Succinct Indexable Dictionaries with Applications to Encoding k-ary Trees and
Multisets *

Rajeev Raman'

Abstract
We consider the indexable dictionary problem which
consists in storing a set S C {0,...,m — 1} for some

integer m, while supporting the operations of rank(z),
which returns the number of elements in S that are less
than z if x € S, and —1 otherwise; and select(i) which
returns the i-th smallest element in S.

We give a structure that supports both operations
in O(1) time on the RAM model and requires B(n, m)+
o(n) + O(lglgm) bits to store a set of size n, where
B(n,m) = [lg(7)] is the minimum number of bits
required to store any n-element subset from a universe
of size m. Previous dictionaries taking this space only
supported (yes/no) membership queries in O(1) time.
In the cell probe model we can remove the O(lglgm)
additive term in the space bound, answering a question
raised by Fich and Miltersen, and Pagh.

We also present two applications of our dictionary
structure:

* An information-theoretically optimal representation
for k-ary cardinal trees (aka k-ary tries). Our structure
uses C(n, k) +o(n+lgk) bits to store a k-ary tree with n
nodes and can support parent, i-th child, child labeled
i, and the degree of a node in constant time, where
C(n, k) is the minimum number of bits to store any n-
node k-ary tree. Previous space efficient representations
for cardinal k-ary trees required C(n, k) + Q(n) bits.

¢ An optimal representation for multisets where (ap-
propriate generalisations of) the select and rank opera-
tions can be supported in O(1) time. Our structure uses
B(n,m+n)+ o(n) + O(lglg m) bits to represent a mul-
tiset of size n from an m element set; the first term is
the minimum number of bits required to represent such
a multiset.
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1 Introduction

Givenaset S CU ={0,...,m—1},|S| = n we consider
the problem of representing S to support the following
operations in constant time:

rank(z,S): Given z € U, return —1 if z ¢ S and
{y € S|y < z}| otherwise, and

select(i, S): Given i € {1,...,n}, return the i-th small-
est element in S.

When there is no confusion, we will sometimes omit
the set S from the description of these operations. We
call this the indezable dictionary problem, and a repre-
sentation for this problem where both these operations
can be supported in constant time, the indezxable dic-
tionary representation. This is a generalisation of the
classical dictionary problem, where we need to support
(yes/no) membership queries [6, 12, 17, 19], and can be
thought of as combining the functionalities of the hash
table and sorted array representations of S. A variant
of this problem was considered previously by Elias [10].

We assume a unit-cost RAM model in which stan-
dard arithmetic and bitwise boolean operations on
word-sized operands take constant time, where the word
size is ©(lgm) bits [2, 13]. Our interest is in highly
space-efficient or succinct representations that support
both operations in O(1) time.

Since there are (’:) subsets of size n, the lower
bound on space for this problem is B(n, m) = ﬂg (’:)] =
nlg(me/n) — O(n?/m) — O(lgn), as n grows and m >
n. For the classical dictionary problem, Pagh [17]
showed that O(1)-time membership queries can be
supported using B(n,m) + o(n) + O(lglgm) bits of
space, improving Brodnik and Munro’s previous result
[6]. Raman and Rao [18] considered dictionaries with
rank, which support O(1)-time rank() queries and gave
a representation requiring n[lgm] + O(lglgm) bits
of space; this is better than augmenting Pagh’s data
structure with n [lgn] bits of explicit rank information.
Raman and Rao’s data structure can support select()
queries using n([lgm] + [lgn]) + O(lglgm) bits, but
this is nearly 2nlgn bits more than necessary.

In this paper we give a solution that requires
B(n,m)+ o(n) 4+ O(lg lgm) bits, which is space-optimal



to within lower-order terms. In the cell probe model
with word size ©(lgm), a variant of this data structure
requires B(n,m) + o(n) bits. The latter result implies
that n words of [lg m] bits suffice to answer membership
queries in O(1) time on a set of size n. This answers
a question raised by Fich and Miltersen [11] and Pagh
[17]. By contrast, Yao’s influential paper [21] showed
that if the n words must contain a permutation of S,
then membership queries cannot be answered in O(1)
time using n words.

The main ingredient in our results is an idea we call
most-significant-bit first (MSB) bucketing. The idea is
to apply a trivial top-level hash function to the keys in
S, which simply takes the value of the ¢ most significant
bits of a key. As we can omit the ¢ most significant
bits of all keys that “hash” to the same bucket, space
savings is possible. A similar idea was used by Brodnik
and Munro[6] in their succinct representation of sets. A
major difference between our approach and theirs is that
they store explicit pointers to refer to the representation
of buckets, which uses more space than necessary (and
hence constrains the number of buckets). Instead, we
use a succinct representation of the multiset of bucket
indices that not only provides the extra functionality
needed for supporting rank and select, but also uses
significantly less space.

Another related technique of quotienting [17] stores
only the “quotients” of keys that are mapped to a
bucket by a standard hash function (e.g. those of [12]).
The crucial difference is that MSB bucketing preserves
enough information about ordering of keys to allow us to
maintain most of the rank information using negligible
extra space. In addition we use ideas of range reduction
([12] and others) and distinguishing bits ([1] and others)
to achieve our main result.

In addition to being fundamental problems in their
own right, these dictionaries also find use in succinct
representations of cardinal trees (or tries) and multisets.
A k-ary cardinal tree is a rooted tree, each node of
which has k positions labeled 0,...,k — 1, which can
contain edges to children. The space lower bound
for representing a k-ary cardinal tree with n nodes

is C(n, k) = {lg( L (k”-l'l))—‘; it can be seen that

kn+1 n

C(n,k) ~ (Ig(k — 1) + klg 2=)n for constant k and
growing n, and that C(n, k) = (Igk +1ge)n—o(n+l1gk)
bits if £ grows with n. We are interested in finding
succinct representations of cardinal k-ary trees that
support navigation and other queries in O(1) time.

Benoit et al. [4] gave a cardinal tree structure that
takes ([lgk] +2)n+ o(n) = C(n, k) + Q(n) bits of space
that answers queries asking for parent, ith child, degree
and subtree size in constant time and queries asking

for a child with label i in O(Iglgk) time in the worst
case. The time for the latter query was improved to
O(lglglgk) in [18] and to O(1) in [5], with a slight
increase in space to ([lgk]+2)n+o(n)+O(lglg k) bits.

Using our indexable dictionary, we obtain an opti-
mal encoding for k-ary cardinal trees taking C(n, k) +
o(n) +O(lglg k) bits, in which all the above operations,
except the subtree size at a node, can be supported in
constant time. Our representation uses a numbering of
tree nodes that allows us to dispense with an explicit en-
coding of the tree structure, a feature shared with the
representation of [9]. All the above results on cardinal
trees use the unit-cost RAM model with a word size of
O(lg(max{n, k})) bits.

We also observe that our indexable dictionary
structure can be applied to obtain an information-
theoretically optimal encoding for indezable multisets,
which support operations rankm and selectm that are
natural generalisations of rank and select to multisets.
Let M be a multiset of n numbers from {0,...,m—1}.
Tt is easy to see that B(n,m + n) is a lower bound on
the number of bits needed to represent such a multi-
set, as there is a 1 — 1 mapping between such multi-
sets and sets of n elements from {0,...,m + n — 1}
(see e.g. [10]). However, if we transform a multiset
into a set by this mapping, then rankm and selectm
do not appear to translate into rank and select oper-
ations on the underlying set. Using some additional
ideas, we obtain an multiset representation that takes
B(n,m+ n) + o(n) + O(lglg m) bits.

The next section gives some preliminary results in-
cluding optimal representations for indexable dictionar-
ies and multisets when n is sufficiently large with respect
to m. In Section 3 we give our general optimal represen-
tation of an indexable static dictionary. Section 4 deals
with the application to indexable multisets. Section 5
deals with the representation of k-ary trees. In Section
6, we give an optimal space indexable dictionary in the
cell probe model.

2 Preliminaries

We state here some lemmas with references or sketches
for proofs, which will be used later in the paper. In
what follows, if f is a function defined from a finite set
X to a finite totally ordered set Y, by ||f||, we mean
max{f(z) : z € X}. We use the notation [m] to denote
the set {0,1,...,m — 1}.

Given a set S C U, a fully indexable dictionary
(FID) representation for S supports rank() and select()
operations on both S and its complement S = U \ S in
O(1) time. A FID is quite a powerful data structure for
finite universes. For example, 1t is easy to check that
if U = [m] then a FID representation for S supports



O(1)-time predecessor queries’ on S. Tt is known that
in general, predecessor queries cannot be answered in
O(1) time on the RAM model by a data structure that
uses n?(1) words of space [3]. Hence FIDs cannot exist
in general unless they are relatively space-inefficient.
However, we show that FIDs that require essentially
B(n, m) bits exist for sufficiently dense sets, generalising
a result of Pagh [17]. FIDs are essential to our data
structure as they are intimately related to operations
on multisets, as we note in the next section and in
Theorem 4.1.

2.1 Multisets. Given a multiset M of n numbers
from the set U = [m], define the operations:

rankm(z): Given z € U, return —1 if z ¢ M and
{y € M|y < z}| otherwise,

selectm(i): Given i € {l,...,n}, return the largest
element & € M such that rankm™ (z) <i — 1 and

rankm™ (z): Given z € U, return [{y € M|y < z}|.

We now make the connection between FIDs and
multiset representations that support rankmt and
selectm:

LEMMA 2.1. Suppose there is a fully indexable dictio-
nary representation for any giwen set S C U wusing
FUSI, |U|) bits of space. Then given a multiset M of
n numbers from the set [m], there is a structure to rep-
resent M using f(n,m + n) bits of space that supports
rankm™ and selectm in constant time.

Proof. Consider the following bit representation [10] of
the multiset M: For ¢ = 0 to m — 1 in that order,
represent ¢ by a 0 followed by n; 1’s where n; is the
number of times the element i appears in the multiset
M. Clearly this representation takes m + n bits since it
has m 0s and n 1s.

Now view this bit sequence as a characteristic vector
of a set S of n elements from the universe [m + n].
Represent S as a FID using f(n, m + n) bits. Tt is easy
to verify that rankm™(z) = select(x + 1,5) — z and
selectm(i) = select(?, S) —i. O

2.2 Fully indexable dictionaries. Given a bit vec-
tor of length n one can augment it with o(n) additional
bits of information so as to support the following oper-
ations in O(1) time [14, 15] (see also [16]): (i) given ¢,
report the number of Os (1s) in positions 1,...,7i— 1 of
the bit vector; (ii) given ¢, return the index of the #-th 0

TThe predecessor of = in S for any z € U is defined as

max{y € S|y < z}.

(1) in the bit vector. Applying this to a set represented
explicitly as its characteristic vector, we get:

LEMMA 2.2. ([14, 15] (sEE ALso [16])) Given a set
S C [m] there is a FID on S that requires m + o(m)
bats.

Lemmas 2.2 and 2.1 give:

COROLLARY 2.1. A multiset M of n numbers from the
set [m] can be represented using m+n+o(m-+n) bits of
space to support rankm™ and selectm in constant time.

We now consider more space-efficient FIDs, and
show the following lemma which is an extension of [17,
Proposition 4.3].

LEMMA 2.3. Given a set S C [m], |S| = n, there is a
FID on S that requires B(n, m)+O(mlglgm/lgm) bits
of space.

Proof. Let U = [m] be the universe. We divide the
universe into blocks of u = 1 [lgm] numbers each, with
Uy = {iu,...,(i+ Du—1} for 1 <7 < 2m/flgm. We
store two arrays of size O(m/lgm). Let S; = SNU; and
n; = |S;|. The first array A stores the numbers n; in
equal sized fields of [lgu] bits each. The second array
B stores the quantities [B(n;, u)]; since B(n;,u) < u
these numbers can also be stored in equal sized fields of
[lgu] bits each. This requires O(mlglgm/lgm) bits
of space. We also store the prefix sums of the two
arrays as described in [17, Proposition 4.2] or [20] in
O(mlglgm/lgm) bits again such that the i-th prefix
sum is calculated in O(1) time.

The set S; is represented by a string of [B(n;, u)]
bits by storing an index into a table containing the
characteristic bit vectors of all possible subsets of size
n; from a universe of size u, and S is represented by
concatenating the representations of S;’s. The length of
this representation is at most B(n, m) bits, as shown in
Lemma 4.1 of [17]. We also store precomputed tables
to support rank and select queries on the sets S; given
its size and the representation. These tables require
O(m'~*) bits of space for some fixed positive constant
e< 1.

To support select we do the following. Let p =
|Al(= 2m/1gm). We explicitly store the positions in A
of select(i (Igp)?) for 1 < i < p/(lgp)?. Here select(j)
gives the position [ in A such that ZiZ1A[i] < j <
¥t _, A[i]. Call the subset of the elements of the universe
between two successive positions as a block. Following
the ideas of [7, 16], we call a block ‘dense’ if the block
size is at most (Igp)* and ‘sparse’ otherwise. Thus
a sparse block has size > (Igp)* but the sum of the
numbers in the block is roughly (Igp)?. We represent a



sparse block by explicitly listing the positions select(j)
with respect to the beginning of the block, for 1 < j <
(Igp)? in the block. This takes at most (lgp)3 bits
for each sparse block. Thus the total space used for
all sparse blocks together is at most O(m(lgp)*/(lgp)?)
which is O(m/lgm) bits.

For a dense group, we construct a complete tree
with branching factor 1/Igp with the block elements at
the leaves. At each node of this tree, except at the
leaves, we store an array containing the sum of all the
numbers in each of its child subtrees. This requires
O(klglgp/lgp) bits for a dense block of size k (we do
not count the space for storing the arrays at the level
above the leaf nodes as these are part of array A). Thus
the total space required for all the dense blocks together
is at most O(mlglgm/lgm) bits.

To compute select(i) we find the predecessor of 7 in
the partial sum structure for the array A. This gives
us the block to which the ith smallest element of S
belongs to. If that block is sparse, we know from its
representation, the position of the required element (as
these pointers are stored explicitly). Otherwise, if the
block is dense, we start at the root of the tree structure
corresponding to that block and do a predecessor search
among the numbers stored in the array stored at that
node to find the subtree to which the required element
belongs. This can be done in constant time using
word-level parallelism, as the array at each node takes
O(\/1gplglgp) = o(lg n) bits. We do this repeatedly at
each level looking for an appropriately ranked element,
going down the tree (spending constant time at each
level) until we reach a leaf. This leaf corresponds to
some subset S;. We find the number of elements &
in So U...US;j_; using the partial sum structure for
the array A, index into the string for S to get the
representation of S; using the partial sum structure for
the array B and find the position ! of the (i — k)th
element in the representation of S; using a table lookup.
Then it is easy to see that select(i) = | + ku. Since the
tree is of constant depth, it follows that we can find
select(i) in constant time.

To find rank(z) we proceed as in [17]: first compute
i = |z/u], find the number of elements in SpU...US;_1
using the partial sum structure for the array A, index
into the string for S to get the representation of S; using
the partial sum structure for the array B and find the
rank of z within the set S; using a table lookup.

For supporting rank and select operations on S, we
need to store the arrays A and B corresponding to the
set S and their ‘partial sum’ and ‘select’ structures.
We need not store the representations of S; = U; \ S;
separately, as we can use the representation of S; itself
for this purpose (as there is a one-to-one mapping

between them). The rank and select operations on S;,
given its ‘representation’, can be supported in constant
time using lookup tables. These tables require O(m!~¢)
bits of space for some fixed positive constant € < 1.
The space required for the whole structure is clearly

B(n,m) 4+ O(mlglgm/lgm) bits. O
It immediately follows that:

COROLLARY 2.2. There is a fully indexable dictionary
representation for a set S C [m], |S| = n that
uses B(n,m) + o(n) bits of space, provided that m is
O(n+1Ign).

The following corollary follows from Corollary 2.2
and Lemma 2.1. Note that B(n, m + n) is the informa-
tion theoretic minimum number of bits to represent a
multiset on n elements from an m element universe.

COROLLARY 2.3. Ifm is O(n+/Ign), then a multiset M
of n numbers from the set [m] can be represented using
B(n,m 4 n) + o(n) bits to support rankm™ and selectm
in constant time.

2.3 A Simple Indexable Dictionary. The follow-
ing lemma is a simplification and extension of one from

[5]:

LEMMA 2.4. Let M, N > 1 be integers, let S C [M] be
a set of size n < N. Suppose we have access to two
functions hg(z) and qs(z), defined on [M], satisfying
the following conditions:

1. hg s 1-1 on S.

2. hg and qs can be evaluated in O(1) time and from
hs(z) and qs(z) one can uniquely reconstruct x in

O(1) time.

3. ||hs]| s O(N?) if n > /IgN and ||hs|| is
(g N)OW) otherwise.

4. NgllhslT+ MNgllgs|[] s 1g M + O(1).

Then we can represent S using nlg M+nlgn+0(n)
bits and support rank and select in O(1) time, assuming
a word size of > lgmax{M, N} bits and a precomputed
table of size o(N) bits.

Proof. Let 21 < 5 < ... < z, be the elements of S. If
n < +/Ig N then write down hs(z1),..., hg(z,) in fields
of [lg||hs||] bits each, followed by qg(z1),...,qs(zs) in
fields of [lg||gs]||] bits each. This requires nlg M +O(n)
bits. To do rank(z) we calculate hg(z) and look
for a match in hg(z1),...,hs(zy) in O(1) time using
table lookup (note that in this case n - [lg]||hs]|]] =



O(nlglg N) = o(lg N) and hence the lookup table will
be of size o(N) bits). If hg(z) = hs(z;) , then verify
whether ¢s(z) = qs(z;). If so, return ¢ — 1, otherwise
return —1. To compute select(i), reconstruct z; from
the values hg(z;) and ¢g(z;), which can be accessed in
constant time, and return it.

If n > 1/Ig N, then we store the set S’ = {hgs(z)|z €
S} using the the scheme of [18] except when storing the
ranks with the element hg(z) of ', store the rank of
z € S. As each of the rank information takes anyway
only [lgn] bits, this structure takes n [lg ||hs(z)||] bits.
We also store the sequence qs(z1)gs(z2) ... qs(z,) using
n-[lg||gs||] bits. So if we find hg(z) in S’, for the query
element x, we will also know a rank r. So we can confirm
whether that value is z by comparing ¢g(z) with ¢g(z,).
In addition, we use nlgn + O(n) bits of information to
support select() queries. O

The function hg is essentially a ‘universe reduction’
function commonly used in perfect hashing. Indeed,
the first two steps of the FKS scheme [12] show the
existence of the function hg with range of O(|S|*) and
¢s(z) is simply the quotient information required to
recover z given hg(z). However, for a small set S
(a set whose size is < /IgN), the space to represent
the function hs can become dominant. So to reduce
the total size of the function descriptions, we [5] use
the same function for a group of (up to lgN) small
sets. This is why hg has a relaxed range of O((lg N)°),
rather than the minimum range of O(lg N). The details
are encapsulated in the lemma below, whose proof is
reproduced in the appendix for completeness.

LEMMA 2.5. [5] Let N, M be as in Lemma 2.4, and let
0<i <12 <...<is <N be a sequence of integers.
Let Siy,Siy,...,S;, all be subsets of [M] such that
Z;:l |Si;| < N. The there exist functions hs,, and qs,
forj =1,... s that satisfy the conditions of Lemma 2.4,
and that can be represented in o(N) + O(lglg M) bits.

3 Optimal Indexable Dictionary

Assuming that Lemma 2.4 is applicable to various
subsets we consider, we first show that a set S C [m]
such that |[S| = n can be stored in at most n[lgm]
bits, and can support rank and select operations in
O(1) time. This excludes the space for the functions
needed by Lemma 2.4. Using Lemma 2.5 we represent
these functions in o(n) + O(lglgm) bits, giving us
Theorem 3.1.

Later we use the representation of Theorem 3.1 to
store multiple independent (but not necessarily disjoint)
dictionaries efficiently (Theorem 3.2). We then obtain
our main result, Theorem 3.3.

3.1 A Sub-Optimal Solution using MSB buck-
eting.

THEOREM 3.1. There is an indexable dictionary for a
set S C [m], |S| = n, that uses at most n[lgm]+o(n)+
O(lglgm) bits of space.

Proof. The proof is as follows. We first describe a
construction algorithm, in which we partition S using
MSB bucketing, recursing on large partitions. The
base case of the recursion is handled using Lemma 2.4.
We get an overall space bound of n[lgm] assuming
the hypothesis of Lemma 2.4 for each application of
this lemma. We then show how to support rank
and select in O(1) time. Finally, we sketch how
to use Lemma 2.5 to represent all functions used in
applications of Lemma 2.4 using o(n) + O(lglg m) bits.

We describe the construction using a recursive func-
tion CoNsTRUCT(T, 7, £), which takes three arguments,
a set T' and two integers r,£ > 0 with 7' C [2"]. In the
description of the function, we let ¢ = [lgm] — [lgn],
and let ¢ and d be two constants whose values are to be
determined later.

If |S| < d then we simply write down the elements
of S using n [lgm] bits, and we are done. Otherwise,
we call CONSTRUCT with parameters T'= S, r = [lg m]
and £ = 2. We will show later that CONSTRUCT returns
a representation of S that occupies n([lgm] — [lgn] +
O(1)) bits, which is fewer than n[lgm] bits if d is
sufficiently large. Thus the space of our representation
will always be bounded by n [lgm] bits. The function
COoNSTRUCT works as follows:

ConsTrucT(T, 7, £)

1. If |T| < d then write down the elements of T
explicitly, padding the output out to |T|-(t+4£+¢)
bits if necessary.

2. If £ > 0 then partition the elements of T according
to their top [lg|T|] bits. This ‘partitions’ 7" into
z = 208ITI < 2|7 sets denoted as Ty, ..., Ts_1,
where T; consists of the last » — [lg|T|] bits of all
the keys in T whose most significant [lg|T|] bits
have value i, for i = 0,...,z — 1.



We store a representation of the multiset corre-
sponding to the top [lg|T|] bits of each element
of T using |T|+ z+ o(T) < 3|T|+ o(|T|) bits using
Corollary 2.1 and pad this out to 4|7 bits. For
i=20,...,2—1, we then call CoNsTRUCT(T;,r —
[lg|T|],£—1), and concatenate the representations
returned with the representation of the multiset
corresponding to the top [lg|T|] bits of T', and re-
turn.

3. If £ = 0 we apply the result of Lemma 2.4 to T,
padding the output out to |7'| - (¢t + 4£ + ¢) bits if
necessary.

We now inductively show that each of the above
calls to CoNsTRUCT(T,r,£) returns a representation
that occupies |T| - (¢ + 4¢ 4 ¢) bits when called with
£ = 2. First, we consider the base cases of the induction.
The recursion terminates either when |T'| < d or when
|T| > d but £ =0.

We take the former case first, and say this occurs
when ¢ = £*. Since CONSTRUCT is only called at
the top level when |S| > d, it must be the case that
£* < 2, and that T has been created by successive
partitionings at levels 2,...,0* + 1, according to the
most significant 7o > ... > g1 bits respectively. Note
that » = [lgm] —ro — ... — rpegq < [lgm] — [lgn],
since rg = [lgn]. Hence the values in 7' may be written
down using |T|-r < |T'| - ¢ bits, and this representation
is padded out to the requisite length.

In the latter case, again T' must have been created
by partitioning according to the most significant ry =
[lgn] bits, followed by partitioning according to r >
[lg|T|] bits, and so r < [lgm] — [lgn] — [lg|T|].
The representation of Lemma 2.4 thus requires at most
|T|(r+1g|T|4+O(1)) bits. This is no more than |T|(t+¢)
bits, and can be padded out to this length, if ¢ is chosen
large enough.

Now suppose that a call at level £ > 0 results
in T being partitioned into sets 71,...,7%, and that
recursive calls are made on these sets at level £ — 1.
Inductively, the sizes of the representations returned are
|T;|(t+4(£—1)+e¢) bits, and appending them to a 4|T|-
bit representation of the partition gives a representation
of T that requires |T|(t + 4¢ + ¢) bits as required.

Therefore, at the top level, S is represented using
n([lgm] —[lgn] +8+¢) < n[lgm] bits (for sufficiently
large d), as required. We now show that this supports
rank and select in O(1) time. Again, both functions
are recursive and we assume that at the start of each
level of recursion, we have a pointer to the start of a
representation of the set T to be searched, as well as
the size of T. At the top level, T' = S and the claim
is clearly true. Again, ¢ denotes the level of recursion,

and £ = 2 initially.

We now describe how the computation of rank
proceeds; select works in a similar way. If |T| < d,
where d is the constant used in CONSTRUCT, then we
apply the trivial algorithm in O(1) time and return.
Otherwise, if £ = 0, we apply Lemma 2.4 in O(1) time
and return. If neither of these holds, we consider the
first 4|T'| bits of the representation of T', which contains
the representation of the multiset p of the values in
the top [lg|7T'|] bits of the elements of T. We extract
the top [lg|T|] bits of the current query key?; suppose
that these bits have value i, 0 < i < z = 2087,
Using Corollary 2.1, we calculate p = rankm™ (i) and
p' = rankm(i + 1) in O(1) time; note that p' — p is the
size of the set 7; on which we will recurse. The start
of the representation of 7T; is also easy to compute: it
starts 4|7+ p(t +4(£ — 1) + ¢) bits from the start of the
representation of T, where ¢ again is the constant used
in CoNsTRUCT. We then remove the top [lg|T|] bits
from the query key, decrement ¢ by one, and recurse on
T;. If the value returned by the recursive call is —1 we
return —1 as well, otherwise we add the value returned
by the recursive call to p and return. The computation
is clearly constant-time.

Finally we make remark about the use of Lemma 2.5
to represent all the bottom-level sets. Implicit in
Lemma 2.5 is that there is a numbering of the sets
using integers from [n], but we can simply take the
sums of the cardinalities of the sets whose indices are
less than the index of a given set.
must be computed anyway during rank and select. This
completes the proof of the Theorem 3.1. O

This information

3.2 Representing Multiple Indexable Dictio-
naries.

THEOREM 3.2. Let S1,S,...,Ss all contained in [m]
be given sets with S; containing n; elements, such
that  i_,n; = n. Then this collection of sets can
be represented using n[lgm] + o(n) + O(lglgm) bits
where the rank(z, S;) and select(j, S;) operations can be
supported in constant time for any x € [m],1 < j < n
and 1 <1 <s. We also assume that we have access to a
constant time oracle which returns the starting position
of the representation of each dictionary.

Proof. If we simply apply Theorem 3.1 for each of the
sets S;’s, then we get a representation taking n [lgm]+
o(n) + O(slglgm) bits and can support the required
operations in constant time. To improve the space
bound to n [lgm] + o(n) + O(lglg m) bits, we use the

2Standard techniques allow us to calculate [lg ] for sufficiently

small integers z.



sharing prime idea in the proof of Lemma 2.5 where
the hash functions required for small sets are shared by
several of them. O

Remark: Note that Zgﬂ n; for 1 < 5 < s, would
suffice to find the starting position of the representation
of Sj+1.

3.3 Optimal Bucketing. In this section, we develop
our main result of the paper giving a representation
for an indexable dictionary taking B(n,m) + o(n) +
O(lglgm) bits of space. First, if m < 4n/Ign then we
use the “dense” result of Corollary 2.2 which establishes
the result.

Otherwise, by representing the multiset containing
the first [Ign] bits of the n elements of S using at
most 3n+o(n) bits using Corollary 2.1 and representing
the remaining bits using the structure of Theorem
3.2, it is easy to get a representation taking at most
3n + n([lgm] — [lgn]) + o(n) + O(lglgm) bits. To
improve the linear term of the space bound in the above
lemma to nlge from 3n, and to get rid of the ceilings
in the second term, we first take approximately the
first lg(n+/Ign) bits of each element and represent the
resulting multiset using Corollary 2.3. The details are
as follows.

If m > 4ny/Ign, we choose an integer | > 0 such
that ny/Ign < |m/2!] < 2nIgn. We now group
the keys based upon the mapping b(z) = |z/2']. Let
bmax = [(m — 1)/2!]. We “partition” S into sets
Bi, for i = 0,...,bmax where B; = {xmod?2' | z €
S and b(z) = i}. In addition, we have the multiset
Biop = {b(z)|lz € S}. We represent By, using the
structure of Corollary 2.3 taking B(n, bmax +n)+o0(n) =
B(n,m/2") + o(n) bits, which supports rankm™ and
selectm on Bi,p in constant time.

The overall representation is the following. First
we represent Bi,, as above. Then we represent each
of the B;’s using the construction of Theorem 3.2.
The total space, in terms of the number of bits used,
will be nl + B(n,m/2!) + o(n) + O(lglgm) which is
nl+nlg(me/2'n) +o(n)+O(lglg m) which is B(n, m) +
o(n) + O(Iglgm) as m > 4n/Ign.

The computations of rank and select proceed es-
sentially as in Theorem 3.1, except that we use Corol-
lary 2.3 instead of Lemma 2.1. Thus we have the fol-
lowing theorem.

THEOREM 3.3. There is an indexable dictionary for a
set S C [m] of size n that uses at most B(n, m)+o(n)+
O(lglgm) bits.

4 Applications to Multiset Representation

Given a multiset M from [m], |M| = n, an indezable
multiset representation for M supports the rankm and
selectm operations in constant time.

In this section, we develop an optimal (B(n, m + n)
+ lower order terms) indexable multiset representation
using our succinct indexable dictionary.

THEOREM 4.1. Given a multiset M of n elements from
[m], there is an indexable multiset representation of M
that uses B(n, m+n)+o(n)+0(lg lgm) bits and supports
rankm and selectm() operations in constant time.

Proof. If n is dense in m, i.e. if m is O(n+/logn) then
the lemma follows from Corollary 2.3.

If not, then we represent the multiset M as follows.
First represent the set S of distinct elements present in
M using the indexable dictionary structure of theorem
3.3 using B(n’,m) 4+ o(n) + O(lg lg m) bits where n’ < n
is the number of distinct elements present in M.

Then represent the rank information separately by
representing each element ¢ present in M (in increasing
order) by a 1 followed by n; 0s where n; is the mul-
tiplicity of the element 7 in M. Now erase the first 0
after every 1 (since we are representing only the ele-
ments present in M, there will be at least one 0 after a
1). This representation is a bitstring of length n with
n’ 1’s. This bitstring could be considered as a char-
acteristic vector of a set R C [n] with |R| = n’. Let
R=[n]\R.

Now to find rankm(z), first find rank(z,S). TIf the
answer is —1, then return —1. Otherwise rankm(z) is
select(rank(z, S) + 1, R). To find selectm(i), let r =
rank(i, R)+ 1 if rank(i, R) > 0 and r = i — 1 — rank(i, R)
otherwise. The value r is precisely the number of 1’s
up to and including 7 in the characteristic vector of R.
Then selectm(i) = select(r, S).

As we can see, to support both rankm(z) and
selectm(i) in constant time, we need a fully indexable

dictionary for R.

If n' is dense in n, i.e. n = O(n'\/Ign’), then
use the fully indexable dictionary of Lemma 2.3 for
R. This uses B(n',n) + o(n') bits for a total of
B(n', m)+B(n',n)+o(n)+0(lg lg m) including the space
for representing S. Tt can be verified that this space is
at most B(n, m + n) + o(n) + O(lglg m).

Otherwise represent R using the FID representation
of Lemma 2.2 which uses n+o0(n) bits. Since n’ is sparse
in n, n’ < en/+y/logn (for some constant c) in which case
B(n',m)+n < B(n,m) + o(n) < B(n,m+ n) + o(n)
as n 1is also sparse in m. To see this, note that
(P) = m=ntL("=1) > 2("~1) since (m—n +1)/n > 2
for sufficiently large m and n < dm/+/lgm for some
constant d. Hence B(n,m) > B(n — 1,m) + 1 and so



B(n,m) > B(n',m) +n —n'. That is, B(n',m) + n <
B(n,m) 4+ n' < B(n,m)+o(n). O

5 Applications for k-ary Tree Representation

In this section, we look at the representation of a k-
ary cardinal tree that supports the navigational op-
erations in constant time, using our optimal index-
able dictionary. We improve the space for encoding
k-ary cardinal trees by giving an encoding that takes
C(n, k) + o(n) + O(lglgk) bits of space and supports
finding the parent, ¢th child and the child labeled j in
constant time. Thus, the space for the representation is
information theoretically optimal up to o(n+lg k) terms.
Unfortunately, we are not able to support subtree size
in this representation.

THEOREM 5.1. A k-ary tree on n nodes can be repre-
sented using C(n, k) + o(n) + O(lglg k) bits where given
a node of the tree, we can go to its i-th child or to its
child labeled j or to its parent if they exist, all in con-
stant time. In addition, we can determine the degree of
a node as well as the ordinal position of a node among
its siblings in constant time.

Proof. Consider a level-ordered labeling of the tree
nodes by labels 0 to n — 1 where in each level the
labels are given in the increasing order from left to
right (root gets label 0, the nodes at level 1 get
the next so many labels in the increasing order from
left to right etc.). TLet S = {{(i,j) : i € [n],j €
[k] and 3 an edge labeled j out of the node labeled 7}.

Then |S| = n — 1 and S represents the (edges of
the) k-ary tree uniquely (given the labeling of the tree
nodes). We map the pairs (i, j) to integers in the range
[kn] using the obvious mapping (7,7} — i -k + j. We
represent S using our representation of Theorem 3.3
using B(n—1,kn) 4+ o(n) + O(lglgkn) = B(n,kn+1) —
lg(kn+1)+o(n)+O0(lglg kn) = C(n, k)+o(n)+0(lglg k)
bits. This is our representation of the k-ary tree.

We first describe basic navigation in this tree. Let
z be a label of a node in the tree, and let y € [k] be an
arbitrary element.

o rank((z,y)) + 1 in S gives the label of the node
pointed to by the edge (z,y), i.e. the node which
is the child of the node 2 through the edge labeled
y if there is a child labeled y for z and it returns 0
otherwise.

e The first component of select(z) is the parent of
the node labeled z. I.e. if the z-th element in S is
(4, 7), then i is the label of the parent of the node
labeled z.

If we wish to support more than the above basic
navigation operations, we need to be able to find the
rank of (z,0) even if (z,0) € S. We can do this by a
more detailed inspection of the proof of Theorem 3.3,
and potentially modifying S slightly.

If & < 4y/Ign, then the set S is dense and so
this follows from Lemma 2.3. If k& > 44/Ign then let
k' = 2! (k div 2' 4+ 1) i.e. round the value of k to the
next multiple of 2. We redefine S with the new value
of k'; more precisely the pairs in S stay the same, but
we change the mapping that takes pairs to integers as
(B —i-k+7].

By doing this, we ensure that no bucket at the top
level of Theorem 3.3 contains elements of the form (z, y)
and (z',y') for  # z’. In other words, each top-level
bucket only contains edges leaving a single node. Thus,
answering rank queries for (z,0) only requires summing
up the sizes of a number of top-level buckets, which is
supported by the top level representation.

Although the universe size increases to k'n from kn,
since k'n = kn(14+0(1/+/Ign)), the increase in the space
is only in the lower-order terms. With this additional
power, we now support the remaining operations as
follows:

e To find the degree of the node labeled z, we do
the following. Find the rank of (z + 1,0) and the
rank of (z,0). The difference gives the degree of
the node labeled z.

e To find the i-th child of the node labeled z, we do
the following. Find the rank r of (2,0) and then
do select(r + i). The label returned by the select
operation is the label of the i-th child of z.

e To find the local rank (i.e. rank with respect to
the node) of the child labeled y of the node z, if
exists, subtract the rank of (z, 0) from rank((z, y)),
if rank({z,y)) > 0. O

6 Indexable Dictionary in Cell Probe Model

In this section we give of a representation of an index-
able dictionary for a set S of size n from a universe of
size m that uses B(n, m)+o(n) bits of space in cell probe
model. In this model, time is measured as just the num-
ber of words (cells) accessed during an operation. All
other computations are free.

Note that the O(lglgm) term exists in the proof
of Theorem 3.3 because of the global range reduction
(when m > n?). In this section we show how this can
be removed from the space complexity, in the cell probe
model. We slightly modify the definition of small sets
defined in the proof of Lemma 2.5 and call a set S small
if n <+/1g M (instead of \/Ig N) and large otherwise.



We first prove the following lemma to represent
a small set, in the cell probe model.
analogous to Lemma 2.4 for small sets without assuming
access to the two functions.

This lemma is

LEMMA 6.1. There s an indezable dictionary for a set
S C [m] of size d < \/lgm using dlgm + dlgd + O(d)
bits in the cell probe model.

Proof. We divide the lgm bit representation of each
element into d? equal parts of size roughly %QE. Since
d < +/lgm each part is non-empty. Then there exists a
set of at most d of these parts such that every element
of S 1s uniquely distinguished by these d parts. We
store an implicit representation of this set of d parts
using lg (d;) = dlgd+ O(d) bits. For each element, we
concatenate these d parts together to get a bitstring of
length l—gdﬂ. If we list this bitstring for each of the d
elements of S, we know that they are all distinct.

First we store these d parts for all the d elements
of S (in sorted order) contiguously using lgm bits.
Then we store the remaining parts of the elements
consecutively in the sorted order of the elements. This
gives a representation that takes dlgm + dlgd + O(d)
bits of space.

Given a query element, we can extract the d parts
given by the representation of the set from the element
(note that the time to extract is free in cell probe
model). We then compare these d parts with the d
parts of each element to find the unique match, if it
exists. Since d? < Igm, this can be done in constant
time. If there is a match, we compare the remaining
d? — d parts of the clement with those of the matched
element (in the order in which they appear).

It is easy to see that the operations rank and
select can be supported in constant time using this
representation. O

Using the representation of Lemma 6.1 for small
sets and of [18] for large sets, at the bottom level of
the recursion in the proof of Theorem 3.3, the additive
O(lglgm) terms can be removed from the bounds in
Theorems 3.1 to 3.3. In particular, we get the following
theorem.

THEOREM 6.1. There is an indexable dictionary for a
set S C [m] of size n using B(n,m) + o(n) bits in the
cell probe model.

As an immediate corollary we get:
COROLLARY 6.1. There is an wndezxable dictionary for

a set S C [m] of size n using at most n [lgm] bits in
the cell probe model.

7 Conclusions

We have given a static dictionary structure to store an n
element subset of an m element universe, that takes the
optimal (within a lower order term) B(n,m) + o(n) +
O(lglgm) bits of space and supports membership, rank
(for those elements present) and select operations in
constant time.

Using this structure, we have shown that a k-ary
tree on n nodes can be represented using C(n, k)+o(n)+
O(lglg k) bits of space and supports all the navigational
operations, except the subtree size of a given node, in
constant time. Here C(n, k) is the information theoret-
ically optimum number of bits required to represent a
k-ary tree on n nodes. Applying our indexable dictio-
nary, we also developed an optimal representation for
a multiset of n elements from an m element universe
using B(n, m + n) 4+ o(n) + O(lglgm) bits.

A variant of our dictionary representation gives
a structure for the static dictionary problem in the
cell probe model that takes the optimal (within a
lower order term) B(n,m) + o(n) in which membership
(and select and rank operations) can be supported in
constant time. This, in particular, means that n words
(of size lgm bits) are sufficient to represent a static
dictionary on n elements from an m element universe
and answer membership queries.
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Appendix

Proof of Lemma 2.5.Let n;; = [S;,| and let S* =
5=15;. We first define a function f, which is a ‘global’
range reduction function.

If M < N? define f as f(z) = z. Otherwise, if
M > N2, then we find a hash function f given by f(z) =
(kz mod p) mod N? for some prime p < N%lgM and
k < p which maps S* 1-1 into the set [N?]. The
existence of such a function is guaranteed by FKS [12].
The function f, along with £~' is represented using
O(lg N + Iglg M) bits.

Note that choosing hslj = f suffices if n;; > /Ig N,
but if S;; is small, i.e., n;; < /Ig N we need to reduce
the range even further. We form lg N consecutive sets
of the given collection of sets as a group®. Let S; be
the union of all elements in the small sets in the ith

3For easy access to the functions, we will in reality divide the

range of indices into groups.

group. For the ith group, find a prime p; such that the
the function g;(z) = f(z) mod p; is one-one on the set
f(Si). Such a p; whose value is at most O(|S;|*1g || f]])
exists[12, 19]. Since ||f|| is O(N?) and |S;| < (Ig N)?/2,
we can represent p; using O(lglg N) bits.

We store these primes, indexed by their group
number in a separate table. FEach prime is stored in
a field of b = O(lglg N) bits. If S; is empty (i.e.
there is no small set in the i-th group) then the table
contains a string of b Os in the entry corresponding to
that group. The total space required by this table is
O(Nlglg N/1g N) which is o(N) bits. For a small set
Si; the function hglj which is required by Lemma 2.4 1s
precisely g; if S;; belongs to the i-th group.

The functions ¢g required in Lemma 2.4 are de-
scribed below. To recover the original element z; from
r = gi(x1), we need to store the following ‘quotient’
values q; = ¢;(2;) for z; € S;:

a = ((= divp) {p/NQ] + (kz; mod p) div N2) {N2/pi]
+/f (1) div p;.

From r and ¢ and using k~!, p and p; one can
obtain z; in constant time. Observe that ||h51j | +
||qslj|| < lg M + 4, which satisfies the hypothesis of
Lemma 2.4.




