Static Dictionaries Supporting Rank

Venkatesh Raman and S. Srinivasa Rao

The Institute of Mathematical Sciences, C. I. T. Campus,
Chennai 600 113. India

Abstract. A static dictionary is a data structure for storing a subset
S of a finite universe U so that membership queries can be answered
efficiently. We explore space efficient structures to also find the rank of
an element if found. We first give a representation of a static dictionary
that takes nlgm + O(lglg m) bits of space and supports membership
and rank (of an element present in S) queries in constant time, where
n = |S| and m = |U|. Using our structure we also give a representation
of a m-ary cardinal tree with n nodes using n[lg m] 4 2n + o(n) bits of
space that supports the tree navigational operations in O(1) time, when
m is 0(2lg /g 1’5”). For arbitrary m, we give a structure that takes the
same space and supports all the navigational operations, except finding

the child labeled i (for any i), in O(1) time. Finding the child labeled ¢
in this structure takes O(lglglg m) time.

1 Introduction and Motivation

A static dictionary is a data structure for storing a subset S of a finite uni-
verse U so that membership queries can be answered efficiently. This problem
has been widely studied and various structures have been proposed to support
membership in constant time [8,7,4,12] in slightly different models. Our focus
in this paper is to also support the rank operation which asks for the number
of elements in the set less than or equal to the given element. Our model of
computation is an extended RAM machine model that permits constant time
arithmetic and boolean bitwise operations.

Our motivation for studying rank operation comes from the recent succinct
representation of m-ary cardinal trees[3]. A cardinal tree of degree k is a rooted
tree in which each node has k positions for an edge to a child. A binary tree is a
cardinal tree of degree 2. An ordinal tree is a rooted tree of arbitrary degree in
which the children of each node are ordered. The cardinal tree representation of
[3] essentially has two parts: one part giving the ordinal information of the tree
using 2n + o(n) bits and the other part storing the children information of each
node in the tree using nlgm bits where n is the number of nodes. To navigate
around the tree, in particular, to find the child labeled i of a node, we need
to find the rank of the element ¢ in the ordinal part information of the node.
The representation of Benoit et. al.[3] supports this operation in O(lglgm) time.
Clearly, to perform this operation in constant time, a structure for static dictio-
nary taking nlgm + o(n) bits supporting the rank operation in constant time

suffices. Though we could achieve this when m is 0(‘21g”/lg l87) for the general
case we have a structure that supports rank and membership in O(Iglglgm)
time.

If we want to support the rank operation for every element in the universe,
there is a lower bound of 2(lglgm) time per query even if the space used is
polynomial in n [1]. Willard [14] gave a structure that answers rank (and hence
membership) queries in O(lglgm) time using O(nlgm) bits of space. Fiat et.
al.[7] gave a structure that answers membership queries in constant time and
rank queries in O(lgn) time using nlgm + O(lglgm + lgn) bits of space. The
structure given by Pagh [12] answers membership and rank queries in constant
time when the size of the set n is w(mlglgm/lgm), using nlg(m/n) + O(n)
bits. Our focus here is to support rank queries for only the elements that are
present in the given set.

The only structure we know of to support membership and rank for those
elements found is due to Benoit et. al.[3] en route to their efficient cardinal tree
representation. Their structure supports membership and rank in O(lglgm) time
using at most n 1g m bits. We give an alternate structure that supports both these
operations in O(1) time using nlgm+O(lglg m)—O(n) bits. As a matter of fact,
the structure due to Benoit et. al. supports both these operations in constant
time using at most n lg m bits as long as n > lg m whereas our structure supports
both these operations using the same time and space as long as n > lglgm. In
the smaller range, both these structures take O(lgn) time if only nlgm bits are
allowed.

In Section 2, we give a space efficient static dictionary structure that answers
membership and rank queries in constant time. This structure builds up on the
recent enhancement of Pagh[12] of the FKS[8] dictionary and uses nlgm+0O(n+
Iglgm) bits. In Section 3, we use an interesting idea to remove the O(n) term
in the space complexity of the structure. In this section, we also outline space
efficient structures to support the select operation (find the j-th smallest element
in the given set). In Section 4, we outline the m-ary cardinal tree representation
of Benoit et. al.[3] and explain how our rank dictionary structure can be used to
improve the running time from O(lglgm) to O(lglglgm) for finding the child
labeled 7, if exists, for any i. We also illustrate another improvement to the
structure so that all the navigational operations can be supported in constant
time if m is o(2'87/18187),

2 A rank structure taking nlgm + O(n + lglg m) bits

Fredman et. al.[8] have given a structure that takes nlgm + O(lglg m + n\/Ign)
bits and supports membership in O(1) time. Schmidt and Seigel [13] have im-
proved this space complexity to nlgm + O(lglgm + n) bits. We refer to this
structure as the FKS dictionary in the later sections.

The original FKS construction to store a set S has four basic steps:

— A function hy ,(z) is found that maps S into [0, n? — 1] without collisions. Tt
suffices to choose hy ,(z) = (kxz mod p) mod n* with suitable k < p < n?lgm
where p is a prime. Here, the values k and p depend on the set S.

— Next, a function hy ,(z) is found that maps hg ,(S) into [0, n — 1] so that the
sum of the squares of the collision sizes is not too large. Again, 1t suffices to
choose hy ,(2) = (kz mod r) mod n, where r is any prime greater than n?
and & € [0, 7] so that > ., |hi 2 (5) N hie p(S)P < 3n.

— For each non-empty bucket i, a secondary hash function h; is found that
is one-to-one on the collision set. We choose h;(z) = (kiz mod r) mod ¢;?,
where k; € [0, 7— 1] and ¢; is the size of the collision set. The element z € S,
is stored in location Cj+ h;(hy » (hg p(2))), where C; = e’ el -+
This locates all n items within a table of size 3n, say A*[1...3n].

— Finally the table is stored without any vacant locations in an array A[l...n]
in the same order.

The composite hash function requires the parameters k, p, £ and r for Ay,
and h, ,, atable K[0...n] storing the parameters k; for secondary hash functions
hi, a table C[0...n] listing the locations C; and finally a compression table
D[1...3n], where D[j] gives the index, within A, of the item (if any) that hashes
to the value j in A*. Thus this composite hash function description requires
O(nlgn + lglgm) bits of space.

Schmidt and Siegel [13] first observe that up to |[lgn] + 1 secondary hash
functions are sufficient to store the elements of the set. They also show how to
represent this composite hash function using O(n + lglgm) bits of space. We
briefly describe their representation below. Parameters k& and p require O(lgn +
Iglgm) bits each and x and r take O(lgn) bits each. The parameters for the
secondary hash functions k1, k2, ..., k(|1gn| +1) are stored in an array, which takes
O((Ign)?) bits. The table K contains, for its ith sequence of bits, the integer a;
in unary, if kg, is the multiplier (the secondary hash key) associated to hash the
bucket ¢, 0 < ¢ < n. This table is an O(n) bit string. We store a o(n) bit auxiliary
structure along with this bit string to support rank and select operations[9,5,
10] on it in constant time. Using this and the array of multipliers, given an i,
we can find the multiplier associated with the bucket 7 in constant time. The
table C, which contains the values C; (= co? + 12 + -+ + ¢i—1?), is encoded
as follows. First the values ¢? are stored in a table Ty in unary notation (in
order of appearance, separated by 0’s), which is of length at most 4n. We also
store an auxiliary structure of o(n) bits to support rank and select on both the
bits, in constant time. Now, given an ¢, C; is nothing but the rank of the ith
0 (i.e. C; = rank;(selecty(i))), which can be found in constant time. For the
compression table D, we store a bit string of length 3n where the 7th bit is a 0
if A*[i] is empty and 1 otherwise. We also store a o(n) bit auxiliary structure to
support rank and select operations on this in constant time. When an element is
hashed to a location in D, the rank of the bit in that location in the bit vector
representation of D gives the location of the element in the array A.

Now, to obtain rank for the element in the set, we could simply store the
rank with each element in the FKS table. However this takes nlgm + nlgn +

O(n +1glgm) bits. In the rest of this section, we describe how we can get rid of
the nlgn term.

Pagh [12] has observed that each bucket j of the hash table may be re-
solved with respect to the part of the universe hashing to bucket j. Thus we can
save space by compressing the hash table part (i.e. table A above) of the data
structure, storing in each location not the element itself, but only a quotient
information that distinguishes it from the part of U that hashes to this location.
The quotient function, slightly modified from that of Pagh is as follows:

0k p() = ((z div p).[p/r] + (k.x mod p) div n?).[r/n] + (k.2 mod r) div n

where z = (k.x mod p) mod n? and the parameters k, p, x and r are as defined
in the FKS perfect hash function. It is easy to see that gg p(z) for z € U is
O(m/n) (as (k.z mod r) div n < r/n and (k.z mod p) div n? < p/r).

Thus the total space to store all the quotient values along with the hash
function will be nlg(m/n)+O(n+lglg m) bits. To find an element, we compute
its quotient value, apply the composite hash function to determine a location
and check whether the quotient value appears in that location. Now, with each
element we also store the rank of the element in the set for an extra space of
n[lgn] bits. Thus if the element is found, we can get its rank from the rank
information stored in its location.

Thus we have

Theorem 1. A static dictionary for a subset S of size n of a finite uniwerse
U={1,...,m} can be constructed using nlgm+ O(n + lglg m) bits of space so
that membership and rank queries can be answered in O(1) time.

3 A rank structure taking nlgm + O(lglg m) bits

In this section we illustrate a method by which the space used by the structure
in the last section can be reduced by cn bits for any parameter ¢ < (1 — ¢)lgn,
0 < € < 1. The trick is to store only the last (Ign — ¢) bits of the rank instead of
storing the entire value of the rank along with each element. Suppose the sorted
list of the elements of the set is divided into 2¢ blocks of size roughly n/2¢ each.
Then the information stored with each element is precisely its rank within its
block. In another array, we store the index of the (in/2°)th element in the sorted
order of the elements (i.e. the first element of the i-th block), for 1 < i < 2°.

Given an element, the membership proceeds as in the case of our modified
FKS strategy (as mentioned in the last section). Once an element is found, the
block to which it belongs (in the sorted order) can be found by doing a binary
search (using c steps) on the first elements of each block stored in the separate
array. The rank of an element within its block is stored with the element in
the FKS dictionary. From these two information, we can obtain the rank of the
element.

The space required, in addition to the nlgm/n + O(n+ lglgm) bits used to
store the quotient values and the hash function information,is nlgn—cn+2°lgn

bits. Let the space occupied by the hash function and the auxiliary storage for
the FKS dictionary be d(n + Iglg m) bits. Choose ¢ such that ¢n > 2°1gn + dn.
Then the total space requirement will be nlgm + O(lglgm) — @(n) bits. If n is
2(1glgm), we can choose ¢ such that en > 2°lgn + d(n + lglgm) so that the
total space will be nlgm — ©(n) bits.

Note that we actually don’t store the elements in the array locations, but
store only the quotient value of the element in the location to which it hashes
to. So we describe below, how given a location, we can actually find the element
of the set, whose quotient is stored in that location, in constant time.

For this purpose, we store the values of k! and «~! along with other param-
eters, which require O(lglg m+lgn) bits of extra space. Now, given a location [,
let ¢ be the quotient value stored in that location and let z be the actual element
of the given set that hashes to that location.

Table D (given in the last section) can be used to find the location /* in
the virtual array A* in which the element should have been stored, using a
select operation on the bit representation of D. Now, using the table Ty (i.e.
the compressed form of table C'), we can find the bucket into which the element
has hashed to, which is nothing but the value of (x.z mod r) mod n. Also
q mod r/n gives us the value (k.z mod r) div n. From these two values, we can
find the value of .z mod r from which, using k= we can find z. Note that
z is nothing but (k.z mod p) mod n%. Now, (¢ mod r/n) mod p/r gives the
value of (k.x mod p) div n?. Using these two values, we can find (k.z mod p)
from which the value of z mod p can be found using the value of k~'. Again,
(¢ mod r/n) div p/r gives the value of z div p. Using these two values, we can
find the value z.

Thus we have,

Theorem 2. There exists a static dictionary for a subset S of size n of a finite
universe U = {1,...,m} that uses nlgm + O(lglgm) — O(cn) bits of space and
answers membership queries in constant time and rank queries in O(c) time
where 1 < ¢ < (1 —€)lgn for any positive constant € < 1.

Corollary 1. There exists a static dictionary for a subset S of size n of a finite
universe U = {1,...,m} that uses nlgm + O(lglgm) — O(n) bits of space and
answers membership and rank queries in O(1) time.

Corollary 2. There exists a static dictionary for a subset S of size n of a finite

universe U = {1,...,m} that uses nlgm — ©(n) bits of space and answers
membership and rank queries in O(1) time when n = 2(Iglgm).

Note the time-space tradeoff in the main theorem above. In particular, if we
are willing to support the rank operation in O(lglgn) time, then space complex-
ity comes down to nlgm + O(lglgm) — O(nlglgn) bits.

3.1 Static dictionary supporting select

Suppose we want to support only membership and select operations efficiently.
To support select, besides the modified FKS dictionary to support membership,

we can store in an array, the pointer to the ith smallest element of the set, for
1 <i < n. This requires an additional nlgn bits of space.

To further reduce space, we again store only the last lgn — ¢ bits (i.e. the
position of the jth element within a block of size n/2°) for some parameter ¢ (to
be determined) and in a separate array store the index of the (ni/2°)th element
in the sorted order of the elements, for 1 < i < 2°. Given a j, to find the jth
element, we do the following. Find the last lgn — ¢ bits of the position of the
jth element from the first array. Now for each choice of the first ¢ bits, find
the element stored in the location given by the lgn bits. If that element lies
between the elements ranked n(j — 1)/2° and nj/2° (which can be found using
the pointers stored in the second array), output that element as the jth element.
Clearly, there will be a unique choice of the first ¢ bits, which gives the location
of the j-th smallest element.

As in the last section, ¢ can be chosen in such a way that cn > 2°Ilgn + dn.

Thus we get

Theorem 3. There exists a static dictionary for a subset S of size n of a finite
universe U = {1,...,m} that uses nlgm + O(lglgm) — O(cn) bits of space and
answers membership queries in constant time and select queries in O(2°) time
for any parameter ¢ < lgn.

Corollary 3. There exists a static dictionary for a subset S of size n of a finite
universe U = {1,...,m} that uses nlgm + O(lglgm) — O(n) bits of space and
answers membership and select queries in O(1) time. When n = £2(Iglgm), the
space used is simply nlgm — O(n) bits.

3.2 Static dictionary supporting rank and select

When n is a constant, we can support membership, rank and select using nlgm
bits by storing the elements in a sorted array. Also when n > lglm n%llggr%Tm,
we can store a bit vector of the subset (m bits) and some auxiliary structures
(o(m) bits) to support membership, rank and select in constant time[5, 3].

Fiat et. al.[7] have given a structure to store multi key records where search
can be performed under any key in constant time. By storing an element and its
rank as a two key record, using this structure, one can support membership, rank
and select queries in constant time. This structure takes nlg mn+0(lg lg m+lg n)
bits of space.

Another obvious way to support both rank and select operations is to take
either of the previous two structures (supporting rank or select) given in the last
subsections and augment it with an array (of nlgn) bits to support the other
operation also in constant time. Thus we can support membership, rank and
select in constant time using a structure that takes nlgmn + O(lglgm) — @(n)
bits of space.

One can also find the rank by performing a binary search in a structure that
supports membership and select. Thus we can support membership and select

in constant time and rank in lgn time using a structure that takes nlgm +
O(lglgm) — O(n) bits of space.

It would be interesting to know whether we can support all these operations
in constant time using nlgm + O(lglgm) + o(n) bits.

4 Representing m-ary cardinal trees

In this section, we look at the problem of representing an m-ary cardinal tree. In
this tree, each node has m positions for an edge to a child, some of which can be
empty. Benoit et. al.[3] have given an optimal representation of a cardinal tree
that takes n[lgm] + 2n 4 o(n) bits and supports all navigational operations in
constant time, except finding a child labeled ¢, which takes at most O(lglg m)
time. This encoding has two parts. The first one uses the succinct encoding of
ordinal trees [11,3] which takes 2n+o(n) bits to store an ordinal tree of n nodes
that supports all navigational operations (on ordinal trees) in constant time.
In the second part, the n[lgm] bits of storage is used to store, for each node,
d[lgm] bits to encode which children are present, where d is the number of
children at that node.

In this structure, when the given subset is very sparse (namely when n <
lgm), they store the elements in sorted order, so that a search for an element
or finding the rank of it takes O(lgn) time. When n > Ig m the universe is split
into equal sized buckets and the values that fall into each bucket are stored using
perfect hash functions. By choosing the number of buckets appropriately, one
can make the space occupied by this structure to be at most nlgm bits.

We observe that by using a static dictionary that supports rank and member-
ship in constant time that requires at most nlg m bits of space, we can construct
a m-ary cardinal tree structure that supports all navigational operations in con-
stant time.

If the number of children of a node is less than lglg m, we store them in
a sorted array. Membership and rank queries in this array can be answered in
O(lglglgm) time. When n is at least lglgm, we store it using the structure of
Corollary 4.

Thus we have

Theorem 4. There exists an n[lgm] + 2n + o(n) bit representation of m-ary
cardinal trees on n nodes that supports the operations of finding the parent of a
node or the size of the subtree rooted at any node in constant time and supports

finding the child with label j in O(lglglgm) time.

When n is w(m'® lgm"'l""’(l)), we propose an alternate structure. We follow
the above encoding except for vertices whose degree is at most lglg m. We con-
struct a table in which each entry represents a set of size at most lglg m which is
stored as an m bit vector. Along each entry, we also store an auxiliary structure
which takes o(m) bits to support rank operation on the m bit characteristic
vector in constant time. We will have a two level ordering of the table. In the
first level, we order the sets based on their cardinalities. In the second level, we

order sets with the same cardinality lexicographically (in the bit vector repre-
sentation). Now in the cardinal representation, when a node has degree at most
lglg m instead of storing them in sorted order, we simply keep the position of the
set in the second level of the table (since we can compute the cardinality of the
set, which is the same as the degree of the node, from the ordinal information,
we obtain the position in the first level of the table).

The space occupied by the table is O(m'818™)(m + o(m)) which is o(n). The
space used by the index at each small degree node is Ig (T;) which is at most
dlgm bits, where d is the degree of the node. Now for these nodes, to search
for a child or to find its rank, we first find the subtree size from the ordinal
information of the node and using the index stored with the node in the cardinal
part, find the bitmap of the subset, which can be used to search for the element
or find its rank (using the o(m) auxiliary structure) in constant time.

Thus we have,

Theorem 5. There exists an n[lgm] + 2n + o(n) bit representation of m-ary
cardinal trees on n nodes that supports all the navigational operations in constant
time when n is 2(m'818m+1),

5 Conclusions and open problems

We have given representations of static dictionaries that support rank (or se-
lect) and membership queries in constant time using nlgm + O(lglgm) bits
of space. This gives us a structure that supports rank, select and membership
queries in constant time using nlgmn + O(lglgm) bits of space. We also gave
a representation of a m-ary cardinal tree that supports all navigational opera-
tions in constant time except finding a child with label j which takes at most
O(lglglg m) time using [nlgm] + 2n + o(n) bits of space.
Some open problems that arise/remain are:

— Find the space optimal structures for supporting membership, rank (for el-
ements in the set) and/or select queries in constant time.

— Find a representation of m-ary cardinal trees that takes [nlgm]+2n+ o(n)
bits of space and supports all navigational operations in constant time for
all values of n.

References

1. M. Ajtai, “A lower bound for finding predecessors in Yao’s cell probe model”,
Combinatorica 8 (1988) 235-247.

2. D. Benoit, “ Compact Tree Representations”, Master’s Thesis, Department of
Computer Science, University of Waterloo, Canada (1998).

3. D. Benoit, E. D. Demaine, J. I. Munro and V. Raman “Representing Trees of
Higher Degree”, To appear in The Proceedings of the Workshop on Algorithms and
Data-structures (1999).

10.

11.

12.

13.

14.

A. Brodnik and J. I. Munro, “Membership in constant time and almost minimum
space”, to appear in STAM Journal on Computing.

D. R. Clark, “Compact Pat Trees”, Ph.D. Thesis, University of Waterloo, 1996.
D. R. Clark and J. [. Munro, “Efficient Suffix Trees on Secondary Storage”, Pro-
ceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms (1996) 383-391.
A. Fiat, M. Noar, J. P. Schmidt and A. Siegel, “Non-oblivious hashing”, Journal
of the Association for Computing Machinery, 39(4) (1992) 764-782.

M. L. Fredman, J. Komlés and E. Szemerédi, “Storing a sparse table with O(1)
access time”, Journal of the Association for Computing Machinery, 31 (1984) 538-
544.

. G. Jacobson, “Space-efficient Static Trees and Graphs”, Proceedings of the IEFE

Symposium on Foundations of Computer Science (1989) 549-554.

J. I. Munro, “Tables”, Proceedings of the 16th FST & TCS conference, Lecture
Notes in Computer Science 1180 (1996) 37-42.

J. I. Munro and V. Raman, “Succinct representation of balanced parentheses, static
trees and planar graphs”, Proceedings of the IEEE Symposium on Foundations of
Computer Science (1997) 118-126.

Rasmus Pagh, “Low redundancy in dictionaries with O(1) worst case lookup time”,
to appear in Proceedings of the International Colloquium on Automata, Languages
and Programming (1999).

J. P. Schmidt and A. Siegel, “The spatial complexity of oblivious k-probe hash
functions”, SIAM Journal on Computing 19(5) (1990) 775-786.

D. E. Willard, “Log-Logarithmic worst case range queries are possible in space
@(n)”, Information Processing Letters 17 (1983) 81-89.

