A Simplified NP-complete MAXSAT Problem

Venkatesh Raman'*, B. Ravikumar® and S. Srinivasa Rao'
! The Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113. India
2 Department of Computer Science, University of Rhode Island, Kingston RI 02881. USA

Abstract

It is shown that the MAX2SAT problem is NP-complete even if every variable
appears in at most three clauses. However, if every variable appears in at most two
clauses, it is shown that it (and even the general MAXSAT problem) can be solved in
linear time. When every variable appears in at most three clauses, we give an exact
algorithm for MAXSAT that takes at most O(3"/%n) steps where n is the number of
variables.

1 Introduction

A Boolean formula in conjunctive normal form with n variables and m clauses is called a
(k, s)-formula[5] if every clause contains exactly k variables, and every variable occurs in at
most s clauses. If every clause contains at most k variables, then we call such a formula
(< k,s) formula. If there is no bound on the number of variables per clause, we will denote
the corresponding formula (< n, s) formula if every variable appears in at most s clauses.

We denote by (k,s)-SAT (respectively, (< k,s)-SAT) the SATISFIABILITY problem
restricted to (k,s) (respectively, (< k,s)) formulas. That is, the (k,s)-SAT problem is:
given a (k,s)-formula, is it satisfiable? It is known that (< 3,3)-SAT is NP-complete[l].
Tovey[10] has shown that (< n,2)-SAT can be solved in polynomial time.

When all clauses have the same number of variables, Papadimitriou[8] has shown that
(3,5)-SAT is NP-complete. Recently Tovey[10] has improved this to show that (3,4)-SAT
is NP-complete and that every (3,3)-formula is satisfiable. It follows easily that these NP-
complete results carry over to the MAXSAT problem (where we want to find the maximum
number of clauses satisfiable) when each clause contains either exactly three or at most three
variables.

Here we address the analogous question for the MAXSAT problem restricted to instances
where each clause contains at most two variables. Such instances are also called MAX2SAT
instances. We denote by (k,s)-MAXSAT (respectively, (< k,s)-MAXSAT) the MAXSAT
problem restricted to (k,s) (respectively, (< k,s)) formulas. The (decision version of the)
(k,s)-MAXSAT problem is: given a (k, s) formula, and an integer [, is there an assignment
to the variables that satisfies at least [clauses of the formula? We are interested in the

*contact author: vraman@imsc.ernet.in

following question: what is the minimum s for which (2, s)-MAXSAT is NP-complete? The
original reduction from 3SAT to MAX2SAT had some variable appearing 12 times([1], [2])
if we start from a 3SAT instance in which each variable appears at most 3 times. Jaumard
and Simeone[3], while discussing the complexity of MAX2SAT for Horn Formulas give a
reduction from Vertex Cover to MAXSAT. If we start from a cubic graph in that reduction,
then every variable in the resulting MAXSAT formula appears at most four times. This
proves that (< 2,4)-MAXSAT problem is NP-complete. We reproduce this reduction in the
next section for completeness. Then, by a reduction from (< 2,4)-MAXSAT, we show that
(< 2,3)-MAXSAT as well as (2,3)-MAXSAT are NP-complete.

In Section 3, we show that the (< n,2)-MAXSAT problem can be solved in O(n) time
where n is the number of variables. This also gives an O(n) algorithm which is simpler than
Tovey’s for the (< n,2)-SAT problem. In Section 4, we deal with exact algorithms for the
MAXSAT problem along the lines of exact algorithms for the 3-SAT problem([6], [7], [9]).
We show that the (< n,3)-MAXSAT can be solved in O(3"/%n) time. Section 5 concludes

with open problems.

2 (2,3-MAXSAT
First we observe the following from the reduction of Jaumard and Simeone[3].

Lemma 2.1: (< 2,4)-MAXSAT is NP-complele.

Proof: It is obvious to see that the problem is in NP. The following is the reduction of
Jaumard and Simeone[3] from Vertex Cover to the MAXSAT problem. We will assume that
the graph in the instance of the Vertex Cover problem is cubic, 1.e. every vertex has degree
3. Vertex Cover problem remains NP-complete for cubic graphs[2].

Given a cubic graph G(V, F) with n vertices and m edges, introduce for each vertex ¢,
1 <2 < n, a variable z; and define the formula

® = (NZi2:) A (Ajyer(T: V 7).

® has n+m clauses with each clause having at most two literals and every variable appearing
in at most four clauses.

Now, if G has a vertex cover of size at most k, then setting those variables corresponding
to the vertices in the vertex cover to 0, all but at most & clauses of ® can be satisfied.
Conversely if there is an assignment that satisfies at least n + m — &k clauses of ®, we can
assume without loss of generality that the false clauses are the clauses with single literals.
For, if there is an edge {¢,7} € £ in which both z; and z; are 1, arbitrarily setting one of z;
and z; to 0 satisfies that clause (and perhaps more clauses) and falsifies only one clause, thus
keeping the number of clauses satisfied at least n+m —k. Now it is easy to see that the set of
vertices corresponding to the variables assigned 0, form a vertex cover of size at most k£ in G. |

Now we prove the main result of the paper.

Theorem 1: (< 2,3)-MAXSAT is NP-complete.
Proof: The reduction is from (< 2,4)-MAXSAT. Let F be a (< 2,4) formula. Let U

be the set of variables in F and let d(z), for € U be the number of clauses in which the
variable x appears in F. Let b be the number of variables x for which d(z) = 4.

For every variable z for which d(z) = 4, do the following. First, create a separate variable
for each of its occurrences: x1, 9, x3, x4 and replace the i-th occurrence of the variable with
x;. We further introduce the variables y1, ys, ...ys and the following clauses:

z9 V y2)(w3 V ys
T3V ys)(T3 V s
(y2 V ye)(ya V yr
(Y3 V ya)(ys V ¥s

(1 V)
(1 Vyr)
(y1 Vs
(71 V y2

T4V Ye
Ya V ys
y7 vV ys

)
)
)
)

~— ~—

Let X be the above set of 16 clauses and let G be the resulting MAXSAT formula (after
performing this construction for every variable x with d(z) = 4). Now clearly every variable
in the formula (& appears in at most three clauses (the z; variables appear once in the original
formula, and twice in the new set of clauses, and the y; variables appear thrice in the new
set of clauses). We claim that F' has an assignment that satisfies at least k of the clauses if
and only there is an assignment to the variables of G that satisfies at least k& 4+ 165 clauses
of G.

If ' has an assignment that satisfies at least k clauses, then by assigning the truth value
of to x1, 9, 3 and x4 for every z appearing 4 times, we can satisfy the k original clauses
and the new 166 clauses as follows. If x is 0, then set all the y; variables to 1, and if x is 1
then set all the y; variables to 0.

Conversely if there is an assignment to G that satisfies at least k& + 16b clauses, then
we first show that there is an equivalent assignment that satisfies at least k& + 166 clauses
of GG that also satisfies all the new 16b clauses. We then show that the only assignments
that satisfy all the 1656 new clauses are the ones in which the truth value of all the z; values
corresponding to the variable z in F' are the same (either all 0’s or all 1s) and from that we
can recover a truth assignment for F' that satisfies at least k& of the original clauses. The
proof will be complete from the following observations.

1. All the 16 clauses of X are satisfiable if 1 = 29 = 23 = 24 = 1l or 71 = 293 = 23 =
T4 = 0.

2. If exactly one of the z;s is 1 or if exactly one of the z;s 1s 0, then at most 15 clauses of
X are satisfiable.

3. If exactly two of the z;s are 1, then at most 14 clauses of X are satisfiable.

Claim 1 can be easily verified. To prove Claim 2, let without loss of generality, z; = 1
and z9 = 23 = x4 = 0. Then all the three clauses (z1 V y7), (y7 V y3) and (y3 V x3) cannot
be satisfied. Furthermore, setting y; = 1 for 1 < ¢ < 8 satisfies all clauses of X except
the clause (1 V y7). Similarly if 21 = 0 and 22 = 235 = 24 = 1, then all the three clauses
(z1Vy1), (y1Vys) and (Z3Vys) cannot be satisfied. Furthermore, setting y; = 0 for 1 < < 8,
satisfies all clauses of X except the clause (21 V y1).

To prove claim 3, first let 7 = 23 = 1 and 3 = x4 = 0. Then not all three clauses
(x5 V ys), (ys V yr), (y7 V T1) can be satisfied. Independently, not all three clauses (z4 V

3

Ya), (ya V ys), (ys V T2) can be satisfied. Furthermore, setting y; = 0 for all 7, satisfies all the
clauses of X except the clauses (23 V y3) and (24 V y4). Exactly the same argument works if
the two z;s that are 1 are z, and z, where s = r mod 4 + 1. Now consider the case when
1 = 23 =1 and 29 = x4 = 0 (The complementary case is symmetric). Not all the clauses
(x2Vy2),(y2 V ye), (ys V ys) and (ys V Z3) are satisfiable. Independently not all the clauses
(x4 V ya), (Ya Vys), (ys V yr) and (y7 V 1) are satisfiable. Furthermore, setting y; = 1 for all
i, satisfies all clauses of X except (1 V y7) and (23 V ys).

Now, given an assignment for G that satisfies at least k4 166 clauses, to obtain an equiv-
alent assignment that satisfies all the 1656 new clauses and still £ + 16b clauses in total, we
do the following. For each set of the 16 new clauses, in case 1 above do nothing; in case 2
above, we flip the only variable which is 1 or 0 by which we will satisfy one extra (new) clause
and we may falsify at most one original clause (the clause containing that variable). In case
3 above, by flipping the two z;’s from 1 to 0, we will satisfy two extra (new) clauses and
falsify at most two original clauses (the two original clauses containing these two variables). 1

Observe that the new clauses introduced in the above reduction are only two literal
clauses. Hence the following corollary follows.

Corollary 1: (2,3)-MAXSAT is NP-complete.

Proof: Start with a (< 2,3)-MAXSAT formula. For every variable z appearing in a
unit clause, introduce a new variable y and replace the unit clause () by the two clauses
(xVy)A(zVy) to obtain a formula G in which every clause has exactly two literals. If u out
of the total m clauses of F' are unit clauses, then G has m 4+ u clauses. Furthermore there is
an assignment that satisfies at least & clauses of F' if and only if there is an assignment that
satisfies at least & 4+ u clauses of (.

Now the variables (z) that appeared in unit clauses in F' may be appearing in four
clauses. Thus the resulting formula becomes a (2,4)-formula. Now use the reduction used
in the proof of Theorem 1 to obtain a (2, 3) formula. 1

The MINSAT problem[4] asks for the minimum number of clauses of a given CNF for-
mula that must be satisfied by any assignment to the variables. Kohli, Krishnamurti and
Mirchandani[4] proved that the decision version of the problem is NP-complete (even for 2-
SAT formulas) by a reduction from MAX2SAT. In fact, their reduction preserves the number
of appearances of each variable in the original MAX2SAT formula. So, from corollary 1, it
follows that

Corollary 2: (2,3)-MINSAT is NP-complete. That is, given a (2,3) formula, and an
integer 1, it is NP-complete to decide whether there is an assignment to the variables that
satisfies at most | clauses of the formula.

3 (< n,2-MAXSAT

Tovey[10] has shown that when every variable appears in at most two clauses, SAT can be
solved in polynomial time. His observation (using Hall’s theorem for perfect matching) is
that if every variable appears at most twice and if every clause contains at least two variables,

then the formula is always satisfiable. So then it suffices to eliminate the unit clauses, and
Tovey deals with the unit clauses in the obvious way.

Observe that if every variable appears at most twice, then without loss of generality,
a variable appearing in a unit clause can be set so as to make the clause true even for
MAXSAT. Thus Tovey’s algorithm (in fact, a simpler version of it) can be applied to solve
the MAXSAT problem as well. We describe the simpler O(n) algorithm for the problem

below.

MAXSAT (F)

input A CNF formula f with m clauses on n variables, with each variable appearing
in at most two clauses. Let U be the set of unit clauses, and N be the set of
non-unit clauses.

output An assignment that satisfies the maximum number of clauses.

begin

In one pass over F', set those variables that appear either only positively or
only negatively appropriately and remove those clauses (from N or U). (Now
if a variable appears twice, then one of its occurrence is pure and the other is
complemented.)

while U # () do

pick the literal z that appears in a unit clause UC and set it to true.

Remove UC from U.

If appears elsewhere, then let C' be the clause in which its (other) comple-
mentary occurrence is present. If C'is in U, remove it from U. Otherwise,
remove the variable z from C'; if C' becomes a unit clause now, then add
it to U after removing it from N.

endwhile

If N # (), then pick a clause in N, and set any literal y appearing in it to true.
Remove this clause from N. If y appears elsewhere, remove y from that clause.
If that clause now becomes a unit clause, then add it to U after removing it

from N. Recurse on the reduced formula F’. Le. call MAXSAT (F").

If any variable is still unset, set it arbitrarily.

end

We show that the above algorithm correctly computes the answer to the MAXSAT prob-
lem and that it can be implemented in O(n) time.

The correctness of the algorithm follows from the following simple observations.

o If there is a unit clause in the formula, then the variable in the clause can be set to
make the clause true.

Suppose in the optimal assignment, the variable is set otherwise. By flipping it we gain
this unit clause and may loose at most one clause (the clause in which the variable
appears in its complementary form); thus setting the variable to make the clause true
gives as good an assignment as the optimal one.

o If there are no unit clauses in the formula, any variable in one of the clauses can be
set to make the clause true.

It is known[10] that if every variable appears at most twice and every clause has at
least two variables, then the formula is satisfiable. We show that in such circumstances,
setting an arbitrary literal of an arbitrary clause true and reducing the formula by
setting the variables of the unit clauses appropriately along the way, does not falsify
any clause. Once we set a literal x true, we remove the clause to which x belongs;
if x appears elsewhere, then we pick an arbitrary unset literal of the clause in which
T appears (such a literal should exist in that clause since we have eliminated unit
clauses) and set it true, and continue the process. This process stops when there is
no complementary occurrence of the recently set literal. Thus, we have reduced the
formula to a formula of the kind we started out with, without falsifying any clause.

If we simply want the maximum number of clauses that can be satisfied, then the algo-
rithm can keep appropriate counters and stop after the while loop.

Implementation

We first create a ternary array A of size n where A[i] gets the value 0, 1 or 2 to indicate
whether the i-th variable is set to “false”, “true” or “unset” respectively. Initially all the
array locations are initialized to 2. In one pass over the formula, by keeping appropriate
counters, we can identify unit clauses and those variables that appear either only positively
or only negatively. These variables are set appropriately by setting their A[7] values and by
removing the clauses in which they appear.

The sets U, N and the clauses themselves are represented by linked lists. Furthermore,
with each variable, there is a pointer to and from the positions of each of its occurrences in
the clauses to which it belongs.

It can be seen that every time a step of the ‘while loop’ or the (first) ‘if statement’ is
executed, at least one clause is removed from the formula. Using the above data structure,
it can also be easily seen that each step in the ‘while loop’ takes constant time whereas
each execution of the (first) ‘if statement’ takes time proportional to the length of the clause
removed. Thus the entire algorithm takes O(|f|) time where |f| is the size of the original
formula. Since each variable appears at most twice in f, |f| < 2n. Thus the algorithm takes
O(n) time proving the following theorem.

Theorem 2: Given a (< n,2) CNF formula with n variables, an assignment that salisfies
the mazimum number of clauses of the formula can be found in O(n) time.

6

Corollary 3: Given a (< n,2) CNF formula with n variables, it can be verified in O(n)
time whether or not it is satisfiable.

4 Algorithm for (< n,3)-MAXSAT

In this section, we address the question of solving the MAXSAT problem exactly in less
than 2" steps. Though considerable progress has been made towards the analogous question
for solving SAT (3-SAT to be specific) exactly (see, for example [9], [7], [6]), we know of no
algorithm taking less than 2" steps for solving the MAXSAT problem even when there are at
most two variables in each clause. Typically efficient exact algorithms for the 3-SAT problem
are branching algorithms, cleverly pruning branches that falsify any particular clause. Such
an approach does not generalize to MAXSAT simply because even the best assignment may
falsify some clauses. Here, we give a branching algorithm to find the maximum number of
clauses that can be satisfied in a given (< n, 3) formula in less than 2" steps. In each branch,
some variables are set and the algorithm is recursively called with the reduced formula.
Finally we pick the assignment that satisfies the most number of clauses in the branches
explored.

If every clause contains at least three variables, then the reduced formulais satisfiable[10].
Otherwise there is a clause with at most two literals. Suppose there is a clause €' with two
literals {a,b}. Out of the four possible settings for a and b, abandon the branch where both
a and b are false unless the other (possibly) two appearances of both a and b are @ and b.
For suppose, there is an occurrence of a outside (', and both a and b are set to false. The
literal @ appears in at most one clause in the formula. By flipping a to true, that clause may
be falsified, but the clause C' will be satisfied. Thus setting a or b to true in this case gives
at least as good an assignment than setting them both to false.

If both appearances of the variable a and b are as @ and b outside C, then abandon
the branch where both a and b are true. Thus, we can eliminate the two variables a and b
by doing only a three way branching and so the recurrence for the number of nodes in the
branching tree is T'(n) < 3T (n — 2) + 1 in this case.

Suppose there are no clauses with two literals. Then there must be some with only one
literal. Let C' = {a} be such a clause. As long as there is at most one occurrence of @ outside
C', setting a to true gives as good an assignment than setting it to false. So consider the
case when the variable a appears as a in two different clauses /' and V. If both U and V'
are unit clauses, then simply set a to false. Otherwise, let X be the set of literals other than
a appearing in the clauses U and V. As there are no 2 literal clauses, |X| > 2. Do a two
way branching as follows: In one branch, set all literals in X as well as a to false, and in the
other set a to true. If the best assignment has a false, but some of the literals of X true,
then by flipping a to true, we gain the clause C' and may loose at most one other, and so we
obtain at least as good an assignment. Thus one of these branches will find an assignment
that satisfies the maximum number of clauses. The recurrence for the number of nodes in
the branching tree in this case turns out to be T'(n) <1+ T(n— 1)+ T(n — 3).

A concise description of the algorithm in recursive form is given in the next page.

Note that though in the description, the output obtained is only the maximum number
of clauses satisfiable, the algorithm actually also constructs the assignment that realizes

that maximum. As the dominating branching step is the one that gets rid of two variables
through a three way branch, it follows that the total number of nodes in the branching tree
is at most 3"/2. Furthermore, to move from one node to another node of the branching tree,
at most | f| steps are required. Since every variable appears at most thrice, |f| < 3n. Thus
we have

Theorem 3: Given a (< n,3) formula f, an assignment that satisfies the mazimum number
of clauses of the formula can be found in O(3"/*n) steps.

MAXSAT (f)

input A CNF formula f with m clauses on n variables, with each variable appearing
in at most three clauses.

output The maximum number of clauses that can be satisfied by any assignment.

begin
If every clause has at least three variables, then output m and halt (use the
perfect matching algorithm of Tovey[10] to get a satisfying assignment.)

Otherwise, if there is a 2 literal clause {a, b} then
if a or b appears (in the same form) in some other clause of f,

then output max (MAXSAT(f10), MAXSAT (fo1), MAXSAT(f11)) where
Joy 1s the reduced formula obtained by setting @ = = and b = .

Otherwise, { all the other appearances of a and b are as a and b }

output max (MAXSAT (fi0), MAXSAT (fo0), MAXSAT (fo,1))

Otherwise (there are no 2 literal clauses, and so there must be unit clauses.)
pick a unit clause {a}. Again if a appears at most once in f, then set a to true,
and call MAXSAT with the reduced formula.

Otherwise, if a appears only in unit clauses, then set a to false and call MAXSAT
with the reduced formula.

Otherwise, let X be the set of literals other than a appearing in the clauses in
which a appears. Then output maz (MAXSAT(fozo.x=0), MAXSAT(fu=1))
where f,—0 x=0 is the reduced formula obtained by setting a and all the literals
of X false, and f,—; is the reduced formula obtained by setting a to true.

end

5 Conclusions

We have shown that the smallest integer s such that (2,s)-MAXSAT is NP-complete is 3 by
showing that (2,3)-MAXSAT is NP-complete and (< n,2)-MAXSAT can be solved in linear
time. We also developed an efficient exact algorithm for the (< n,3)-MAXSAT that takes

much less than 2" steps. Arguing through a few more cases, we can find an asymptotically
better algorithm for this ((< n,3)) version of MAXSAT. However, we believe that obtaining
an exact algorithm for the general MAXSAT (even for MAX2SAT) taking less than 2" steps
is a challenging open problem.

References

1]

2]

3]

M. R. Garey and D. S. Johnson, “Computers and Intractability, A Guide to the Theory
of NP-completeness”, Freeman and Company 1979.

M. R. Garey, D. S. Johnson and L. Stockmeyer, “Some simplified NP-complete graph
problems”, Theoretical Computer Science 1 (1976) 237-267.

B. Jaumard and B. Simeone, “On the complexity of the Maximum Satisfiability problem
for horn formulas”, Information Processing Letters 26 (1987/88) 1-4.

R. Kohli, R. Krishnamurti and P. Mirchandani, “The Minimum Satisfiability Problem”,
SIAM J. Discrete Mathematics 7 (2) (1984) 275-283.

J. Kratochvil, P. Savick and Z. Tuza, “One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete”, SIAM J. on Computing 22(1) (1993)
203-210.

O. Kullmann,, “ A systematical approach to 3-SAT decision yielding 3-SAT-decision
in less than 1.5045™ steps”, manuscript (available from kullmann@mi.informatik.uni-

frankfurt.de, 1995).

B. Monien and E. Speckenmeyer, “Solving satisfiability in less than 2" steps”, Discrete
Applied Mathematics 10 (1985) 287-295.

C. H. Papadimitriou, “The Euclidean traveling salesman problem is NP-complete,”
Theoretical Computer Science 4 (1977) 237-244.

. Schiermeyer, “Solving 3-satisfiability in less than 1.579" steps, Proceedings of the 6th
Workshop in Computer Science Logic, Springer Verlag (1993) 379-394.

C. A. Tovey, “ A simplified NP-complete satisfiability problem”, Discrete Applied Math-
ematics 8 (1984) 85-89.

