arc e ∈ C, TFES(T ′, k − 1, F ∪ {e}) is true, where T ′ =

(V, E − e) then return ‘true’ and F (Note: Here F is actually F ∪ {e}.) and
‘exit’, else answer ‘no’ and ‘exit’.

If the algorithm exits at Step 2, then G can be made acyclic by not deleting
any arc and hence its answer is correct (since k ≥ 0). If it exits at Step 3,
then G has a cycle and so it can’t be made acyclic by deleting k = 0 arcs, and
so its answer is correct. Finally the correctness of Step 4 follows from the fact
that any feedback arc set must have one of these arcs of the cycle C, and the
step is recursively checking for each arc e in the cycle whether T − e has a
feedback arc set of size at most k − 1.

To show that the algorithm takes the claimed bounds, observe that since k
decreases at every recursive Step 4 (after an edge deletion), the recursion
depth is at most k. Also the resulting directed graph after the i-th step of
the recursion has at most i arcs deleted from a tournament. Hence Lemma 5
applies and so there is a cycle of length at most c

√
i in the resulting graph

after the i-th step. So the number of nodes in the search tree is O(ck
√

k!). The
shortest cycle in a directed graph can be found in O(nω lg n) time [10]. Hence
the claimed bound follows from Stirling’s approximation. 2

3.2 Improved Algorithms

The algorithms in this section are based on Lemma 6 which is observed in-
dependently by Gallai [8] and Grinberg et al. [9]. We give a proof here for

9



completeness.

Lemma 6 (Reversal Lemma)

Let G = (V, E) be a directed graph and F be a minimal feedback arc set (FAS)
of G. Let G′ be the graph formed from G by reversing the arcs of F in G. Then
G′ is acyclic.

Proof: Assume to the contrary that G′ has a cycle C. Then C can not contain
all the arcs of E −F , as that will contradict the fact that F is a FAS. Define
the set rev(F ) = {(u, v) | (v, u) ∈ F}. Let C ∩ rev(F ) = {f1, f2, · · · , fk}
and ei = rev(fi). Then the set {e1, e2, · · · , ek} is a set of arcs of G which are
reversed and are part of C. Now since each ei ∈ F , and F is minimal, there
exists a cycle Ci in G such that F ∩ Ci = {ei}. Now consider the directed
graph L induced by the arcs of {C, C1, · · · , Ck} − F − rev(F ). It is clear that
L is a directed closed walk with all the arcs in the original graph G. In fact, if
∀i, Ci∩C = ∅, then L is a simple cycle in G, such that L∩F = ∅, contradicting
the fact that F is a FAS. If L is not a simple cycle then we can extract a
simple directed cycle from it not having any arcs of F , violating the definition
of F . 2

Now we use Lemma 6 to give an improved algorithm for the feedback arc set
problem in a tournament.

Algorithm TFAS(T ,k, F )(*T is a tournament, k ≥ 0, and F is a set of
arcs.*)
(Returns ‘true’ and a minimal feedback arc set of size at most k, if exists and
returns ‘no’ otherwise. F contains the arcs of a partial feedback arc set that are
reversed from the original T . Initially the algorithm is called by TFAS(T, k, ∅).)

Step 0: If T does not have a directed triangle and k ≥ 0, then return ‘true’
and F .

Step 1: If k = 0 and T has a triangle, then answer ‘no’ and ‘exit’.
Step 2: Find a triangle in T and let {a, b, c} be the arcs of the triangle.

Step 2a: If rev(a), rev(b) and rev(c) are in F , then answer ‘no’ and ‘exit’.
Step 2b: If TFAS(T\{x}∪ rev{x}, k− 1, F ∪{x}) is true for any arc x of

the triangle such that rev(x) is not in F , then return ‘true’ and F (Note:
Here F is actually F ∪ {x}.) and ‘exit’. Otherwise return ‘no’ and ‘exit’.

Theorem 5 Given a tournament T = (V, E) on n vertices, we can determine
whether it has a feedback arc set of size at most k in O(3knω) time.

Proof: First we will show that the algorithm TFAS finds a minimal feedback
arc set of size at most k if exists. Correctness of Step 0 and Step 1 follow from
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Lemma 2. Step 2a answers correctly as by Reversal Lemma, the current F can
not be extended to a minimal feedback arc set of G. In Step 2b, we branch
on each arc x of the triangle such that rev(x) /∈ F , because if none of these
arcs is picked in the feedback arc set of G, then this triangle will survive in
G′, obtained by reversing the arcs of F . But then by Reversal Lemma, this F
is not minimal. So this proves the correctness of the algorithm.

The claimed time bound can easily be seen by observing that k decreases
at every recursive Step 2b by 1. So the recursion depth is at most k. The
branching factor at every recursion step is at most 3 and hence by Lemma 3,
we have the desired time bound for the algorithm. 2

We further improve the bound using a better branching technique.

Algorithm BTFAS(T ,k, F )(*T is a tournament, k ≥ 0, F is a set of arcs*)
(Returns ‘true’ and a minimal feedback arc set of size at most k, if exists
and returns ‘no’ otherwise. F contains the arcs of a partial feedback arc set
that are reversed from the original T . Initially the algorithm is called by
BTFAS(T, k, ∅).)

Step 0: If T does not have a directed triangle, then return ‘true’ and F .
Step 1: If k = 0 and T has a triangle, then answer ‘no’ and ‘exit’.
Step 2: Find an induced subgraph on 4 vertices isomorphic to F1 (as in figure

2), if exists, in T . Such a subgraph is simply a tournament on 4 vertices
having at least two directed triangles. Let the vertex set of such an F1 be
{1, 2, 3, 4} and the adjacencies be as in figure 2 (in particular (1, 2) is the
only arc not part of any directed triangle). If no such subgraph exists in T ,
then go to Step 6.

Step 3: Let {a, b, c} be the arcs of a triangle in F1, such that there exists an
arc x ∈ {a, b, c} for which rev(x) ∈ F . If there is no such triangle in F1,
then go to Step 4.
Step 3a: If rev(a), rev(b) and rev(c) are in F , then answer ‘no’ and ‘exit’.
Step 3b: If BTFAS(T\{x} ∪ rev(x), k − 1, F ∪ {x}) is true for any arc

x of the triangle such that rev(x) is not in F , then return ‘true’ and F
(Note: Here F is actually F ∪{x}.) and ‘exit’; else answer ‘no’ and ‘exit’.

Step 4: If rev((1, 2)) /∈ F then if any of the following recursive calls returns
true, then return ‘true’ and the corresponding F and ‘exit’, and answer ‘no’
and ‘exit’ otherwise.

In the following, T ′ is obtained from T by reversing the ‘newly included’
arcs of F .
(1) BTFAS(T ′, k − 1, F ∪ {(3, 4)}),
(2) BTFAS(T ′, k − 2, F ∪ {(4, 1), (4, 2)}),
(3) BTFAS(T ′, k − 2, F ∪ {(4, 1), (2, 3)}),
(4) BTFAS(T ′, k − 2, F ∪ {(1, 3), (2, 3)}),
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(5) BTFASF (T ′, k − 3, F ∪ {(1, 2), (1, 3), (4, 2)})
Step 5: If rev((1, 2)) ∈ F , then if any of the first 4 recursive calls enumerated

in Step 4 returns true, then return ‘true’ and the corresponding F and ‘exit’,
and answer ‘no’ and ‘exit’ otherwise.

Step 6: Find a minimum feedback arc set S of a resultant tournament using
Lemma 4 in polynomial time. If |S| > k then return ‘no’ and ‘exit’ else
return ‘true’ and F ∪ S and ‘exit’.

In the above algorithm at every step, we first find a graph isomorphic to F1,
and then if there exists a directed triangle in F1 with all its arcs included in
the partial feedback arc set (F ) obtained so far, then we apply Lemma 6 and
answer ‘no’. Otherwise we branch on all the arcs x of the triangle such that
rev(x) /∈ F as by Lemma 6 at least one such arc must be part of F .

If none of the arcs of F1 is part of F , then we branch on all possible mini-
mal feedback arc sets of F1. The only remaining case is when all the arcs x
appearing in some triangle in F1 are not in F but rev((1, 2)) ∈ F . In this
case, Lemma 6 implies that item 5 of Step 2b is not applicable (because the
set {(1, 3), (4, 2)} is not a minimal FAS of F1). So when we reach Step 6 of
the above algorithm, all the induced subgraphs on 4 vertices have at most one
triangle. And the problem now can be solved in polynomial time by Lemma
4 .

Thus, we get the following recurrence for the time complexity of the algorithm:

T (n, k) ≤ max











2T (n, k − 1) + O(nω) or

T (n, k − 1) + 3T (n, k − 2) + T (n, k − 3) + O(nω)

The above recurrences solve to O((2.415)knω). So we get the following theorem.

Theorem 6 Given a tournament T = (V, E), we can determine whether it
has a feedback arc set of size at most k in O((2.415)knω) time.

We remark that the above algorithm can also be applied for weighted feedback
arc set problem in a tournament where the weight of every arc is at least 1.

Theorem 7 Given a tournament T = (V, E), and a weight function π : E →
<+, such that π(e) is at least 1 for every e ∈ E, we can determine whether T
has a feedback arc set of weight at most k in O((2.415)knω) time.
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4 Feedback Arc Set Problem in Dense Directed Graphs

In this section, we show that the feedback arc set problem is fixed param-
eter tractable for directed graphs which are at most n1+o(1) arcs away from
a tournament. We need the following lemma to show the desired result. The
girth of a graph is defined as the length of the shortest cycle in the graph.
A directed graph is called strongly connected if there exists a directed path
between every pair of vertices.

Lemma 7 [2] Let G = (V, E) be a strongly connected directed graph with n

vertices, m arcs and let l ≥ 2. Then if m ≥ n2+(3−2l)n+(l2−l)
2

, the girth of the
graph (g(G)) is bounded by l.

Corollary 2 Let G be a strong directed graph with n vertices and m ≥
(

n

2

)

−
n(g−2)

2
where 3 ≤ g ≤ n − 6. Then g(G) ≤ g.

Proof: Lemma 7 implies that if a strong directed graph has at least
(

n

2

)

−n(g−2)
2

arcs, then its girth is bounded by g. This is because

(

n

2

)

− n2 + (3 − 2g)n + (g2 − g)

2
=

2n(g − 2) + g − g2

2

and

2n(g − 2) + g − g2

2
≥ n(g − 2) − g2

2
≥ n(g − 2)

2
whenever n ≥ g2

g−2
.

To show n ≥ g2

g−2
, it suffices to show

n≥ g2

g − 2

=
g2 − 4

g − 2
+

4

g − 2

= g + 2 +
4

g − 2
.

We know g + 2 + 4
g−2

≤ g + 6 ≤ n, which completes the claim. 2

Theorem 8 Let G be a directed graph with n vertices and m ≥
(

n

2

)

− n1+o(1)

arcs. Then the feedback arc set (FAS) problem is fixed parameter tractable for
G.

13



Proof: For the feedback arc set problem, we can assume without loss of gen-
erality, that the given directed graph is a strongly connected directed graph.
(Otherwise, try values up to k in each strongly connected subgraph and take
the minimum.)

We find the shortest cycle in G and then by applying Lemma 6, we branch on
each arc by reversing the arc. This way we don’t delete any arc and hence at ev-
ery recursive step Corollary 2 ensures a cycle of length at most no(1). So we have
an algorithm for feedback arc set problem in G which takes O((no(1))knO(1))
time. Cai and Judes [3] have observed that O((no(1))k) algorithm can be sim-
ulated by an algorithm of time f(k)nO(1), where f is some function of k, for
every fixed n and k. Hence it follows that the feedback arc set problem is fixed
parameter tractable for G. 2

Note that the proof does not carry over to the FVS problem on dense di-
rected graphs. This is because, we may not obtain a dense directed graph
after deleting a vertex from a dense directed graph.

5 Parametric Duals

The parametric dual of a parameterized problem with parameter k is the
same problem with k replaced by ‘all but k’ ([11,12]). For example, the para-
metric dual of the k-vertex cover is the (n − k)- vertex cover or equivalently
k-independent set problem.

In this section, we show that the parametric dual problems of the directed
feedback set problems are themselves some natural optimization problems and
their parameterized versions are fixed parameter tractable in oriented directed
graphs.

5.1 Parametric Dual of Directed Feedback Vertex Set

Parameteric dual of directed feedback vertex set is : given a directed graph on
n vertices, are there at most n − k vertices whose removal makes the graph
acyclic. Or equivalently, is there a set of at least k vertices that induces an
acyclic directed graph? We call this the maxv − acyclic subgraph problem.

Given a tournament T , we can find a subset S of vertices such that |S| ≥ blg nc
and the induced subtournament of T on S is acyclic (transitive). We repeatedly
include the vertex with the smallest indegree in the given tournament into S
and remove it and its neighbours from the tournament. It is also clear that

14



the induced subtournament on S is acyclic. For, if we order the vertices by
the order in which they are included in S, then the arcs go only from smaller
vertices to bigger vertices.

To show that |S| ≥ blg nc, it suffices to show that the ‘repeat’ loop will
execute for at least blg nc steps. This follows because in any tournament there
is a vertex with indegree at most (n − 1)/2. Thus, after one step of the loop
at most (n + 1)/2 vertices are deleted.

Any oriented directed graph can be completed to a tournament by adding the
missing arcs (with arbitrary directions). Hence every oriented directed graph
G on n vertices and m arcs has at least blg nc vertices that induce an acyclic
subgraph.

Let the oriented directed graph G be given as an adjacency list where associ-
ated with every vertex x is a list of vertices y such that y is an inneighbour of
x. It is easy to implement each step of the ‘repeat’ loop in O(m) time (We can
have a bitvector for the list of vertices to be deleted and scan through the ad-
jacency list and remove those vertices.). By exiting the loop when |S| = blg nc,
we get the following lemma.

Lemma 8 Let G be an oriented directed graph with n vertices and m arcs.
Then there exists a subset of blg nc vertices which induces an acyclic subgraph
and it can be found in O(min{m lg n, n2}) time.

Now we can design a fixed parameter tractable algorithm for the parameterized
maxv − acyclic subgraph problem as follows. If k ≤ blg nc, then return the
acyclic subgraph obtained in Lemma 8, otherwise n ≤ 2k and then we check
all k sized subsets of the vertex set to see whether the subset induces an
acyclic subgraph. If any one of them does, then we return the acyclic subgraph,

otherwise answer ‘no’. Since
(

n

k

)

≤
(

2k

k

)

≤ (e2k/k)k, we have the following

theorem. (Here e is the base of natural logarithm.)

Theorem 9 Given an oriented directed graph G and an integer k, we can
determine whether or not G has at least k vertices that induce an acyclic
subgraph in time O((e2k/k)kk2 + min({m lg n}, {n2})); i.e maxv − acyclic
subgraph problem is fixed parameter tractable.

The fixed parameter tractable algorithm for the maxv − acyclic subgraph
problem follows from the easy observation that there is a “guarantee” (lower
bound) of blg nc for the solution size. In such situations, it is natural to param-
eterize above the guarantee [12] and so a natural question to ask is whether
a given directed graph has a set of at least blg nc + k vertices that induces
an acyclic subgraph. The parameterized complexity of this question is open.
However it turns out that maxv − acyclic subgraph problem is W [1]-hard in
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general directed graphs.

Theorem 10 It is W [1]-hard to determine whether a given directed graph
has k vertices that induce an acyclic subgraph; i.e. maxv − acyclic subgraph
problem is W [1]-hard in directed graphs.

Proof: We reduce the k-independent set problem in undirected graphs to the
given problem. Given an undirected graph G = (V, E), an instance of the
independent set problem we construct D = (V, E

′

), an instance of maxv −
acyclic subgraph problem in directed graph by adding both arcs u → v and
v → u for every (u, v) in E. If G has an independent set of size k, then those
corresponding vertices of D form an acyclic subgraph. Conversely, if D has an
acyclic subgraph on k vertices, then those k vertices must form an independent
set in D as if there is an arc between a pair of vertices in D, then there actually
is a directed cycle (of length 2) between them. 2

5.2 Parametric Dual of Directed Feedback Arc Set

Parametric dual of directed feedback arc set is : given a directed graph on n
vertices and m arcs, are there at most m − k arcs whose removal makes the
graph acyclic. Or equivalently, is there a set of at least k arcs that induces an
acyclic directed graph? We call this the maxe−acyclic subgraph problem and
show that it is fixed parameter tractable. It follows from the following easy
lemma.

Lemma 9 Given a directed graph G on n vertices and m arcs, there always
exists a set of at least dm/2e arcs that form an acyclic directed graph. Such a
set of arcs can be found in O(m) time.

Proof: Order the vertices of the directed graph G arbitrarily. If m is the
number of arcs in the graph, then at least dm/2e of these arcs go in one
direction (all from a smaller vertex to a higher vertex or vice versa). These
arcs form an acyclic directed graph. 2

Theorem 11 Given a directed graph G on n vertices and m arcs and an
integer parameter k, we can determine whether or not G has at least k arcs
that form an acyclic subgraph in time O(4kk+m), i.e maxe−acyclic subgraph
problem is FPT in directed graphs.

Proof: If k ≤ m/2, then return the acyclic subgraph obtained in Lemma 9,
otherwise m ≤ 2k, and then check all k subsets of the arc set of the graph.
If any of these k subsets of arcs induces an acyclic subgraph, then return the
acyclic subgraph, and answer ‘no’ otherwise.
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Since
(

m

k

)

≤ 2m ≤ 22k, and we can check in O(k) time if k arcs forms an
acyclic graph, we have the desired running time. 2

Just as in the parametric dual of the feedback vertex set problem, a natural
parameterized question here is whether the given directed graph has a set
of at least dm/2e + k arcs that form an acyclic subgraph. This question is
open for general directed graphs. In fact, dm/2e is a tight lower bound for
the solution size in directed graphs. This bound is realized, for example, in a
directed graph obtained by taking an undirected path on n vertices (and n
edges) and replacing every edge by a pair of directed arcs one in each direction.

However, this bound of dm/2e is not tight for oriented directed graphs.

We prove that there exists an acyclic subgraph on m
2
+1/2d(n−c)/2e arcs in any

oriented directed graph and then use this to give fixed parameter algorithm
for the question ‘whether the given oriented directed graph has a set of at
least m

2
+ k arcs that forms an acyclic subgraph’.

We mimic the proof of the following lemma proved in [14].

Lemma 10 [14] If G is a simple undirected graph (without parallel edges and
self loops) with m edges, n vertices and c components, then the maximum
number of edges in a bipartite subgraph of G is at least m

2
+ 1

2
d(n−c)/2e. Such

a bipartite graph can be found in O(n3) time.

If we just apply Lemma 10 on the underlying undirected graph then at least
half the arcs of the bipartite subgraph returned by the Lemma 10 are in one
direction and that gives us a lower bound of m

4
+ 1

4
d(n − c)/2e on the size of

maximum acyclic subgraph of G. However, by modifying the proof of Lemma
10, we get a bound of m

2
+ 1

2
d(n − c)/2e. We will use a(G) to denote the size

of a maximum acyclic subgraph of G.

Lemma 11 Any oriented directed graph G = (V, E) with m arcs and n ver-
tices, with the underlying undirected graph having c components, has an acyclic
subgraph with at least m

2
+1/2d(n−c)/2e arcs, i.e. a(G) ≥ m

2
+1/2d(n−c)/2e

and such a subgraph can be found in O(n3) time.

Proof: Without loss of generality assume that the underlying undirected
graph is connected, otherwise we will apply this lemma on each component to
get the result. The proof is along the lines of the proof of Lemma 10. We give
the proof for completion.

The proof is by induction on the number of vertices. The lemma is clearly true
for oriented directed graphs on 1 or 2 vertices. At the induction step, there
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are three cases.

Case 1: The underlying undirected graph has a cut vertex x.
In this case, we apply induction on each of the connected components of

the underlying undirected graph of G − x including x in each component.
Let the connected components of the underlying undirected graph of G− x
be {C1, C2, ..., Ck} and let Gi denote the induced subgraph on Ci ∪ {x}.
Then we have:

a(G) ≥
k
∑

i=1

a(Gi).

Let E(Gi) denote the edge set of Gi and let mi and ni denote the cardinality
of edges and vertices of Gi respectively. Observe that

∑

i mi = m and
∑

i(ni−
1) = n − 1. Then by applying induction hypothesis on Gi, we get

a(G)≥
k
∑

i=1

mi

2
+

1

2
d(ni − 1)/2e

≥ m

2
+

1

2
d(n − 1)/2e

(Since dxe + dye ≥ dx + ye, for any two rationals x and y.)

Case 2: The underlying undirected graph has no cut vertex and the oriented
directed graph G has a vertex x whose indegree and outdegree are not the
same.

In this case we apply induction on G − x (whose underlying undirected
graph will be clearly connected), and also include all arcs coming into x or
all arcs going out of x whichever set is larger, into the acyclic subgraph to
get an acyclic subgraph in the resulting directed graph. So we get:

a(G)≥ a(G − x) +
dG(x) + 1

2

≥ m − dG(x)

2
+

1

2
d(n − 2)/2e +

dG(x) + 1

2

≥ m

2
+

1

2
d(n − 1)/2e.

Here dG(x) represents the number of neighbours (both inneighbour and
outneighbour) of x in G.

Case 3: Every vertex has even degree and the underlying undirected graph
has no cut vertex.

This implies that there exists a pair of adjacent vertices u and v such that
the underlying undirected graph of G − {u, v} is connected (for a proof see
[14]). Apply induction on G − {u, v} and pick all outgoing arcs from u and
v. This implies that
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a(G)≥ a(G − u − v) +
dG(u) + dG(v)

2

≥ m − (dG(u) + dG(v) − 1)

2
+

1

2
d(n − 3)/2e +

dG(u) + dG(v)

2

=
m

2
+

1

2
d(n − 3)/2e +

1

2

≥ m

2
+

1

2
d(n − 1)/2e.

It is easy to verify that the resulting set of arcs forms an acyclic subgraph,
and can be found in the claimed bound. 2

Theorem 12 Let G be an oriented directed graph on n vertex and m arcs.
Let c be the number of components in the underlying undirected graph. Then
given an integer k, we can determine whether or not G has at least m

2
+k arcs

which forms an acyclic subgraph in time O(c2O(k2)k2 + m + n3).

Proof: First, find all the c components of the underlying undirected graph
corresponding to G. If k ≤ 1/2d(n−c)/2e, then G has an acyclic subgraph with
at least m

2
+k arcs, else k > 1/2d(n−c)/2e ≥ (n−c)/4−1 or n ≤ 4k+4+c. Thus

ni, the number of vertices in the i-th component is at most n−(c−1) ≤ 4k+5.
Hence the number of arcs in each of the components is O(k2). By trying all
subsets of the arcs in the component, we can find mi, the maximum number
of arcs of the i-th component that form an acyclic subgraph, for any i, in
O(2O(k2)k2) time. If

∑c
i=1 mi ≥ dm/2e + k then G has an acyclic subgraph

with at least m
2

+ k arcs, else G does not have an acyclic subgraph with at
least m

2
+ k arcs. 2

6 Conclusions

In this paper, we have obtained efficient algorithms for parameterized feedback
arc and vertex set problem on weighted tournaments. For the feedback arc set
problem, the complexity of the algorithms in unweighted and weighted (with
weights at least 1) versions are the same while this is not the case for the
feedback vertex set problem.

The best known algorithm for FVS in unweighted tournaments is through the
hitting set algorithm. It would be interesting to see whether the unweighted
feedback vertex set problem on tournaments has some special structure that
can be utilized to develop an algorithm better than that of the 3-hitting set
problem.

We have also given FPT algorithms for the parametric duals of directed feed-
back vertex and arc set problems in oriented directed graphs and directed
graphs respectively. Dual of directed feedback vertex set problem in directed
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graphs is shown to be W [1]-hard. In line with parameterizing above the guar-
anteed values, the parameterized complexity of the following questions are also
interesting.

• Given an oriented directed graph on n vertices, does it have a subset of at
least blg nc + k vertices that induces an acyclic subgraph?

• Given an oriented directed graph on n vertices and m arcs, does it have a
subset of at least m/2 + 1/2(dn − 1/2e) + k arcs that induces an acyclic
subgraph ?

• Given a directed graph on n vertices and m arcs, does it have a subset of
at least m/2 + k arcs that induces an acyclic subgraph ?
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