
A Quartic Kernel for Pathwidth-One Vertex Deletion∗

Geevarghese Philip1, Venkatesh Raman1, and Yngve Villanger2

1The Institute of Mathematical Sciences, Chennai, India.
{gphilip|vraman}@imsc.res.in

2University of Bergen, N-5020 Bergen, Norway.
yngve.villanger@uib.no

Abstract

The pathwidth of a graph is a measure of how path-like the graph is. Given
a graph G and an integer k, the problem of finding whether there exist at most
k vertices in G whose deletion results in a graph of pathwidth at most one is NP-
complete. We initiate the study of the parameterized complexity of this problem,
parameterized by k. We show that the problem has a quartic vertex-kernel: We
show that, given an input instance (G = (V,E), k); |V | = n, we can construct, in
polynomial time, an instance (G′, k′) such that (i) (G, k) is a YES instance if and
only if (G′, k′) is a YES instance, (ii) G′ has O(k4) vertices, and (iii) k′ ≤ k. We
also give a fixed parameter tractable (FPT) algorithm for the problem that runs in
O(7kk · n2) time.

1 Introduction

The treewidth of a graph is a measure of how “tree-like” the graph is. The notion of
treewidth was introduced by Robertson and Seymour in their seminal Graph Minors
series [35]. It has turned out to be very important and useful, both in the theoretical
study of the properties of graphs [6, 27] and in designing graph algorithms [7, 9]. A
graph has treewidth at most one if and only if it is a forest (a collection of trees), and a
set of vertices in a graph G whose removal from G results in a forest is called a feedback

vertex set (FVS) of the graph.
Given a graph G and an integer k as input, the FEEDBACK VERTEX SET problem

asks whether G has an FVS of size at most k. This is one of the first problems that
Karp showed to be NP-complete [25]. The problem and its variants have extensively
been investigated from the point of view of various algorithmic paradigms, including
approximation and parameterized algorithms. The problem is known to have a 2-factor
approximation algorithm [4], and the problem parameterized by the solution size k is
fixed parameter tractable (FPT) and has a polynomial kernel1.

The quest for fast FPT algorithms and small kernels for the parameterized FEEDBACK

VERTEX SET problem presents an illuminative case study of the evolution of the field

∗Accepted at WG 2010 (http://wg2010.thilikos.info/).
1See Section 2 for the terminology and notation used in this paper.

1

of fixed parameter tractability, and stands out among the many success stories of this
algorithmic approach towards solving hard problems. The first FPT algorithm for the
problem, with a running time of O∗(k4!), was developed by Bodlaender [5] and by
Downey and Fellows [18]. After a series of improvements [19, 24, 33], a running time of
the form O∗(ck) was first obtained by Guo et.al [22], whose algorithm ran in O∗(37.7k)
time. This was improved by Dehne et.al [15] to O∗(10.6k) in 2007, and to the current
best O∗(3.83k) by Cao et.al [13] in 2010. For classes of graphs that exclude a fixed
minor H (for example, planar graphs), Dorn et.al [17] have recently obtained an FPT
algorithm for the problem with a running time of the form O∗(2O(

√
k)).

Proving polynomial bounds on the size of the kernel for different parameterized
problems has been a significant practical aspect in the study of the parameterized com-
plexity of NP-hard problems, and many positive results are known. See [23] for a survey
of kernelization results. The existence of a polynomial kernel for the FEEDBACK VERTEX

SET problem was open for a long time. It was settled in the affirmative by Burrage et.
al [12] as recently as 2006, when they exhibited a kernel with O(k11) vertices. This
was soon improved to a cubic vertex-kernel (O(k3) vertices) by Bodlaender [8, 10]. The
current smallest kernel, on O(k2) vertices, is due to Thomassé [36].

The pathwidth of a graph is a notion closely related to treewidth, and was also
introduced by Robertson and Seymour in the Graph Minors series [34]. The pathwidth
of a graph denotes how “path-like” it is. A graph has pathwidth at most one if and only
if it is a collection of caterpillars, where a caterpillar is a special kind of tree: it is a tree
that becomes a path (called the spine of the caterpillar) when all its pendant vertices
are removed. Graphs of pathwidth at most one are thus a very special kind of forests,
and have even less structure than forests (which are themselves very “simple” graphs).
As a consequence, some problems that are NP-hard even on forests can be solved in
polynomial time on graphs of pathwidth at most one. Examples include (Weighted)
Bandwidth [3, 32, 28], the Proper Interval Colored Graph problem, and the Proper
Colored Layout problem [1].

In contrast to the case of forests, the corresponding vertex deletion problem for ob-
taining a collection of caterpillars (equivalently, a graph of pathwidth at most one) has
not received much attention in the literature. In fact, to the best of our knowledge, the
following problem has not yet been investigated at all: Given a graph G and an integer
k as input, find whether G contains a set of at most k vertices whose removal from G re-
sults in a graph of pathwidth at most one. We call such a set of vertices a pathwidth-one
deletion set (PODS), and the problem the PATHWIDTH-ONE VERTEX DELETION problem.
It follows from a general NP-hardness result of Lewis and Yannakakis that this problem
is NP-complete.

Our results. We study the parameterized complexity of the PATHWIDTH-ONE VERTEX

DELETION problem parameterized by the solution size k, and show that (i) the problem
has a vertex-kernel of size O(k4), and (ii) the problem can be solved in O∗(7k) time
(Compare with the values O(k2) and O∗(3.83k) for FVS, respectively).

Note that, in general, a PODS “does more” than an FVS: It “kills” all cycles in the
graph, like an FVS, and, in addition, it kills all non-caterpillar trees in the graph. In
fact, the difference in the sizes of a smallest FVS and a smallest PODS of a graph can be
arbitrarily large. For example, the treewidth of a binary tree is one, while for any integer
c there exists a binary tree Tc of pathwidth at least c + 1. Removing a single vertex
from a graph will reduce the pathwidth by at most one, and so for Tc, the difference

2

between the two numbers is at least c. Partly as a consequence of such differences,
many of the techniques and reduction rules that have been developed for obtaining
FPT algorithms and kernels for the FEEDBACK VERTEX SET problem do not carry over to
the PATHWIDTH-ONE VERTEX DELETION problem. Instead, we use a characterization of
graphs of pathwidth at most one to obtain the FPT algorithm and the polynomial kernel.

Update. After this paper was presented at WG 2010, Cygan et. al [14] improved
both the results in the paper. Using the same general idea of our FPT algorithm and a
clever branching strategy, they obtained an O∗(4.65k) FPT algorithm for the problem.
Using some of our reduction rules and a different approach based on the α-expansion
Lemma of Thomassé [36], they obtained a quadratic (O(k2)) kernel as well.

Organization of the rest of the paper. In Section 2 we give an overview of the notation
and terminology used in the rest of the paper. In Section 3 we formally define the
PATHWIDTH-ONE VERTEX DELETION problem, show that the problem is NP-complete,
and sketch an FPT algorithm for the problem that runs in O∗(7k) time. We show in
Section 4 that the problem has a vertex-kernel of size O(k4). We conclude in Section 5.

2 Preliminaries

In this section we state some definitions related to graph theory and parameterized
complexity, and give an overview of the notation used in this paper; we also formally
define the PATHWIDTH-ONE VERTEX DELETION problem and show that it is NP-hard.
In general we follow the graph terminology of [16]. For a vertex v ∈ V in a graph
G = (V,E), we call the set N(v) = {u ∈ V |(u, v) ∈ E} the open neighborhood of v. The
elements of N(v) are said to be the neighbors of v, and N [v] = N(v) ∪ {v} is called the
closed neighborhood of v. For a set of vertices X ⊆ V , the open and closed neighborhoods
of X are defined, respectively, as N(X) =

⋃

u∈X N(u) \X and N [X] = N(X) ∪X. For
vertices u, v in G, u is said to be a pendant vertex of v if N(u) = {v}. A caterpillar

is a tree that becomes a path (called the spine of the caterpillar) when all its pendant
vertices are removed. A nontrivial caterpillar is one that contains at least two vertices. A
T2 is the graph on seven vertices shown in Figure 1. The center of a T2 is the one vertex
of degree 3, and its leaves are the three vertices of degree 1.

The operation of contracting an edge (u, v) consists of deleting vertex u, renaming
vertex v to uv, and adding a new edge (x, uv) for each edge (x, u);x 6= v. Multiple edges
that may possibly result from this operation are preserved. Note that the operation is
symmetric with respect to u and v. A graph H is said to be a minor of a graph G if
a graph isomorphic to H can be obtained by contracting zero or more edges of some
subgraph of G.

A graph property is a subset of the set of all graphs. Graph property Π is said to hold
for graph G if G ∈ Π. Π is said to be nontrivial if Π and its complement are both infinite.
Π is said to be hereditary if Π holds for every induced subgraph of graph G whenever it
holds for G. The membership testing problem for Π is to test whether Π holds for a given
input graph.

A tree decomposition of a graph G = (V,E) is a pair (T, χ) in which T = (VT , ET) is
a tree and χ = {χi | i ∈ VT } is a family of subsets of V , called bags, such that

(i)
⋃

i∈VT
χi = V ;

3

(ii) for each edge (u, v) ∈ E there exists an i ∈ VT such that both u and v belong to
χi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT | v ∈ χi} induces a connected subgraph of
T .

The maximum of |χi| − 1, over all i ∈ VT , is called the width of the tree decomposition.
The treewidth of a graph G is the minimum width taken over all tree decompositions of
G. A path decomposition of a graph G = (V,E) is a tree decomposition of G where the
underlying tree T is a path. The pathwidth of G is the minimum width over all possible
path decompositions of G.

To describe the running times of algorithms we sometimes use the O∗ notation.
Given f : N→ N, we defineO∗(f(n)) to be O(f(n)·p(n)), where p(·) is some polynomial
function. That is, the O∗ notation suppresses polynomial factors in the expression for
the running time.

A parameterized problem Π is a subset of Σ∗ × N, where Σ is a finite alphabet. An
instance of a parameterized problem is a tuple (x, k), where k is called the parameter.
A central notion in parameterized complexity is fixed-parameter tractability (FPT) which
means, for a given instance (x, k), decidability in time f(k)·p(|x|), where f is an arbitrary
function of k and p is a polynomial. The notion of kernelization is formally defined as
follows.

Definition 1. [Kernelization, Kernel] [21, 31] A kernelization algorithm for a param-
eterized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in
time polynomial in |x| + k, a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Π if and only
if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The output
instance x′ is called the kernel, and the function g is referred to as the size of the kernel.
If g(k) = kO(1) then we say that Π admits a polynomial kernel.

When a kernelization algorithm outputs a graph on h(k) vertices, we sometimes say
that the output is an h(k) vertex-kernel.

3 The PATHWIDTH-ONE VERTEX DELETION problem

In this section we formally define the PATHWIDTH-ONE VERTEX DELETION problem, show
that it is NP-complete, and briefly sketch an O∗(7k) FPT algorithm for the problem. We
begin with the observation that caterpillars are the quintessential graphs of pathwidth
at most one:

Fact 1. [2] A graph G has pathwidth at most one if and only if it is a collection of vertex-

disjoint caterpillars.

A vertex set S ⊆ V of a graph G is said to be a pathwidth-one deletion set (PODS)
if G[V \ S] has pathwidth at most one. In this paper we investigate the parameterized
complexity of the following problem:

PATHWIDTH-ONE VERTEX DELETION (POVD)
Input: An undirected graph G = (V,E), and a positive integer k.
Parameter: k
Question: Does there exist a set S ⊆ V of at most k vertices of G such that

G[V \ S] has pathwidth at most one (i.e., S is a PODS of G)?

4

Figure 1: The set of excluded minors for graphs of pathwidth at most one.

The following general NP-completeness result is due to Lewis and Yannakakis:

Fact 2. [29] The following problem is NP-complete for any nontrivial hereditary graph

property Π for which the membership testing problem can be solved in polynomial time:

Input: Graph G = (V,E), positive integer k.

Question: Is there a subset S ⊆ V, |S| ≤ k such that G[V \ S] ∈ Π?

The NP-completeness of the PATHWIDTH-ONE VERTEX DELETION problem follows di-
rectly from this result:

Theorem 1. [⋆]2 The PATHWIDTH-ONE VERTEX DELETION problem is NP-complete.

In the rest of the paper we focus on the parameterized complexity of the PATHWIDTH-
ONE VERTEX DELETION problem. We now sketch an O∗(7k) time FPT algorithm, and in
the next section we describe an O(k4) vertex-kernel for the problem. Let (G = (V,E), k)
be the input instance, where |V | = n. Let S ⊆ V be a PODS of G of size at most
k. Observe that if (G, k) is a YES instance, then the number of edges in G is at most
k(n− 1) + (n− 1) = (k + 1)(n− 1). The first term on the left is an upper bound on the
number of edges that are incident the vertices in S; the second term is a loose upper
bound on the number of edges in G\S. So, if G has more than (k+1)(n−1) edges, then
we can immediately reject the input. Since each reduction rule in the sequel is sound,
and no rule increases the number of vertices or edges, from now on we assume, without
loss of generality, that the graph has at most (k + 1)(n− 1) edges.

The kernel arguments are based on Fact 1, while our starting point for the FPT
algorithm is the following characterization, in terms of excluded minors, of graphs of
pathwidth at most one:

Fact 3. [11, 20] A graph G has pathwidth at most one if and only if it does not contain

K3 or T2 as a minor, where K3 and T2 are as in Figure 1.

Fact 3 is not very helpful in the given form in checking for a small PODS. Instead, we
derive and use the following alternate characterization and the two succeeding lemmas:

Lemma 1. [⋆] A graph G has pathwidth at most one if and only if it does not contain a

cycle or a T2 as a subgraph.

Lemma 2. [⋆] Let S = {T2,K3, C4}, where C4 is a cycle of length 4. Given a graph

G = (V,E); |V | = n, we can find whether G contains a subgraph H that is isomorphic to

one of the graphs in S, and also locate such an H if it exists, in O(kn2) time.

Lemma 3. [⋆] Let S = {T2,K3, C4}, where C4 is a cycle of length 4. If G is a graph that

does not contain any element of S as a subgraph, then each connected component of G is

either a tree, or a cycle with zero or more pendant vertices (“hairs”) attached to it.

2Proofs of results labeled with a [⋆] have been moved to the Appendix due to space constraints.

5

3.1 An FPT algorithm for POVD

Let (G = (V,E), k) be the input instance, where |V | = n. We use a branching strategy
inspired by Lemmas 1 and 3. First we locate a (not necessarily induced) subgraph T of
G that is isomorphic to one of S = {T2,K3, C4}. From Lemma 2, this can be done in
O(kn2) time. At least one of the (at most seven) vertices of T must be in any PODS of
G. So we branch on the vertices of T : We pick each one, in turn, into the minimal PODS
that we are constructing, delete the picked vertex and all its adjacent edges, and recurse
on the remaining graph after decrementing the parameter by one.

The leaves of this recursion tree correspond to graphs which do not have a subgraph
isomorphic to any graph in S. By Lemma 3, each connected component of such a graph
is a tree, or a cycle with zero or more pendant vertices (“hairs”) attached to it. The
trees can be ignored — they do not have a T2 as a subgraph — and each cycle (with or
without hairs) forces exactly one vertex into any minimal solution. Thus the base case
of the recursion can be solved in linear time.

This is a 7-way branching, where the depth of the recursion is at most k, and where
the algorithm spends O(kn2) time at each node. Hence we have

Theorem 2. The PATHWIDTH-ONE VERTEX DELETION problem parameterized by the solu-

tion size k has an FPT algorithm that runs in O(n2 · 7kk) time.

By a folklore result of parameterized complexity, it follows immediately from Theo-
rem 2 that the PATHWIDTH-ONE VERTEX DELETION problem parameterized by the solu-
tion size k has a kernel of size O(7k) (See, for example, [21]). We now show that the
kernel size can be brought down significantly from this trivial bound.

4 A polynomial kernel for POVD

We turn to the main result of this paper. We describe a polynomial-time algorithm
(the kernelization algorithm) that, given an instance (G, k) of POVD, returns an instance
(G′, k′) (the kernel) of POVD such that (i) (G, k) is a YES instance if and only if (G′, k′)
is a YES instance, (ii) G′ has O(k4) vertices, and (iii) k′ ≤ k. The kernelization algo-
rithm (Algorithm 1) exhaustively applies the reduction rules of Section 4.1 to the input
instance. The resulting instance, to which no rule applies, is said to be reduced with
respect to the reduction rules. To demonstrate a quartic vertex-kernel for the problem,
it suffices to show that

1. The rules can be exhaustively applied in polynomial time;

2. Each rule is sound: the output of a rule is a YES instance if and only if its input is
a YES instance; and

3. If the input instance (G, k) is a YES instance, then the reduced instance (G′, k′)
has O(k4) vertices.

The reduction rules are based on the following idea: Suppose (G = (V,E), k) is a
YES instance of the problem that is reduced with respect to the reduction rules. Then
there is a set S ⊆ V, |S| ≤ k such that G[V \ S] is a collection of caterpillars, and it
suffices to show that |V \ S| = O(k4). We express V \ S as the union of different kinds
of vertices, and devise reduction rules that help us bound the total number of vertices
of each kind. To be more specific, we set V \ S = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 where

6

Algorithm 1 The kernelization algorithm
1: procedure KERNELIZE(G, k)
2: CurrentInstance← (G, k)
3: repeat

4: Apply Rules 1 to 6, updating CurrentInstance with the output of each rule.
5: until None of the rules cause any change to CurrentInstance.
6: end procedure

1. V1 = {v ∈ (V \ S);N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≤ 1}

2. V2 = {v ∈ (V \ S);N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≥ 2}

3. V3 = {v ∈ ((V \ S) \ V1); v lies on the spine of a nontrivial caterpillar in G[V \ S]}

4. V4 = {v ∈ (V \ S); |N(v) ∩ S| = 0 and v is a pendant vertex in G[V \ S]}

5. V5 = {v ∈ (V \ S); |N(v) ∩ S| ≥ 1 and v is a pendant vertex in G[V \ S]}

It is easy to verify that these sets together exhaust V \S. We state the reduction rules and
describe their consequences in the next section; the proofs of soundness of the rules and
a more formal bound on the running time and kernel size are deferred to Section 4.2.

4.1 Reduction Rules

For each rule below, let (H = (VH , EH), k) be the instance on which the rule is applied,
and (H ′, k′) the resulting instance. Let G = (V,E) be a YES instance of the problem that
is reduced with respect to all the reduction rules, and let S, V1, . . . , V5 be as described
above. To bound the sizes of various subsets of V \ S, we use the fact that no reduction
rule applies to G.

Rule 1. If a connected component H[X];X ⊆ VH of H has pathwidth at most 1, then

remove X from H. The resulting instance is (H ′ = H[VH \X], k′ = k).

Rule 2. If a vertex u in H has two or more pendant neighbors, then delete all but one of

these pendant neighbors to obtain H ′. The resulting instance is (H ′, k′ = k).

Rules 1 and 2 together ensure that every caterpillar in G[V \ S] has at least one
neighbor in S, and that |V1| ≤ k: See Lemma 5.

Rule 3. Let u be a vertex of H with at least two neighbors. If for every two vertices

{v, w} ⊆ N(u) there exist k + 2 vertices excluding u that are adjacent to both v and w,

then delete u from H. The resulting instance is (H ′ = H[VH \ {u}], k
′ = k).

Rule 3 ensures that |V2| ≤
(

k
2

)

(k + 2): Set A = V2 and X = S in Lemma 6.

Rule 4. For a vertex u of H, if there is a matching M of size k+3 in H where (i) each edge in

M has at least one end vertex in N(u), and, (ii) u is not incident with any edge in M , then

delete u and decrement k by one. The resulting instance is (H ′ = H[V \ {u}], k′ = k − 1).

Rule 5. Let x, y be the end vertices of the spine x, v1, v2, v3 . . . , vp, y of an induced cater-

pillar C in H such that (1) no vi; 1 ≤ i ≤ p is adjacent in H to any vertex outside C, and

(2) every pendant vertex of C is a pendant vertex in H. If p ≥ 5, then contract the edge

(v2, v3) in H to obtain the graph H ′. The resulting instance is (H ′, k = k′).

7

From Rules 1 to 5 it follows that |V3| ≤ 17k(k + 2) (Lemma 7), and that |V5| ≤
17(k+2)2k(2k−1) (Lemma 8). Each vertex in G can have at most one pendant neighbor,
or else Rule 2 would apply. From this we get |V4| ≤ |V3| = 17k(k + 2). Putting all the
bounds together, |V | ≤ 34k4 + 120k3 + 103k2 + k, and so we have:

Rule 6. If none of the Rules 1 to 5 can be applied to the instance (H, k), and |VH | >
34k4 + 120k3 + 103k2 + k , then set the resulting instance to be the trivial NO instance

(H ′, k′) where H ′ is a cycle of length 3 and k′ = 0.

In the next section we prove that these rules are sound, and that they can all be
applied exhaustively in polynomial time. Hence we get

Theorem 3. The PATHWIDTH-ONE VERTEX DELETION problem parameterized by solution

size k has a polynomial vertex-kernel on O(k4) vertices.

4.2 Correctness and running time

We now show that the reduction rules are sound. That is, we show that for each rule,
(using the notation of the previous section) (H, k) is a YES instance if and only if (H ′, k′)
is a YES instance. We also show that each rule can be implemented in polynomial time.
For discussing the rules, we reuse the notation from the respective rule statement in
Section 4.1. In each case, n is the number of vertices in the input to the kernelization
algorithm. For want of space, we have moved all the proofs to the Appendix.

Claim 1. [⋆] Rule 1 is sound, and can be applied in O(kn) time.

Claim 2. [⋆] Rule 2 is sound, and can be applied in O(kn) time.

Claim 3. [⋆] Rule 3 is sound, and can be applied in O(n3) time.

Claim 4. [⋆] Rule 4 is sound, and can be applied in O(kn1.5) time.

Claim 5. [⋆] Rule 5 is sound, and can be applied in O(kn) time.

From these claims, we get

Lemma 4. On an input instance (G = (V,E), k); |V | = n of PATHWIDTH-ONE VERTEX

DELETION, the kernelization algorithm (Algorithm 1) runs in O(n4) time and outputs a

kernel on O(k4) vertices.

Proof. From Claims 1 to 5 it follows that Rules 1 to 5 are sound, and that each can be
applied in O(n3) time. From the discussion in Section 4.1 (using Lemmas 5 to 8 below)
it follows that Rule 6 is sound, and it is easy to see that this rule can be applied in O(n)
time. Each time a rule is applied, the number of vertices in the graph reduces by at least
one (contracting an edge also reduces the vertex count by one). Hence the loop in lines
3 to 5 of Algorithm 1 will run at most |V | + 1 = n + 1 times. The algorithm produces
its output either at a step where Rule 6 applies, or when none of the rules applies and
the remaining instance has O(k4) vertices. Thus the algorithm runs in O(n4) time and
outputs a kernel on O(k4) vertices.

The remaining lemmas in this section are used in in Section 4.1 to bound the sizes
of the sets V1, . . . , V5. Their proofs are deferred to the Appendix.

8

Lemma 5. [⋆] Let (G = (V,E), k) be a YES instance of the problem that is reduced with

respect to Rules 1 and 2, and let S be a PODS of G of size at most k. Let V1 = {v ∈
(V \ S); (N(v)∩ (V \ S)) = ∅ and |N(v)∩ S| ≤ 1}. Then every caterpillar in G[V \ S] has

at least one neighbor in S, and |V1| ≤ k.

Lemma 6. [⋆] Let (G, k) be a YES instance of the problem that is reduced with respect to

Rule 3. For a set X ⊆ V , if A ⊆ V \ X is such that every v ∈ A has (i) at least two

neighbors in X, and (ii) no neighbors outside X, then |A| ≤
(|X|

2

)

(k + 2).

Lemma 7. [⋆] Let (G = (V,E), k) be an instance of the problem that is reduced with

respect to Rules 1 to 5, and let S ⊆ V be such that G[V \S] has pathwidth at most one. Let

X ⊆ (V \ S) be the set of vertices in (V \ S) that lie on the spines of nontrivial caterpillars

in G[V \ S]. Then |X| ≤ 17k(k + 2).

Lemma 8. [⋆] Let (G = (V,E), k) be a YES instance of the problem that is reduced with

respect to Rules 1 to 5, and let S ⊆ V ; |S| ≤ k be such that G[V \ S] has pathwidth at

most one. Let P ⊆ (V \ S) be the set of pendant vertices in G[V \ S] that have at least one

neighbor in S. Then |P | ≤ 17(k + 2)2k(2k − 1).

5 Conclusion

We defined the PATHWIDTH-ONE VERTEX DELETION problem as a natural variant of the
iconic FEEDBACK VERTEX SET problem, and initiated the study of its algorithmic com-
plexity. We established that the problem is NP-complete, and showed that the problem
parameterized by the solution size k is fixed-parameter tractable. We gave an FPT al-
gorithm for the problem that runs in O∗(7k) time, and showed that the problem has a
polynomial kernel on O(k4) vertices.

An immediate question is whether these bounds can be improved upon. A more
challenging problem is to try to solve the analogous problem for larger values of path-
width. That is, we know that for any positive integer c, the Pathwidth c Vertex Deletion
problem, defined analogously to PATHWIDTH-ONE VERTEX DELETION, is FPT parameter-
ized by the solution size. This follows from the Graph Minor Theorem of Robertson
and Seymour because, for each fixed c, the set of YES instances for this problem form a
minor-closed class. However, for c = 2, the number of graphs in the obstruction set is
already a hundred and ten [26], and so our approach would probably be of limited use
for c ≥ 2. Thus the interesting open problems for c ≥ 2 are: (i) Can we get an O∗(dk)
FPT algorithm for the problem for some constant d, and (ii) Does the problem have a
polynomial kernel?

Acknowledgements. We thank our anonymous reviewers for a number of useful com-
ments for improving the paper.

References

[1] C. Álvarez and M. Serna. The Proper Interval Colored Graph problem for caterpillar trees.
Electronic Notes in Discrete Mathematics, 17:23 – 28, 2004.

9

[2] S. Arnborg, A. Proskurowski, and D. Seese. Monadic Second Order Logic, Tree Automata
and Forbidden Minors. In Proceedings of CSL 1990, volume 533 of LNCS, pages 1–16.
Springer, 1990.

[3] S. F. Assmann, G. W. Peck, M. M. Sysło, and J. Zak. The bandwidth of caterpillars with
hairs of length 1 and 2. SIAM Journal on Algebraic and Discrete Methods, 2(4):387–393,
1981.

[4] V. Bafna, P. Berman, and T. Fujito. A 2-Approximation Algorithm for the Undirected Feed-
back Vertex Set problem. SIAM Journal of Discrete Mathematics, 12(3):289–297, 1999.

[5] H. L. Bodlaender. On disjoint cycles. International Journal of Foundations of Computer

Science, 5(1):59–68, 1994.
[6] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209(1–2):1–45, 1998.
[7] H. L. Bodlaender. Treewidth: Characterizations, Applications, and Computations. In Pro-

ceedings of WG 2006, volume 4271 of LNCS, pages 1–14. Springer, 2006.
[8] H. L. Bodlaender. A Cubic Kernel for Feedback Vertex Set. In Proceedings of STACS 2007,

volume 4393 of LNCS, pages 320–331. Springer, 2007.
[9] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization on Graphs of

Bounded Treewidth. The Computer Journal, 51(3):255–269, 2008.
[10] H. L. Bodlaender and T. C. van Dijk. A cubic kernel for feedback vertex set and loop cutset.

Theory of Computing Systems, 46(3):566–597, 2010.
[11] R. L. Bryant, N. G. Kinnersley, M. R. Fellows, and M. A. Langston. On Finding Obstruction

Sets and Polynomial-Time Algorithms for Gate Matrix Layout. In Proceedings of the 25th

Allerton Conference on Communication, Control and Computing, pages 397–398, 1987.
[12] K. Burrage, V. Estivill Castro, M. R. Fellows, M. A. Langston, S. Mac, and F. A. Rosamond.

The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel. In Proceedings of

IWPEC 2006, volume 4169 of LNCS, pages 192–202. Springer, 2006.
[13] Y. Cao, J. Chen, and Y. Liu. On Feedback Vertex Set: New Measure and New Structures. In

H. Kaplan, editor, SWAT, volume 6139 of Lecture Notes in Computer Science, pages 93–104.
Springer, 2010.

[14] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. An improved fpt algorithm
and quadratic kernel for pathwidth one vertex deletion. Accepted at IPEC 2010.

[15] F. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and K. Stevens. An O(2O(k)n3)
FPT-Algorithm for the Undirected Feedback Vertex Set problem. Theory of Computing

Systems, 41(3):479–492, 2007.
[16] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition, 2005.
[17] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms. Com-

puter Science Review, 2(1):29 – 39, 2008.
[18] R. G. Downey and M. R. Fellows. Fixed Parameter Tractability and Completeness. In

Complexity Theory: Current Research, pages 191–225. Cambridge University Press, 1992.
[19] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[20] M. R. Fellows and M. A. Langston. On Search, Decision and the Efficiency of Polynomial-

time Algorithms. In Proceedings of STOC 1989, pages 501–512. ACM Press, 1989.
[21] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
[22] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based fixed-

parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer

and System Sciences, 72(8):1386–1396, 2006.
[23] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.

SIGACT News, 38(1):31–45, 2007.
[24] I. A. Kanj, M. J. Pelsmajer, and M. Schaefer. Parameterized Algorithms for Feedback Vertex

Set. In Proceedings of IWPEC 2004, volume 3162 of LNCS, pages 235–247. Springer, 2004.
[25] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-

munications, pages 85–103, 1972.

10

[26] N. G. Kinnersley and M. A. Langston. Obstruction Set Isolation for the Gate Matrix Layout
problem. Discrete Applied Mathematics, 54(2-3):169–213, 1994.

[27] T. Kloks. Treewidth – computations and approximations, volume 842 of LNCS. Springer-
Verlag, 1994.

[28] M. Lin, Z. Lin, and J. Xu. Graph bandwidth of weighted caterpillars. Theoretical Computer

Science, 363(3):266 – 277, 2006.
[29] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is

NP-complete. Journal of Computer and System Sciences, 20(2):219 – 230, 1980.
[30] S. Micali and V. V. Vazirani. An O(

√

|V ||E|) Algorithm for Finding Maximum Matching in
General Graphs. In Proceedings of FOCS 1980, pages 17–27, 1980.

[31] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
[32] C. H. Papadimitriou. The NP-Completeness of the bandwidth minimization problem. Com-

puting, 16(3):263–270, 1976.
[33] V. Raman, S. Saurabh, and C. Subramanian. Faster fixed parameter tractable algorithms

for finding feedback vertex sets. ACM Transactions on Algorithms, 2(3):403–415, 2006.
[34] N. Robertson and P. D. Seymour. Graph minors I. Excluding a forest. Journal of Combina-

torial Theory, Series B, 35(1):39–61, 1983.
[35] N. Robertson and P. D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width.

Journal of Algorithms, 7(3):309–322, 1986.
[36] S. Thomassé. A quadratic kernel for feedback vertex set. In Proceedings of SODA 2009,

pages 115–119. Society for Industrial and Applied Mathematics, 2009.

11

A Deferred Proofs

In this appendix we state those proofs that were omitted from the main body of the
paper due to space constraints.

A.1 The PATHWIDTH-ONE VERTEX DELETION problem

Theorem 1. The PATHWIDTH-ONE VERTEX DELETION problem is NP-complete.

Proof. Let Π be the set of all graphs of pathwidth at most one. It is easy to verify that
Π is a nontrivial hereditary graph property. By a direct application of the definition of a
caterpillar, we can check in polynomial time whether each component of a graph G is a
caterpillar. Together with Fact 1, this implies that membership testing for Π can be done
in polynomial time. The theorem now follows from Fact 2.

Lemma 1. A graph G has pathwidth at most one if and only if it does not contain a cycle

or a T2 as a subgraph.

Proof. If G has pathwidth at most one, then by Fact 3 it does not contain K3 or T2 as a
minor; it follows that G does not contain any cycle or T2 as a subgraph.

Conversely, assume that G does not contain a cycle or a T2 as a subgraph. Suppose
G contains a K3, say C, as a minor, obtained by contracting the set of edges E′ and
deleting the set of edges E′′ of a subgraph H of G. If we replace the contracted vertices
with the original edges E′ and add the deleted edges E′′, we obtain a cycle which is a
subgraph of the original graph (from which we obtained C as a minor), a contradiction.

Similarly, if G has a T2 as a minor, then replacing the contracted vertices with the
original edges and adding the deleted edges gives rise to a supergraph of T2, a contra-
diction. Thus G does not contain either K3 or T2 as a minor, and so by Fact 3 G has
pathwidth at most one.

Lemma 2. Let S = {T2,K3, C4}, where C4 is a cycle of length 4. Given a graph G =
(V,E); |V | = n, we can find whether G contains a subgraph H that is isomorphic to one of

the graphs in S, and also locate such an H if it exists, in O(kn2) time.

Proof. It is well-known that we can find the girth (length of a shortest cycle) of a graph
by doing a breadth-first search (BFS) from each vertex. The same algorithm finds a
smallest cycle in the graph as well, and so we can use it to check for and locate a K3

or C4 in G. Suppose G contains neither of these graphs as a subgraph. To check if G
contains a T2, we guess the center vertex v of the T2 and do a BFS starting from v (the
level 0 vertex). Since G does not contain K3 as a subgraph, there is a T2 with v as the
center if and only if at least three vertices in level 1 of the BFS have at least one neighbor
each in level 2. We can combine the two tests to obtain an algorithm of the required
kind that runs in O((|V |)(|V |+ |E|)) = O(n(n+ (k + 1)(n− 1))) = O(kn2) time.

Lemma 3. Let S = {T2,K3, C4}, where C4 is a cycle of length i. If G is a graph that does

not contain any element of S as a subgraph, then each connected component of G is either

a tree, or a cycle with zero or more pendant vertices (“hairs”) attached to it.

12

Proof. Let G be a graph that does not contain any element of S as a subgraph, and let X
be a connected component of G that is not a tree. Then X contains a cycle. Let C be a
smallest cycle in X. Then C has length at least 5. Suppose there is a path < a, b, c > in
X, where a is a vertex on C and b is not. Then c /∈ V (C), or else a, b, c and the shorter
path from c to a on C form a cycle of length at most 4, a contradiction. Let x, y be the
two neighbors of a on C, and let x′ 6= a, y′ 6= a be neighbors of x, y on C. Then x, y, x′, y′

are all distinct, and a, b, c, x, y, x′, y′ form a T2 in X with a at the center, a contradiction.
It follows that for any vertex u ∈ V (C), any neighbor v /∈ V (C) of u is a pendant vertex
in X, and the lemma follows from this.

A.2 Correctness and running time of the kernelization algorithm

In the proofs for a rule, we reuse the notation from the respective rule statement in
Section 4.1. In each case, n is the number of vertices in the input to the kernelization
algorithm.
Claim 1. Rule 1 is sound, and can be applied in O(kn) time.

Proof. The connected component H[X] does not intersect any forbidden structure and
thus does not affect any solution of the problem.

By doing a single breadth-first search (BFS) of H, we can find all the acyclic con-
nected components of H. To check if an acyclic component C contains a T2, we delete
all the leaves (vertices of degree one) in C and check if the remaining graph is a simple
path. C contains a T2 if and only if the remaining graph is not a simple path. Using
a queue and an array to keep track of the leaves and the degrees of the vertices in C,
respectively, all this can be done in O((|VH |+ |EH |)) = O(n+ (k + 1)(n− 1)) = O(kn)
time.

Observation 1. Let G be any graph of pathwidth at most one. Adding new degree zero

vertices to G or adding new pendant neighbors to an isolated vertex u of G does not add a

cycle or a T2 to G.

Lemma 9. Let G be any graph that does not have any subgraph isomorphic to T2. If v is a

vertex in G such that by adding some number l ≥ 1 of pendant vertices as neighbors to v we

can obtain a graph H that contains a T2 as a subgraph, then v has no pendant neighbors

in G.

Proof. Assume to the contrary that v has a pendant neighbor u in G. Consider any T2,
say t, in H. t contains at least one of the new pendant vertices; say it contains w;w 6= u.
Since w is pendant in H, the degree of w in t is exactly 1, and so w is one of the leaf
vertices of t; its only neighbor in t is v, which in turn is a non-central internal vertex of
t. None of the internal vertices of a T2 has two distinct pendant neighbors, and so u is
not in t. It is evident that one can remove w from t and add u and the edge {u, v} to the
resulting subgraph to obtain a T2 consisting entirely of vertices in G, a contradiction.

Claim 2. Rule 2 is sound, and can be applied in O(kn) time.

Proof. Soundness. Let L be the set of pendant neighbours of u in H that are deleted
to obtain the graph H ′, and let r be the pendant neighbour of u remaining in H ′. Let

13

H = (VH , EH), H ′ = (V ′
H , E′

H), so that V ′
H = VH \ L and H ′ = H[VH \ L]. We have to

show that

There exists a set S ⊆ VH , |S| ≤ k such that H[VH \ S] contains no cycles or
T2s (i.e, has pathwidth one) if and only if there exists a set S′ ⊆ V ′

H , |S′| ≤ k
such that H ′[V ′

H \ S
′] contains no cycles or T2s .

(=⇒): If there exists an S ⊆ VH , |S| ≤ k such that H[VH \ S] contains no cycles or T2s,
then let S′ = S \L. Clearly S′ = S \L ⊆ VH \L = V ′

H , and |S′| = |S|− |S∩L| ≤ |S| ≤ k.
Now H ′[V ′

H \S
′] = H ′[(VH \L)\(S\L)] = H [(VH \ L) \ (S \ L)] = H [(VH \ S) \ L], and

since H[VH \ S] contains no cycles or T2s, neither does its induced subgraph H[(VH \
S) \ L] = H ′[V ′

H \ S
′].

(⇐=): If there exists a set S′ ⊆ V ′
H , |S′| ≤ k such that H ′[V ′

H \ S
′] contains no cycles

or T2s, then let K = H[VH \ S
′]. Now, the vertices in L have degree at most one in

K, and so do not belong to any cycle in K. Therefore, if K contains a cycle, then so
does K \ L = H[VH \ S

′ \ L] = H[(VH \ L) \ S
′] = H ′[V ′

H \ S
′], which contradicts the

assumption that H ′[V ′
H \ S

′] contains no cycles or T2s . So K does not contain a cycle.
If K does not contain a T2 either, then setting S = S′ completes the argument. So

let K contain a T2. Then H ′[V ′
H \S

′] = H[(VH \L) \S
′] = H[VH \S

′ \L] contains no T2,
and K = H[VH \ S

′] contains a T2. The vertices in L have degree at most one in K, and
from the first part of Observation 1 it follows that these vertices have degree exactly one
in K. So u ∈ K, i.e., u ∈ VH \S

′, and by the definition of L, u /∈ L. Thus u ∈ VH \S
′ \L,

and by Lemma 9, r /∈ VH \ S
′ \ L. But by definition r /∈ L, and so r must be in S′. Now,

if there is a T2 t in K that does not contain u, then t does not contain any vertex from L
either, and so t is present in K \ L = H[VH \ S

′ \ L], a contradiction. So every T2 in K
contains u.

Set S := (S′ \ {r})∪{u}. Clearly S ⊆ VH , and |S| = |S′| ≤ k. Since K = H [VH \ S
′]

does not contain a cycle, and since the only neighbour of r in H is u, adding r to K and
removing u does not introduce a cycle. Since every T2 in K contains u, removing u from
K also removes all T2s from K. Since the only neighbour of r in H is u, adding r to K
and removing u does not introduce a T2. Thus H [VH \ ((S

′ \ {r}) ∪ {u})] = H [VH \ S]
contains no cycles or T2s.

Running time. It is easy to see that this rule can be applied in O(|VH | + |EH |) =
O(n+ (k + 1)(n− 1)) = O(kn) time.

Lemma 10. Let G be any graph of pathwidth at most one. If v is a vertex of degree at least

2 in G and H is a graph obtained from G by adding some number l ≥ 1 of pendant vertices

as neighbours to v, then H also has pathwidth at most one.

Proof. Let u1, u2 be two neighbors of v in G. Assume to the contrary that H has path-
width more than one. It is clear that H does not contain a cycle, and so by Lemma 1 H
contains a subgraph K isomorphic to T2. K contains at least one of the new pendant
vertices; say it contains w. Since w is pendant in H, the degree of w in K is exactly 1,
and so w is one of the leaf vertices of K; its only neighbor in K is v, which in turn is
a degree two vertex of K. Further, one of the neighbors of v in G is the central vertex
of K; say u1 is the central vertex of K. Vertex u2 is not part of K, or else the edges
(v, u1), (v, u2) and the path in K from u1 to u2 would form a cycle in G. So we can
remove w from K and add u2 and the edge (v, u2) to the resulting subgraph to obtain a
T2 consisting entirely of vertices in G, a contradiction.

14

Claim 3. Rule 3 is sound, and can be applied in O
(

n3
)

time.

Proof. Soundness. Let X be a set of at most k vertices of H whose removal results in a
graph of pathwidth one. Then removing X ′ = (X \ {u}) from H ′ results in a graph of
pathwidth one, and |X ′| ≤ k.

For the other direction, let X ′ be a set of at most k vertices of H ′ such that H ′[V ′
H \

X ′] = H[V ′
H \ X

′] has pathwidth at most one. It is sufficient to show that removing
X ′ from H results in a graph of pathwidth at most one. This, in turn, is equivalent to
showing that adding u (and all the edges from u to VH \ X

′ in H) to H[V ′
H \ X

′] will
result in a graph (which is H[VH \X

′]) with pathwidth at most one.
Now, since H [V ′

H \X
′] has pathwidth at most one, X ′ has at least one vertex in

common with every cycle in H [V ′
H]. Also, for any two vertices {v, w} ⊆ N (u) there are

k+2 vertex disjoint paths from v to w in H [V ′
H], and so either v or w has to be in X ′. It

follows that |N (u) \X ′| ≤ 1.
If N (u) ⊆ X ′, then u is isolated in H [VH \X

′], and it follows from Observation 1
that H [VH \X

′] = H [(V ′
H \X

′) ∪ {u}] has pathwidth at most one. So suppose N (u) 6⊂
X ′, and let v be the single vertex in N (u)\X ′. Now in H ′, v has at least k+2 neighbours
excluding u , and so there are at least two such neighbours of v, say y1, y2, that are not
in X ′. Thus (i) v has degree at least 2 in the graph H [V ′

H \X
′] of pathwidth at most

one, and (ii) H [VH \X
′] = H [(V ′

H \X
′) ∪ {u}] is obtained by adding a pendant vertex

adjacent to v to H [V ′
H \X

′], and so by Lemma 10, H [VH \X
′] has pathwidth at most

one.
Running time. The rule can be applied in O(n3) time as follows. Construct a new

graph K = (VK = VH , EK), where for each pair of vertices x, y ∈ VH , add edge (x, y) to
EK if in the graph H, | (N (x) ∩N (y)) \ {x, y} | ≥ k + 3. To see if u ∈ VH qualifies for
deletion from H as per the rule, check if N(u) induces a clique in K.

Claim 4. Rule 4 is sound, and can be applied in O
(

kn1.5
)

time.

Proof. Soundness. Let X be a set of at most k vertices of H whose removal results in a
graph of pathwidth at most one, and let X ′ = (X \ {u}). At least three edges of the
matching M , say E = {{x1, y1}, {x2, y2}, {x3, y3}}, survive in H[VH \X]. Without loss of
generality, let {x1, x2, x3} ⊆ N(u). If u /∈ X, then E and the edges {u, x1}, {u, x2}, {u, x3}
together form a T2 in H[VH \X], a contradiction. Hence u ∈ X, and so |X ′| = |X| − 1.
Clearly, removing X ′ from H ′ results in a graph of pathwidth one, and |X ′| ≤ k − 1.

For the other direction, if X ′ is a set of at most k − 1 vertices of H ′ such that
H ′ [V ′

H \X
′] = H [V ′

H \X
′] has pathwidth at most one, then clearly X = X ′ ∪ {u} is

a set of at most k vertices of H such that H [VH \X] has pathwidth at most one.
Running time. The rule can be applied in O

(

kn1.5
)

time as follows. Let A =
N (u) , B = N (A) \ {u} in H. Construct a new graph K from H [A ∪B] by deleting
all the edges in H [B]. By doing two levels of a breadth-first traversal starting from u,
this can be done in O(|VH | + |EH |) = O(n + (k + 1)(n − 1)) = O(kn) time. Find a
maximum matching M in H in O(

√

|VK ||EK |) = O(kn1.5) time [30]. M is a largest
matching of the kind specified in the rule, and so we only have to check ifM contains
at least k + 3 edges.

We need the following observations to show that Rule 5 is sound.

Observation 2.

15

1. Let G be any graph that contains at least one cycle. Any graph G′ obtained from G by

contracting an edge of G also contains at least one cycle (possibly containing parallel

edges).

2. Let G be a graph that contains a T2 as a subgraph. If G′ is a graph obtained from G
by contracting an edge (u, v) where either u or v (or both) is not part of any T2 in G,

then G′ also contains a T2 as a subgraph.

Fact 4. [27] For any fixed non-negative integer p, the class of graphs of pathwidth at most

p is closed under the operation of taking minors.

Claim 5. Rule 5 is sound, and can be applied in O(kn) time.

Proof. Soundness. Let v2v3 be the vertex resulting from the edge contraction. Let X be
a set of at most k vertices of H whose removal results in a graph K of pathwidth at
most one. If {v2, v3} ∩ X = ∅, then the graph K ′ = H ′[V ′

H \ X] is a minor of K: K ′

can be obtained from K by contracting the edge {v2, v3}. If {v2, v3} ∩ X 6= ∅, then let
X ′ = (X ∪ {v2v3}) \ {v2, v3}. Clearly |X ′| ≤ |X|, and K ′ = H ′ [V ′

H \X
′] is a subgraph

of K: if {v2, v3} ⊆ X, then K ′ is isomorphic to K, and if exactly one of v2, v3 is in X,
then K ′ can be obtained from K by deleting the other vertex. In both cases, by Fact 4,
K ′ has pathwidth at most one, and so in all cases there is a vertex set of size at most k
in H ′ whose removal gives a graph of pathwidth at most one.

For the other direction, suppose X ′ is a minimal set of at most k vertices of H ′ such
that K ′ = H ′ [V ′

H \X
′] has pathwidth at most one. If v2v3 /∈ X ′, then X ′ ⊆ VH , and

K ′ can be obtained from K = H [VH \X
′] by contracting the edge {v2, v3}. By the

contrapositive of Observation 2, K contains neither a cycle nor a T2. Hence X ′ is a set
of at most k vertices of H such that H[VH \X

′] has pathwidth at most one. If v2v3 ∈ X ′,
then it is easy to see that X = (X ′ \ {v2v3}) ∪ {v2} is a set of at most k vertices of H
such that H[VH \X

′] has pathwidth at most one.
Running time. The rule can be applied in O(kn) time as follows: first we delete all

pendant vertices in the graph. This can be done in O(|VH |+|EH |) time. In the remaining
graph, we check if there is a path of length 5 or more consisting of vertices of degree
two. This can be done, by doing a BFS, in O(|VH |+ |EH |) time. The total running time
is thus O(|VH |+ |EH |) = O(kn).

Lemma 5. Let (G = (V,E) , k) be a YES instance of the problem that is reduced with

respect to Rules 1 and 2, and let S be a PODS of G of size at most k. Let V1 = {v ∈
(V \ S) ; (N (v) ∩ (V \ S)) = ∅ and |N (v) ∩ S| ≤ 1}. Then every caterpillar in G [V \ S]
has at least one neighbor in S, and |V1| ≤ k.

Proof. If a caterpillar in G [V \ S] has no neighbor in S, then Rule 1 would apply to G, a
contradiction. Thus every caterpillar in G [V \ S], and therefore every vertex v ∈ V1, has
at least one neighbor in S. If two vertices in V1 have the same neighbor in S, then Rule 2
would apply to G, a contradiction. Thus every vertex in V1 has a distinct neighbor in S,
and so |V1| ≤ |S| = k.

Lemma 6. Let (G, k) be a YES instance of the problem that is reduced with respect to

Rule 3. For a set X ⊆ V , if A ⊆ V \ X is such that every v ∈ A has (i) at least two

neighbors in X, and (ii) no neighbors outside X, then |A| ≤
(|X|

2

)

(k + 2).

16

Proof. To prove this bound on |A|, we start by associating an integer xij = 0 with each
pair of vertices {vi, vj} ⊆ X. We then go through the vertices of A, and for each vertex
u ∈ A, we find a pair of vertices {vi, vj} ⊆ N(u) such that xij < (k + 2), and increment
this xij by one. We will always be able to do this, or else Rule 3 would apply to vertex
u, a contradiction. At the end of this process, |A| =

∑

{vi,vj}⊆X xij . But for each pair of

vertices {vi, vj} ⊆ X, xij ≤ (k + 2), and it follows that |A| ≤
(|X|

2

)

(k + 2).

Lemma 7. Let (G = (V,E) , k) be an instance of the problem that is reduced with respect

to Rules 1 to 5, and let S ⊆ V be such that G [V \ S] has pathwidth at most one. Let

X ⊆ (V \ S) be the set of vertices in (V \ S) that lie on the spines of nontrivial caterpillars

in G [V \ S]. Then |X| ≤ 17k(k + 2).

Proof. Let C1, C2, . . . , Cp be the nontrivial caterpillars in G [V \ S], and for 1 ≤ i ≤ p, let
Pi = 〈v1, v2, . . . , vri〉 be a path of the maximum length in Ci. It is sufficient to show that
∑p

i=1 ri ≤ 17k(k+ 2). Let Cs = {Ci| |Pi| ≤ 8} (the “small” caterpillars), and let Cl be the
remaining, “large” caterpillars.

Each Ci ∈ Cs has at least one neighbor in S, or else Rule 1 would apply. Any one
v ∈ S can have neighbors in at most k+2 different elements of Cs, or else Rule 4 would
apply to v and its neighborhood. It follows that |Cs| ≤ k (k + 2), and so the total number
of vertices that lie on the spines of the elements of Cs is at most 8k (k + 2).

Now we consider the caterpillars in Cl. Without loss of generality, let Cl =
{C1, C2, . . . , Cp′}. For 1 ≤ i ≤ p′, let P ′

i = 〈v3, v4, . . . , vri−2〉. P ′
i can be thought of

as containing blocks B1, B2, . . ., where each block consists of five consecutive vertices in
the path. More specifically, B1 = 〈v3, v4, . . . , v7〉, B2 = 〈v8, v9, . . . , v12〉, and so on, until
there are fewer than 5 vertices left. Consider any block Bj on path P ′

i . Let Cj be the set
of pendant vertices, not belonging to Pi, adjacent to the vertices of Bj in G[V \ S], and
let Xj = Bj∪Cj . Let x, y be the two vertices belonging to Pi\Bj that are adjacent to the
two end vertices of Bj in G[Pi], and let x′, y′ be the two vertices belonging to Pi\Bj that
are adjacent to x, y, respectively. Thus, for example, for B2 defined as above we have
x = v7, x

′ = v6, y = v13, y
′ = v14. Note that x, y, x′, y′ as defined here are guaranteed to

exist for each block Bj . Also note that for any Bj , (Xj , x, y, x
′, y′) as defined here satisfy

the requirements of Rule 5 in G[V \ S] with Xj as X. So, if none of the vertices of Xj

is adjacent to any vertex of S, then (Xj , x, y, x
′, y′) would satisfy these requirements in

G as well, in which case Rule 5 would apply to G, a contradiction. It follows that in G,
at least one vertex of Xj has an edge to a vertex of S. By the same argument as above,
there are at most k(k+2) distinct blocks in G[V \S]. It follows that the total number of
vertices that lie on the spines of the elements of Cl is at most 9k(k + 2).

Putting these together, the bound in the lemma follows.

Lemma 8. Let (G = (V,E) , k) be a YES instance of the problem that is reduced with

respect to Rules 1 to 5, and let S ⊆ V ; |S| ≤ k be such that G [V \ S] has pathwidth at

most one. Let P ⊆ (V \ S) be the set of pendant vertices in G [V \ S] that have at least one

neighbor in S. Then |P | ≤ 17 (k + 2)2 k (2k − 1).

Proof. Let T ⊆ (V \ S) be the set of vertices that lie on the spines of caterpillars in
G [V \ S] . By Lemma 7, |T | ≤ 17k (k + 2). Partition T into l parts T = T1 ⊎ T2 ⊎ · · · ⊎ Tl

where each Ti; 1 ≤ i < l contains exactly k vertices, and Tl contains the remaining at
most k vertices. Clearly l ≤ 17 (k + 2). For 1 ≤ i ≤ l, let Pi = ∪v∈Ti

(N (v) ∩ P); then

17

P = ∪iPi. For 1 ≤ i ≤ l, setting X = S∪Ti, A = Pi and applying Lemma 6 we get |Pi| ≤
(|S∪Ti|

2

)

(k + 2) ≤
(

2k
2

)

(k + 2) = k (2k − 1) (k + 2). Hence |P | ≤ l · k (2k − 1) (k + 2) =

17 (k + 2)2 k (2k − 1).

18

	1 Introduction
	2 Preliminaries
	3 The Pathwidth-One Vertex Deletion problem
	3.1 An FPT algorithm for POVD

	4 A polynomial kernel for POVD
	4.1 Reduction Rules
	4.2 Correctness and running time

	5 Conclusion
	A Deferred Proofs
	A.1 The Pathwidth-One Vertex Deletion problem
	A.2 Correctness and running time of the kernelization algorithm

