Space Efficient Suffix Trees*

J. Ian Munro', Venkatesh Raman?, S. Srinivasa Rao?
! Department of Computer Science, University of Waterloo, Canada N2L 3G1,
imunro@uwaterloo.ca
2 The Institute of Mathematical Sciences, Chennai, India 600 113,
{vraman,ssrao}@imsc.ernet.in

Abstract

We give the first representation of a suffix tree that uses nlgn + O(n) bits of space
and supports searching for a pattern string in the given text (from a fixed size alphabet)
in O(m) time, where n is the size of the text and m is the length of the pattern. The
structure is quite simple and answers a question raised by Muthukrishnan in [22].
Previous compact representations of suffix trees had either a higher lower order term
in space and had some expectation assumption [7], or required more time for searching
[9]. When the size of the alphabet £ is not viewed as a constant, this structure can be
modified to use the same space but take O(mlgk) time for string searching or to use
an additional O(nlgk) bits but take the same O(m) time for searching. We then give
several index structures for binary texts, with less space including

e a structure that uses a suffix array (n[lgn] bits) and an additional o(n) bits,
e an indexing structure that takes % lgn + O(n) bits of space and

e an o(nlgn) bit structure which answers in O(m) time, the decision question of
whether a given pattern of length m occurs in the text.

Each of these structures uses a different technique, either in the storage scheme
or in the search algorithm, in reducing the space requirement. The first one uses a
suffix array, a sparse suffix tree and a table structure. Finding all the occurrences of a
pattern using this structure takes O(m+s) time, where s is the number of occurrences
of the pattern in the text. The second structure constructs a sparse suffix tree for
all the suffixes that start with the bit that occurs more number of times in the given
binary text. The last structure uses an iterative algorithm to search for the pattern.
This structure is the first o(nlgn) bit index to support the decision version of indexing
queries in time linear in the length of the pattern. But this does not support the general
indexing queries where we want to find the position of occurrence of the pattern.

Our main contribution is the development of techniques to use the succinct tree
representation through balanced parentheses for suffix trees.

*A preliminary version of this paper has appeared in the proceedings of 18th Foundations of Software
Technology and Theoretical Computer Science conference, Lecture Notes in Computer Science, Springer

Verlag 1530 (1998) pages 186-196.

1 Introduction and Motivation

Given a text string, full text indexing is the problem of preprocessing the text so that search
for a pattern string can be done efficiently. While inverted lists [4, 18] and signature files
[27] can be used for indexing texts that are structured as long sequences of words or keys,
suffix trees and suffix arrays are much more directly assignable to the problem of full text
search. A suffiz tree [17] is a trie in which the leaves correspond to the suffixes of the text
starting at each point in the given text. Standard representations of suffix trees for texts of
length n take about 4n words or pointers, and the original text is retained, where each word
takes lg n bits of storage; lg denotes the logarithm base 2. A search for a pattern of length m
can be performed in O(m) time (see Section 2 for details). A suffiz array [16] is an array of
pointers to the suffixes of the given text. This array of pointers is presented in lexicographic
order of the suffixes referred to. A secondary array of longest common prefixes of some of
those suffixes is used to aid in searching. This fairly standard representation of suffix array
and the supporting structure takes about 2n words [9] and supports a search in O(m + g n)
time [16]. So in [22], Muthukrishnan asked whether there exists a data structure that uses
only n+ o(n) words and answers indexing questions in O(m) time. In this paper, we propose
three such structures. The first one uses n + O(n/lgn) words, or equivalently nlgn + O(n)
bits and supports string searching in O(m) time. The second structure takes n[lgn| 4 o(n)
bits of space and supports searching in O(m) time. In these structures, all the occurrences of
a pattern can be found in O(m+ s) time, where s is the number of occurrences of the pattern
in the text. Then we give a structure that takes 7lgn + O(n) bits of space and supports
searching in O(m) time. Then we give another structure to solve the decision problem, of
finding whether a given pattern exists in the text, in O(m) time using o(nlgn) bits. This
structure does not support finding the position of an occurrence of the pattern, if it exists,
in general.

Colussi and De Col [9] have reported a data structure that uses nlgn + O(n) bits, but
a search in the structure takes O(m +lglgn) time. In [7], Clark and Munro gave a version
of the suffix tree that uses n plus an expected O(nlglgn/lgn) words under the assumption
that the given binary (encoded) text is generated by a uniform symmetric random process
and that the bit strings in the suffixes are independent. So our structures are not only more
space efficient (in the lower order term), they require no assumption about the distribution
of characters in the input string.

The starting point for our first representation is the 2n + o(n) bit encoding of an n node
static binary tree[21]. This structure supports, in constant time, operations including move
to either child or to the parent and also report the size of the subtree of a given node. We
will, however, require a few more primitive navigational operations to support our suffix tree
algorithms.

The next section reviews the suffix tree data structure. Section 3 reviews the succinct
binary tree representation, describes algorithms to support the additional operations and
explains how the binary tree representation can be used to obtain a space efficient suffix
tree. In Section 4, we give a structure that uses a suffix array, a sparse suffix tree and a table
structure, all taking n[lgn| + o(n) bits of space, which also supports indexing in O(m) time.
Section 5 gives a structure which takes %Ign + O(n) bits of space and answers indexing

queries in O(m) time. Section 6 describes a structure to answer the decision version of the
indexing queries (where given a text string and a pattern, we want to know whether the
pattern occurs in the text) in O(m) time, which takes o(nlgn) bits of space. Section 7 gives
concluding remarks and lists some open problems.

Our model of computation is the standard unit cost RAM model where we assume that
all the standard arithmetic and boolean operations on lg n bit words and reading and writing
lg n bit strings can be performed in constant time. By a suffix array, we mean just an array
of pointers to the suffixes of the given text in lexicographic order.

2 Suffix Trees

Suffix trees[l] are data structures that admit efficient online string searches. They have
been applied to fundamental string problems such as finding the longest repeated substring
[26], finding all squares or repetitions in a string [1], approximate string matching [15], and
string comparison. They have also been used to address other types of problems such as text
compression [24], compressing assembly code [10], inverted indices [5], and analysing genetic
sequences [8].

A suffix tree for a text string x of length n is an ordered trie whose entries are all the
suffixes of x. In order to ensure that each suffix has a minimal prefix that distinguishes it
from the other suffixes, a special character ‘$’, not in X, is appended to z. At a leaf node we
keep the starting position, in the text, of the suffix ending at that leaf. Since the sum of the
lengths of all the suffixes could be ©(n?), the tree size (number of nodes in the tree) could
also be of the same order. Various tricks have been employed to reduce the size of the tree to
O(n) [17, 19, 26]. One trick is to compress the nodes with single child, and store the starting
position in the text, and the length of the compressed string at those nodes. Another trick
is to store only the length (called the “skip value”) of the compressed string at the nodes.
For now, we will stick to the latter trick of keeping only the “skip value” at the compressed
nodes. Since we have n + 1 leaf nodes (including the end-marker) and at most n internal
nodes (as each internal node has at least two children), the tree has at most 2n 4+ 1 nodes.

Given a pattern p of length m and the suffix tree for a string x of length n, to search
for p in z, we start at the root of the tree following the search string. At any node, we
take the branch that matches the current character of the given pattern. At compressed
nodes, we skip those many characters as specified by the “skip” value at that node, before
comparing with the pattern. The search is continued until the pattern is exhausted or the
current character of the pattern has no match at the current node. In the latter case, there
is no copy of the pattern in the text. In the former case, if the search ends at a node, the
position value stored in any leaf of the subtree rooted at the node (where the pattern is
exhausted) gives a possible starting point of the pattern in the text. Since we skipped bits
in the middle, we start at a position given by any of the leaves of the subtree rooted at the
node where search has ended, and confirm if the pattern exists in the text starting from that
position. Clearly the above procedure takes O(m) time to check the existence of the pattern
in the text.

The storage requirement of suffix trees comprises of three quantities[7]:

e the storage for the tree (trie),
o the storage for the skip values at the compressed nodes, and
e the position indices at the leaves.

The storage for the tree takes 2n lg n bits if we use the usual pointer-node representation.
The storage for the skip values at the compressed nodes will require at most n[lgn]| bits.
The position indices at the leaves take (n 4 1)[lgn]| bits. Thus the total space requirement
for the “standard representation” of a suffix tree is 4nlgn + O(n) bits. In the next Section,
we show how each of these components can be stored space efficiently. In particular, we give
a suffix tree structure that takes nlgn + O(n) bits of space.

3 New Space Efficient Suffix Tree

In this Section, we review the succinct representation of binary trees and describe algorithms
to support additional operations. Using this representation, we give a suffix tree structure
that takes nlgn + O(n) bits of space.

Even if the given text is on a binary alphabet, its suffix tree will be a ternary tree (due
to the extra § character). So first we will consider a binary alphabet by converting each
symbol of the alphabet and the symbol § into binary. Thus, given a string z, we encode all
the suffixes of £$ in binary and construct a trie for them, which will be a binary tree. (This
is the same as the PAT tree of Gonnet et al. [11].) This trie representing all the suffixes
(in binary) of the text is a special case of a binary tree in which all the internal nodes have
exactly two children. Since there are n + 1 suffixes, there will be n internal nodes and n + 1
external nodes in the trie.

3.1 Succinct Representation of Trees

A general rooted ordered tree on n nodes can be represented by a balanced string of 2n
parentheses as follows: Perform a preorder traversal of the tree starting at the root. Write
an open parenthesis when a node is first encountered, going down the tree, and a closing
parenthesis while going up after traversing the subtree.

One can not use this procedure directly to represent a binary tree, as it is not possible to
distinguish a node with a left child but no right child and one with a right child and no left
child. So Munro and Raman[21] use the well known isomorphism between the class of binary
trees and the class of rooted ordered trees to convert the given binary tree into a general
rooted ordered tree and then represent the rooted ordered tree using the above parenthesis
representation. In the ordered tree there is a root which does not correspond to any node in
the binary tree. Beyond this, the left child of a node in the binary tree corresponds to the
leftmost child of the corresponding node in the ordered tree, and the right child in the binary
tree corresponds to the next sibling to the right in ordered tree. A node is represented, by
convention, by its corresponding left parenthesis. See Figure 1. It is not obvious still, how
the navigational operations can be performed in constant time. Munro and Raman|[21] show
that using o(n) additional bits, the standard operations of left child, right child and parent

4

(9
N
ORNC
(2 (8
(9 (&) (8 (9
» @ (9 W
N\ ©
6 Fig 1.2: Equivalent Rooted Ordered Tree

@ 012332 44156776 88 995 10100
Fig 1.1: The Given Binary Tree on 10 Nodes (e OCCOIO0) C))

Fig 1.3: The Parenthesis Representation

Figure 1: Binary tree representation using parenthesis sequence

of a given node can be found in constant time. They also show that given a node, the size
of the subtree rooted at that node can be found in constant time.

To use this tree representation to represent a suffix tree, we need to support several
additional operations in constant time. We represent a node in the binary tree by its preorder
number. Let x be any node in the given binary tree. We define the following operations:

e leafrank(z): return the number of leaves to the left of node z (in the preorder num-
bering)

leafselect(y): return the jth leaf in the left to right ordering of the leaves

leafsize(x): return the number of leaves in the subtree rooted at node

leftmost(z): return the leftmost leaf in the subtree rooted at node

rightmost(x): return the rightmost leaf in the subtree rooted at node z and

Beginning with Jacobson [13], much of the work on navigating succinct representations
of trees [2, 3, 20, 21] has relied on the operations rank and select defined on binary strings.

e rank(:): the number of 1’s up to and including the position ¢ and

e select(r): the position of the ith 1.

The rank and select operations can be generalized as follows: Given a binary string of
length n, and a pattern p which is a binary string of fixed length m, let rank,(:) be the
number of (possibly overlapping) occurrences of pattern p up to and including the position
i and select,(i) be the position of the ith occurrence of p in the given binary string. The
following theorem is easy to prove.

Theorem 1: Gliven a binary string of length n, and a binary pattern p of length at most
elgn, where € is any constant less than 1/2, both rank,(i) and select,(i) can be supported in
constant time using o(n) bils, in addition to the space required for the given binary string.

Proof: The algorithm to support the (original) rank operation [13, 20] uses the following
basic idea: Divide the given bit string into blocks of size roughly lg*n each, and keep the
rank information for the first element of every block. Within a block of size lg”n keep a
recursive structure (storing the rank information with respect to the block). After a couple
of levels, the block sizes are small enough that the number of distinct possible blocks is small
enough to keep a precomputed table of answers in o(n) bits. The precomputed table stores
the number of occurrences of the pattern up to the position for each small block (of length
roughly (Ign)/2) and for each position in the block.

This structure can easily be adapted to keep the rank, information for every block, since
the pattern length, say m, is less than the block size. The precomputed table, in this case,
stores the number of occurrences for every possible triple consisting of a block b of size
(Ign)/2, a bit string = of size m — 1, and a position ¢ in the block. The table entry stores
the number of occurrences of the pattern p in the prefix of length |z| + ¢ of the string zb.
(This also takes care of occurrences of the pattern in a span of two consecutive blocks.) The
space requirement for the table is bounded above by 2™ times the original space requirement
(which is o(n) since m is at most €lgn, where € is less than 1/2).

The structure for computing select [6] uses three levels of auxiliary directories. The first
auxiliary directory records the position of roughly every (lgnlglgn)'h one bit and hence

Iglgn
auxiliary directory and consider the sub-directory for this range. If r > (Ignlglgn)?* then

we will explicitly store the positions of all the one bits, which requires at most —— bits.
Otherwise, we re-subdivide the range and record the position, relative to the start of the
range, of each (Igrlglgn)’h one bit in the second level auxiliary directory, which again takes

requires at most bits. Let r be the size of a subrange between two values in the first

at most @ bits.

After one more level, the block sizes will reduce to at most (Iglgn)*. We can perform a
select on a range of (lglgn)? bits using a constant number of operations on regions of size
lgn bits. Computing select on a small range of bits is again performed using table lookup.

Let d be an integer greater than one. For each possible bit pattern of length lng and each
value 7 in the range 1... lng we record the position of the ith one in the bit pattern and in a

separate table, the number of ones in the bit pattern. To compute select on a small range,
we scan the range using the second table until we know which subrange contains the answer
and use the first table to compute the answer. At most a constant number of subranges can
be considered. The critical point is that we know where the appropriate directory bits at
each level are located and how to interpret them based on the value of ¢+ and the preceding
directory levels. The storage used for the auxiliary directories and the lookup tables is
“gg# + O(n'/?1gnlglgn) which is o(n) for d > 2.

This structure can easily be adapted to support the select, operation, as in the case of
rank, operation, on the given binary string in constant time for any pattern p of length at

most elgn, where € is any constant less than 1/2. O

Remark: When the pattern length m is w(lgn), we can find the maximum number of non-

overlapping occurrences of p up to any position (using o(n) extra space) as follows: First
divide the given bit string into blocks of size m. Then store with each block head (the first
bit of the block), the answer for that position. Also if a pattern, that does not overlap
with the previous occurrences of the pattern ends in that block, then the position where the
pattern ends is also kept with the block head. There can be at most one such position in
each block as the pattern length is more than the block size. Here we use the fact that the
non-overlapping occurrences of the pattern obtained by starting with the leftmost occurrence
of the pattern and picking the next available occurrence (in a greedy way) will give us the
maximum number of occurrences.
Now, we prove the main theorem of this section.

Theorem 2: A static binary tree on n nodes can be represented using 2n + o(n) bits such
that given a node x, in addition to finding its parent, left child, right child and the size of
the subtree rooted at node x, we can also support leafrank(z), leafselect(y), leafsize(x),
leftmost(z), and rightmost(x) operations in constant time.

Proof: As before, we first convert the binary tree into an equivalent rooted ordered tree.
The fact that parent, left child, right child and the subtree size are supported in constant
time is already known [21].

Any leaf in the binary tree is a leaf in the general tree, but not vice versa. In fact, any
leaf in the general tree is a leaf in the binary tree only if it is the last child of its parent. In
other words, leaves in the binary tree correspond to the rightmost leaves in the general tree.
In the parenthesis notation, a rightmost leaf corresponds to an open-close pair followed by a
closing parenthesis. Thus to compute lea frank(z) we need to find the rank,(x), where p is
the pattern ()), in the parenthesis sequence corresponding to the tree. Also leafsize(z) is
the difference between rank,(z) and rank,(f(z)) where f(z) denotes the closing parenthesis
corresponding to the parent of z. Similarly leafselect(j) is nothing but select,(j) where p
is the pattern ()). Hence from Theorem 1, these operations can be supported in constant
time.

The leftmost leaf of the subtree rooted at a node in the binary tree is the leaf whose
lea frank is one more than the leafrank of the given node. Thus it can be found using
the expression: le ftmost(xz) = select,(rank,(x) + 1), where p is the pattern ()), in constant
time. The rightmost leaf of the subtree rooted at the node in the binary tree is the rightmost
leaf of its parent in the general tree. Now the rightmost leaf of a node in the general
tree is the leaf preceding the closing parenthesis of the given node. Thus rightmost(z) =
select,(rank,(close(parent(x)) — 1)), where close gives the position of the corresponding
closing parenthesis of a given opening parenthesis, which takes constant time for evaluation

(See [21] for details). 0

3.2 Representing the Suffix Tree

Given a string x, we encode all the suffixes of z$ in binary and construct a trie for them,
which will be a binary tree on 2n + 1 nodes. We represent this 2n + 1 node binary trie
with 4n 4 o(n) bits using the representation given in the Section 3.1. (As the external nodes
are implicit and all internal nodes have two children, we could use only 2n + o(n) bits by

storing only the internal nodes of the tree. But listing the external nodes explicitly has some
advantages for later modifications.) This will take care of the storage for the first component
of suffix tree representation. Next, we show that the second component of the representation,
the skip values, need not be stored explicitly and that it can be obtained online. So only
the third component taking n[lgn]| bits accounts for the higher order term and we get an
nlgn + O(n) bit suffix tree structure.

We do not keep the skip values at all in our structure; we will determine them online
whenever needed as detailed below.

To search for a pattern, we start at the root as before. Navigating in the suffix tree is
possible in our tree representation. At each internal node, to find the skip value at a node
we first go to the leftmost and rightmost leaves in the subtree rooted at that node. Then we
start comparing the text starting at these positions until there is a disagreement. (We don’t
have to compare the suffixes from the starting position. We already know that they agree up
to the portion of the string represented by the node. So we can start matching them from
that position onwards.) Once we find the characters of disagreement, we find their binary
encodings which may give raise to further agreement. The number of bits matched is the
skip value at that node. Finding the leftmost or rightmost leaf of the subtree rooted at a
node, in our tree representation takes constant time using the le ftmost(z) and rightmost(x)
operations of Theorem 2.

Now we continue the search as before. If the search terminates at a leaf node, then the
pattern is compared with the suffix pointed to by the leaf to see if it matches. To find the
suffix pointed to by the leaf, we first find the leafrank of the leaf, and then find the value
of that index in the array of pointers (suffix array). If the end of the pattern is encountered
before we reach a leaf, then the suffix pointed to by a representative leaf from the subtree
rooted at the node, at which the search has stopped, is compared with the pattern. This
leaf can be found by the le ftmost(z) or rightmost(z) operations of Theorem 2. The pattern
matches the suffix if and only if all the suffixes in the subtree match the pattern.

If we are working over a k symbol alphabet, the time to find a skip value is O(lgk +
the skip value). This is because once we find the characters where the disagreement happens,
we find their binary representations and find further agreements. Now the sum of the skip
values in the search is at most m. So the total time spent in figuring out skip values is
only O(mlgk). Looking carefully at the calls to rank and select, which are implicit in this
approach and that of Clark and Munro[7], one can see that we have at most doubled the
search cost by getting rid of the storage required for the skip values. This increase is due to
the repeated le ftmost and rightmost calls.

Once we confirm that the pattern exists in the text, the number of leaves in the subtree
rooted at the node where the search ended, gives the number of occurrences of the pattern
in the text. This can be found in constant time using the lea fsize operation of Theorem 2.
Also, we can output all the occurrences in time proportional to the number of occurrences,
using rank, and select, operations on the leaf nodes. Thus we have

Theorem 3: A suffiz tree for a text of length n can be represented using nlgn + O(n) bits
such that given a pattern of size m, the number of occurrences of the pattern in the string can
be found in O(mlgk) time where k is the size of the alphabet. Finding the positions of all

the occurrences of the pattern requires O(m + s) time, where s is the number of occurrences
of the pattern in the text.

The above representation can be built in O(n) time as once we build the suffix tree which
takes O(n) time [26], the succinct tree representation can be built in O(n) time.

Benoit, Demaine, Munro and Raman[3] have extended the succinct representation for
binary trees to represent an ordered k-ary tree using 2n + n[lgk| + o(n) bits where all
navigational operations, except ‘finding the child labeled " for some ¢, can be performed in
constant time. Visiting the child labeled 7, for any ¢, from any node in this structure takes
O(lglgk/(lglgn —lglgk)) time. This was later improved to O(lglglg k) in[23], where it is
also shown that by using an additional n[lglg k]| bits, we can support all the operations in
constant time. Instead of converting the suffixes to binary, we can represent the k-ary suffix
tree using these k-ary tree representations directly. Then we have

Theorem 4: A suffiz tree for a text of length n can be represented using n([lgn| 4+ [lgk] +
2) 4+ o(n) bits such that the number of occurrences of a given a pattern of length m, in the
string can be found in O(mlglglgk) time, where k is the size of the alphabel.

Theorem 5: A suffiz tree for a text of length n can be represented using n([lgn| 4+ [lgk] +
[lglg k| + 2) + o(n) bits such that the number of occurrences of a given a pattern of length
m, in the string, can be found in O(m) time, where k is the size of the alphabet.

Reporting all the occurrences of the pattern using these structures requires an additional
O(s) time, where s is the number of occurrences of the pattern in the text.

4 A Structure Using a Suffix Array and o(n) Bits

In [9], Colussi and Col give a structure that takes nlgn + O(n) bits and takes O(m +1glgn)
time to search for a pattern of length m. This structure has a sparse suffix tree for every
(Ign)th suffix and suffix arrays (with extra information about longest common prefixes to
aid efficient searching) for each block of size Ign in the sorted array of suffixes of the given
text. We first observe that with an additional o(rn) bits, this structure can be modified, as
detailed below, into a structure that takes O(m) time for searching. Note that the search
time is w(m) only when the pattern size m is o(lglgn). To take care of these small patterns,
we store a precomputed table of answers. This table stores, for every string of length at most
lglg n, the positions, if any, in the suffix array of the first and the last suffix for which the
string is a prefix. The difference between these two indices gives the number of occurrences
of the string in the text. The table takes O(2'8'8"1gn) or O(Ig*n) bits. Given a pattern
of length m, if m < lIglgn then we look into the table and answer the query (in constant
time). Otherwise we revert back to algorithm given in [9] to answer the query, which takes
O(m) time (since m > Iglgn). Though this gives another structure for indexing that takes
nlgn 4+ O(n) bits of space and supports searching in optimal time, the constant factor in
the lower order term in space is higher than the structure given in Section 3.

In what follows we show that o(n) bits are sufficient in addition to a suffix array to support
searching in O(m) time, in the case of a fixed size alphabet. For an arbitrary alphabet of
size k, the space required will remain the same but the search time will be O(mlgk). We

001010 010110 011001 011001 100101 101010 011001 [3, 4]

Figure 2: Structure of each table entry and a typical entry in the table

will give the structure for the case of a fixed size alphabet. The general alphabet case is a
straightforward extension of this structure, as explained in Section 3.

The key aspect of the structure is two levels built on top of a suffix array. First, we divide
the suffix array into blocks of size b (to be fixed later) and build a suffix tree for every suffix
starting at the first position in each block. This step is similar to the structures in [9, 14].
The first level consists of a suffix tree for every bth suffix in the suffix array. The second
level consists of a table structure which gives the following information: given an array of b
bit strings in lexicographically sorted order, each of length at most b and a pattern string of
length at most b, it gives the first and last positions of the occurrences of the pattern, if it
occurs, in the array. See Figure 2. There is a table entry for every bit string array of size b
where each bit string is of size at most b and for every pattern string of length at most b.
The table is stored in the lexicographic order of its entries.

The suffix tree is stored using the representation given in the previous section (without
the leaf pointers). The space occupied by the tree is O(n/b) bits. In the suffix tree, the leaf
pointers are implicit (and can be computed using lea frank operation described in Section
3). The space occupied by the table structure is at most O(2b2 2°1g b). Thus the overall space
requirement for the structure (including n[lg n| bits for the suffix array) is n[lgn|+0O(n/b)+
O(2b2+b lg b) bits. Thus we choose b such that b is the smallest integer with n < b +hHlgh+lglgb,
Note that b is ©(y/Ign) which makes the space complexity to be n[lgn] + O(n/+/Ign) bits.

To search for a pattern string of length m, we first match the pattern in the suffix tree.
If we have successfully matched the pattern in this tree, then all the nodes in the subtree
rooted at the node where the search has ended, will have the pattern as a common prefix. To
find the number of occurrences of the pattern, we have to find the first and last occurrences
of the pattern which can be found respectively from the blocks before the leftmost leaf and
after the rightmost leaf. If the pattern does not match completely, we will find the only
block of the suffix array in which the pattern might occur depending on the next bit of the
pattern. This block will be to the left of the leftmost leaf of the node where the search has
ended if the next bit is a 0, and to the right of its rightmost leaf if this bit is a 1. Thus, in
either case, we are left with (either one or two instances of) the problem of finding the first
and last occurrences of the pattern in a block of length b in the suffix array.

Given an array of b strings, each of length (at most) b, in sorted order, and a pattern string
of length (at most) b, the table has the beginning and ending positions of the occurrences
of the pattern in the array. Now we read the first b bits of each of the suffixes in the sub-
block, and the first b bits of the pattern and index into the table to find the first and last
occurrences of the part of the pattern in the sub-block. If this gives a non-empty range, we
will read the next b bits of each of the suffixes in this range and the next b bits of the pattern

10

and find the sub-range of suffixes that match the first 2b bits of the pattern. We will do
this repeatedly until either the pattern is exhausted or the range has become empty (or a
single suffix). The number of table look-up’s is at most m/b and each table look-up takes
O(b) time. Here we use the fact that b is O(y/Ign) and that any substring of length at most
lg n starting at a given position in the text can be read in constant time using mod and div
operations. So the overall time to search for a pattern is O(m). Thus we have

Theorem 6: Given a text of length n from a fized alphabet, there exists a data structure that
uses n[lgn]+O0(n//Ign) bits such that given a pattern of size m, the number of occurrences
of the pattern in the string can be found in O(m) time. Finding all the occurrences of the
paltern using this structure requires O(m + s) time, where s is the number of occurrences of
the pattern in the text.

5 A Structure Using 7 1gn 4+ O(n) Bits

We have presented a couple of structures using nlgn + O(n) bits of space. This section
shows that we can even do better, by presenting a structure that takes at most Z1gn +O(n)
bits of space for a given binary string of length n and supports finding an occurrence of a
pattern of length m, if it exists, in O(m) time.

The main idea is to store only the suffixes starting with either a 0 bit or a 1 bit, whichever
number is minimum and store some extra information to aid searching for patterns starting
with the other bit.

Suppose there are more number of 0’s than 1’s in the given bit string T[1...n]. The
structure consists of a sparse suffix tree for all the suffixes starting with 1. (Here, first we
take all the suffixes with the end-markers, convert them into binary and then construct the
suffix tree so that the resulting suffix tree is a binary tree with at most n/2 leaves.) We
order the subtrees of a node such that the left subtree contains a leaf which has at least as
many consecutive zeroes preceding its starting position as any other node in that subtree.
In other words, the leftmost leaf of any node has the maximal number of consecutive zeroes
preceding it among all the leaves of the subtree rooted at that node. The space occupied by
the sparse suffix tree (using the representation given in Section 3) is at most % lgn + O(n)
bits as there are at most n/2 suffixes starting with 1 (since there are more zeroes than ones).

Now given a pattern, if it starts with a 1, we can use the sparse suffix tree directly to find
its occurrences. Otherwise, let the pattern be 0'z, where the first bit of = is 1. Search for z
in the sparse suffix tree. If the search fails then the given pattern does not exist in the text.
Otherwise, let v be the node at which the search has ended (i.e. the node corresponding to
the string z in the sparse suffix tree) and let ¢ be the position pointed to by the leftmost
leaf of v. If T[i —[...7 — 1] is identical to 0', then the given pattern occurs at the position
i —[. This takes O(I) time, and hence the total time will be O(m). Otherwise, there is no
occurrence of the pattern in the given text 7. Thus we have,

Theorem 7: Given a binary text of length n, there exists a data structure thal uses
Zlgn+O(n) bits of space that can be used to find an occurrence of a given pattern of length
m, in O(m) lime.

11

6 A Structure Using o(nlgn) Bits

Looking at the several variations of suffix trees, one is tempted to conjecture that Q(nlgn)
bits are necessary to support pattern search in O(m) time. In this section we disprove this
conjecture for at least the decision version of the problem. We develop a structure that takes
O(nlgn/lglgn) bits and answers whether or not a pattern string of length m exists in the
given text in O(m) time !. The structure does not support finding such an occurrence, if it
exists, in general, though in some cases it may be possible to do so.

One structure that solves this decision problem is a suffix tree without the pointers at
the leaves. But in this case we have to store the skip values at the compressed nodes of the
suffix tree. If we omit the skip values, then to find them online, we need the leaf pointers.
Thus in either case, we need at least nlgn bits of space.

In this section, we describe a structure for binary texts, which can be easily extended to
any fixed size alphabet. The structure we develop consists of a sparse suffix tree and two
tables. The first table stores, for all binary strings of length at most b (to be fixed later),
whether it appears as a substring in the given text string. A sparse suffix tree is constructed
for every bth suffix of the given text string. We interpret the given binary text of length n
as a string of length n/b over a 2°-ary alphabet and construct a suffix tree for this string.

This suffix tree is stored using the cardinal tree representation given in [2, 3] which is a
generalization of Jacobson’s binary tree representation. In this representation, a cardinal tree
of arity ¢ with n nodes can be stored using nt+ o(n) bits and the tree navigational operations
(like finding the parent or the ith child of a node) can be supported in constant time. In our
case, the arity is 2 and the number of nodes is O(n/b). Thus the space required to store this
suffix tree is O(2°n/b) bits. Note that by using a representation of a t-ary tree that takes
2n + nflgt] + n[lglgt] + o(n) bits, we can support all the tree navigational operations in
constant time[23]. But for our purposes, even the first representation taking nt + o(n) bits
is sufficient, since the space required for the tree is dominated by the space needed to store
leaf pointers using nlgn/b bits.

The second table is indexed by a node v in the sparse suffix tree and two strings p and
s of length at most b. The table stores a 1 if there exists a leaf in the subtree rooted at
node v which points to a suffix such that L,s is a prefix of it and the substring p precedes
that suffix (in the given text), and stores a 0 otherwise (here L, is the string obtained by
concatenating the edge labels in the path from root to the node v).

The space occupied by the first table is 2° bits. The space occupied by the sparse suffix
tree is O(nlgn/b) bits for the leaf pointers and O(2°n/b) bits for the tree representation.
The space for the second table is O(%Q%) bits. Thus choosing b to be %lg lg n will make the
overall space occupied by the structure to be O(nlgn/lglgn) bits.

To search for a given binary pattern p of length m. if its length is at most b then we
can know the answer from the first table. Otherwise, we will repeat the following search
procedure b times, varying ¢ from 0 to b — 1.

Let p; be the prefix of p of length i and s; be the suffix of p of length (m — i — | == b).

b

Match the substring of p of length (| ™=*|b) starting at position 1, in the suffix tree. If there

is no match in the suffix tree then skip the current iteration. Otherwise, let v be the node

!The space bound was further improved to O(n) bits in [12].

12

at which the match has ended. If the length of L, is equal to (Lmb_ljb), then find table entry
corresponding to node v, prefix p; and suffix s;. If it is 1, output yes and halt; skip the
current iteration, if the entry is 0. If L, (defined earlier) has length more than (Lmb_ljb) (this
can happen when v is a compressed node), then find the (|%=]b + 1)* character, say z, in
L, (a character here is an element of a 2° sized alphabet and hence corresponds to a b bit
string) and check if s; is a prefix of & (note that s is a binary string of length at most b). If
not skip the current iteration. Otherwise find table entry corresponding to node v, prefix p;
and suffix A (the empty string). If it is 1, output yes and halt.

Each iteration of the above search procedure takes O(m/b) time and thus the total time

for searching for a pattern in this structure is O(m), where m is the length of the pattern.

Theorem 8: Given a text of length n from a fixed alphabet, there exists a data structure
that uses O(nlgn/lglgn) bits such that given a pattern of size m, it can be determined
whether the pattern occurs in the string in O(m) time.

7 Conclusions

We have given several indexing structures including
e a suffix tree using n[lgn] + 4n 4 o(n) bits of storage,
e a structure using n[lgn| + o(n) bits, and
e a structure using 7 lgn + O(n) bits

where indexing queries can be answered in time linear in the length of the query string.
The first two structures can also be used to find the number of occurrences of the pattern
using no additional space. We have also given a structure that uses only o(nlgn) bits
of space and answers whether a given pattern is a substring of the text in optimal O(m)
time. Building on our first structure and using other techniques, Grossi and Vitter[12] have
developed an O(n) bit index structure that can be used to search any binary pattern, (of
length m) stored in O(m/lgn) words, in o(m) time. Finding all the occurrences in this
structure takes an additional O(s lg°n) time, where s is the number of occurrences of the
pattern in the text and € is a fixed positive constant less than 1.

Some open problems that arise (remain) are:

e Constructing an efficient indexing structure when the given text resides in the sec-
ondary memory is the most important problem for large scale full text indexing. Un-
fortunately, while our structures are best suited to the situation in which the entire
text resides in the main memory, the number of external memory accesses made in our
structures is quite high (close to m), if the given text resides in the external memory.
Indeed, this problem remains in all the standard representations of suffix trees where,
an access to the text is required to find the compressed string at every compressed
node. So constructing an nlgn + O(n) bit suffix tree for a text in external memory
(i.e. one that uses as few external accesses as possible) is an interesting open problem.

13

e One obvious way to construct our suffix tree representations is to construct the usual

suffix tree first and then construct the parenthesis representation of the tree from it.
However this method uses more space during the construction phase than is required
by the final structure. Can one avoid this problem?

e Finding all the occurrences of the pattern in O(m + 3) time with an index structure

that takes O(n) bits, where s is the number occurrences of the pattern, is still an open
problem. The structure given by Grossi and Vitter [12] takes O(m + s 1g°n) time to
find all the occurrences of the pattern, where € is any fixed constant less than 1.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

References

1]

2]

A. Apostolico and F. P. Preparata, Structural properties of the string statistics problem,
Journal of Computer and System Sciences 31 (1985) 394-41.

D. Benoit, “Compact tree representations”, Master’s Thesis, Department of Computer
Science, University of Waterloo, Canada (1998).

D. Benoit, E. D. Demaine, J. I. Munro and V. Raman, Representing trees of higher
degree, The Proceedings of the 5th Workshop on Algorithms and Data Structures (WADS
99), LNCS 1663 (1999) 169-180.

A. Blumer, J. Blumer, D. Haussler, R. McConnell and A. Ehrenfeucht, Complete in-
verted files for efficient text retrieval and analysis, Journal of the ACM 34(3) (1987)
578-595.

A. F. Cardenas, Analysis and performance of inverted data base structures, Communi-

cations of the ACM 18 (5) (1975) 253-263.

D. Clark, “Compact Pat trees”, Ph. D. Thesis, Department of Computer Science, Uni-
versity of Waterloo, Canada (1996).

D. R. Clark and J. I. Munro, Efficient suffix trees on secondary storage, Proceedings of
the 7th ACM-SIAM Symposium on Discrete Algorithms (1996) 383-391.

B. Clift, D. Haussler, R. McConnell, T. D. Schneider, and G. D. Stormo, Sequence
landscapes, Nucleic Acids Research 4 (1) (1986) 141-158.

L.. Colussi and Alessia De Col, A time and space efficient data structure for string
searching on large texts, Information Processing Letters 58 (1996) 217-222.

C. Fraser, A. Wendt, and E. W. Myers, Analysing and compressing assembly code,
Proceedings of the SIGPLAN Symposium on Compiler Construction (1984) 117-121.

14

[11]

[12]

[13]

[14]

[15]

[16]

[22]

23]

[24]

[25]

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider, New indices for text: PAT trees
and PAT arrays, Information Retrieval: Data Structures and Algorithms, Frakes and
Baeza-Yates Eds., Prentice-Hall, (1992) 66-82.

R. Grossi and J. Vitter, Compressed suffix arrays and suffix trees with applications to
text indexing and string matching, Proceedings of the 32nd ACM Symposium on Theory
of Computing (2000) 397-406.

G. Jacobson, Space-efficient static trees and graphs, Proceedings of the 30th IEEE Sym-
posium on Foundations of Computer Science (1989) 549-554.

J. Karkkainen and E. Ukkonen, Sparse suffix trees, Proceedings of the Second Annual
International Computing and Combinatorics Conference (COCOON 96), LNCS 1090
(1996) 219-230.

G. M. Landau and U. Vishkin, Fast parallel and serial approximate string matching,
Journal of Algorithms 10(2) (1989) 157-169.

U. Manber and G. Myers, Suffix arrays: a new method for on-line string searches, STAM
Journal on Computing 22(5) (1993) 935-948.

E. M. McCreight, A space-economical suffix tree construction algorithm, Journal of the

ACM 23 (1976) 262-272.

A. Moffat and J. Zobel, Self-indexing inverted files for fast text retrieval, ACM Trans-
actions on Information Systems 14(4) (1996) 349-379.

D. R. Morrison, PATRICIA: practical algorithm to retrieve information coded in al-
phanumeric, Journal of the ACM 15 (1968) 514-534.

J. I. Munro, Tables, Proceedings of the 16th Foundations of Software Technology and
Theoretical Computer Science conference, LNCS 1180 (1996) 37-42.

J. I. Munro and V. Raman, Succinct representation of balanced parentheses, static trees
and planar graphs, Proceedings of the IEEE Symposium on Foundations of Compuler
Science (1997) 118-126.

S. Muthukrishnan, Randomization in stringology, Proceedings of the FST & TCS Pre-
conference Workshop on Randomization, (1997) 23-27.

V. Raman and S. Srinivasa Rao, Static dictionaries supporting rank, Proceedings of 10th
International Symposium on Algorithms and Computation (ISAAC), LNCS 1741 (1999)
18-26.

M. Rodeh, V. R. Pratt, and S. Even, Linear algorithm for data compression via string
matching, Journal of the ACM 28(1) (1991) 16-24.

H. Shang, “Trie methods for text and spatial data structures on secondary storage”,

PhD Thesis, McGill University, (1995).

15

[26] P. Weiner, Linear pattern matching algorithm, Proc. 14th IEEE Symposium on Swilch-
ing and Automata Theory (1973) 1-11.

[27] J. Zobel, A. Moffat and K. Ramamohanarao, Inverted files versus signature files for text
indexing, ACM Transactions on Database Systems 23(4) (1998) 453-490.

16

