
Some introductory notes on Design and Analysis of Algorithms

Venkatesh RamanThe Institute of Mathematical SciencesC. I. T. CampusChennai - 600 113.email: vraman@imsc.res.in

1 Introduction to Algorithm Design and Analysis1.1 IntroductionAn algorithm is a receipe or a systematic method containing a sequence of instructions tosolve a computational problem. It takes some inputs, performs a well de�ned sequence ofsteps, and produces some output. Once we design an algorithm, we need to know how wellit performs on any input. In particular we would like to know whether there are betteralgorithms for the problem. An answer to this �rst demands a way to analyze an algorithmin a machine-independent way. Algorithm design and analysis form a central theme incomputer science.We illustrate various tools required for algorithm design and analysis through some ex-amples.1.2 SelectConsider the problem of �nding the smallest element from a given list A of n integers.Assuming that the elements are stored in an array A, the pseudocode1 Select(A[1::n]) belowreturns the smallest element in the array locations 1 to n.function Select(A[1..n])beginMin := A[1]for i=2 to n doif A[i] < Min then Min := A[i]endforreturn (Min)endIt is easy to see that �nally the variableMin will contain the smallest element in the list.Now let us compute the number of steps taken by this algorithm on a list of n elementsin the worst case. The algorithm mainly performs two operations: a comparison (of the typeA[i] < Min) and a move (of the type Min := A[i]). It is easy to see that the algorithmperforms n � 1 comparisons and at most n moves.Remarks:1. If we replace `Min := A[i]' by Min := i and A[i] < Min by A[i] < A[Min] afterreplacing the initial statement to Min := 1 and �nally return A[Min], the algorithmwill still be correct. Now we save on the kind of moves Min := A[i] which may beexpensive in reality if the data stored in each location is huge.2. Someone tells you that she has an algorithm to select the smallest element that usesat most n� 2 comparisons always. Can we believe her?No. Here is why. Take any input of n integers and run her algorithm. Draw a graphwith n vertices representing the given n array locations as follows. Whenever algorithm1A pseudocode gives a language-independent description of an algorithm. It will have all the essence ofthe method without worrying about the syntax and declarations of the language. It can be easily convertedinto a program in any of your favourite language. 2

detects that A[i] < A[j] for some pair of locations i and j, draw a directed edge i jbetween i and j. Now at the end of the execution of the algorithm on the given input,we will have a directed graph with at most n � 2 edges. Since the graph has at mostn � 2 edges, the underlying undirected graph is disconnected. Due to the transitivityof the integers, each connected component of the graph does not have a directed cycle.Hence each component has a sink vertex, a vertex with outdegree 0. Each such vertexcorresponds to a location having the smallest element in its component. Note alsothat the algorithm has detected no relation between elements in these sink locations(otherwise there will be edges between them). Let x and y be integers in two suchlocations. If the algorithm does not output x or y as the answer, then the algorithmis obviously wrong as these are the smallest elements in their components. If thealgorithm outputs x as the answer, we decrease the value of y to some arbitrarily smallnumber less than x. Even now the execution of the algorithm would be along the samepath with the same output x which is a wrong answer. In a similar way, we can provethe algorithm wrong even if it outputs y as the answer.An alternate way to see this is that an element has to win a comparison (i.e. must belarger than the other element) before it can be out of consideration for the smallest.In each comparison, at most one element can win, and to have the �nal answer, n� 1elements must have won comparisons. So n� 1 comparisons are necessary to �nd thesmallest element.This fact also indicates that proving a lower bound for a problem is usually a nontrivialtask. This problem is one of the very few problems for which such an exact lower boundis known.1.3 SelectionsortNow suppose we want to sort in increasing order, the elements of the array A. Considerthe following pseudocode which performs that task. The algorithm �rst �nds the smallestelement and places it in the �rst location. Then repeatedly selects the smallest element fromthe remaining elements and places it in the �rst remaining location. This process is repeatedn� 1 times at which point the list is sorted.Procedure Selectsort(A[1..n])beginfor i=1 to n-1 doMin := ifor j= i+1 to n doif A[j] < A[Min] then Min := jendforswap (A[i], A[min])endforendHere swap(x; y) is a procedure which simply swaps the two elements x and y and whichcan be implemented as follows.Procedure swap(x,y) 3

begintemp := xx := yy := tempendNote that the inner for loop of the above sorting procedure is simply the Select procedureoutlined above. So the code can be compactly written asProcedure Selectsort(A[1..n])beginfor i=1 to n-1 domin := Select(A[i,n])swap(A[i], A[min])endforendNow let us analyse the complexity of the algorithm in the worst case.It is easy to see that the number of comparisons performed by the above sorting algorithmis Pn�1i=1 (n � i) as a call to Select(A[i; n]) takes n � i comparisons. Hence the number ofcomparisons made by the above algorithm is n(n � 1)=2. It is also easy to see that thenumber of moves made by the algorithm is O(n) 2. Thus Selectsort is an O(n2) algorithm.1.4 MergeIn this section, we look at another related problem, the problem of merging two sorted liststo produce a sorted list. You are given two arrays A[1::n] and B[1::n] of size n each, eachcontaining a sequence of n integers sorted in increasing order. The problem is to merge themto produce a sorted list of size 2n.Of course, we can use the Selectsort procedure above to sort the entire sequence of 2nelements in O(n2) steps. But the goal is to do better using the fact that the sequence ofelements in each array is in sorted order. The following procedure merges the two arraysA[1::n] and B[1::n] and produces the sorted list in the array C[1::2n].Procedure Merge(A[1..n], B[1..n], C[1..2n])begini := 1; j := 1; k := 1;while i <= n and j <= n doif A[i] < B[j] thenC[k] := A[i]; i := i+1elseC[k] := B[j]; j := j+1endifk := k+1endwhileif i > n thenwhile j <= n doC[k] := B[j]; k := k+1; j := j+12A function f(n) is O(g(n)) if there exists constants c and N such that f(n) � cg(n) for all n � N4

endwhileelsewhile i <= n doC[k] := A[i]; k := k+1; i := i+1endwhileendifendIt is easy to see that �nally the array C[1::2n] contains the sorted list of elements fromA and B.It is also easy to see that the algorithm performs at most 2n � 1 comparisons and 2nmoves. Can you �nd out when the algorithm will actually perform 2n � 1 comparisons?Recall that initially we were toying around with an O(n2) algorithm (Selectsort) and nowwe have managed to complete the task in O(n) time simply using the fact that each list issorted already.1.5 MergesortThe following algorithm gives another method to sort an array of n integers. This methoduses the Merge routine described above. The algorithm calls itself several times (with di�er-ent arguments) and hence it is a recursive algorithm. Contrast with Selectsort which calledsome other algorithm.Recursion is a powerful tool both in algorithm design and also in algorithm descrip-tion. As we will see later, the following recursive algorithm is signi�cantly better than theSelectsort algorithm described earlier.Procedure Mergesort(A[1..n])beginif n <> 1 thenMergesort(A[1..n div 2])Mergesort(A[n div 2 + 1.. n])Merge(A[1..n div 2], A[n div 2 +1.. n], B[1..n])for i=1 to n do A[i] := B[i]endifThe algorithm basically divides the given array into two halves. Recursively sorts the twohalves and then uses the Merge routine to complete the sort. The Merge routine actuallyproduces the merged list into a di�erent array B. Hence in the last statement, we copy backthe elements of B into the array A.This method is also an example of the classic `divide and conquer' algorithm designtechnique. The idea here is to divide the problem into many parts, solve each part separatelyand then combine the solutions of the many parts.Note that though the actual execution of the recursive calls go through many morerecursive calls, we don't have to worry about them in the description. Thus a recursiveprogram usually has a compact description. Note also that the �rst step in the program isthe end (or tail) condition. It is important to have tail condition in a recursive program.Otherwise the program can get into an in�nite loop.Now let us get into the analysis of the algorithm. Again for simplicity let us count thenumber of comparisons made by the algorithm in the worst case. Note that the recursionintroduces some complication as we cannot do the analysis as we did so far. But it is easy5

to write what is called a recurrence relation for the number of comparisons performed. LetT (n) be the number of comparisons made by the algorithm. Then it is easy to see thatT (1) = 0and T (n) = T (bn=2c) + T (dn=2e) + n� 1; for n � 2since the Merge routine performs at most n�1 comparisons to merge two lists one of sizebn=2c and the other of size dn=2e (Note that the way we described, the Merge routine mergestwo lists each of size n using at most 2n � 1 comparisons. But it can be easily modi�ed tomerge a list of size m and one of size n using at most m+ n� 1 comparisons.)Now, how do we solve such a recurrence relation? The study of recurrence relationsforms a major part in the analysis of algorithms. Note that, for now, we are not interestedin solving the recurrence relation exactly. We will be happy with a tight enough estimatewhich will help us compare with Selectsort. To solve the recurrence relation, let us �rstassume that n = 2k for some integer k, i.e. n is an exact power of 2. Then happily, we willhave T (n) = 2T (n=2) + n� 1; for n � 2:Now expand the recurrence relation using the fact that T (n=2) = 0 if n = 2 or it is 2T (n=4)+n=2 � 1 otherwise. If we keep expanding the relation all the way until we get the term inthe right hand side to be T (1) for which we know the answer, we will haveT (n) = (n� 1) + (n� 2) + (n� 4) + :::(n� 2k�1)Since k = log2 n 3, we have T (n) = nk � n+ 1 = n log n� n+ 1.What if n is not a power of 2? Let 2k < n < 2k+1. Using our Select routine, �rst �nd thelargest element in the given array. Then add 2k+1 � n dummy elements equal to a numberlarger than the largest to the array make the number of elements in the array 2k+1. Now weapply the Mergesort routine to this array. Clearly the �rst n elements of the sorted list formthe required sorted output.Now from our earlier analysis, we have that the algorithm performs at most 2k+1(k +1) � 2k+1 + 1 + n � 1 comparisons (the n � 1 comparisons are to �nd initially the largestelement in the list). Now since k < log n, we have that the algorithm performs at most2n(log n + 1) � n + 1 + n � 1 which is 2n(log n + 1) comparisons. So Mergesort is anO(n log n) algorithm.Recall that Selectsort performed n(n � 1)=2 comparisons in the worst case. It is easyto see that Mergesort outperforms Selectsort for n � 32. You should note that Selectsortperforms signi�cantly fewer moves than Mergesort. Also Mergesort uses extra storagespace of up to n locations (for the B array) whereas Selectsort uses very few extra variables.Despite all this, Mergesort performs signi�cantly better compared to Selectsort.It is also known that any sorting algorithm by comparisons must perform at least n log ncomparisons in the worst case. So Mergesort is, in some sense, an optimal sorting algorithm.Exercise 1:3hereafter we will omit the base 2 when we talk about logn and assume that all logarithms are to thebase 2 6

1. Given an array of n integers, suppose you want to �nd the largest as well as the smallestin the array. Give an algorithm (a simple pseudocode) to perform this task. How manycomparisons does your algorithm use in the worst case?[There is a simple divide and conquer algorithm that performs 3dn=2e � 1 comparsonsin the worst case. But as a warm up, you may want to start with a simpler algorithmwhich could perform more comparisons.]2. Given a sorted array A of integers and an integer x, suppose you want to search whetherx is in the given array.(a) One method (which does not use the fact that the given array is sorted) is tosimply scan the entire array checking whether any element is equal to x. Write asimple pseudocode for this method. How many comparisons does your algorithmuse?(b) Another popular method called binary search works as follows.Compare x with the middle element A[n div 2]. If x � A[n div 2] thenrecursively search in the �rst half of the array. Otherwise recursivelysearch for x in the second half of the array.Write a proper pseudocode (with tail conditions etc) for this method, and �ndthe number of comparisons performed by this algorithm. Can you modify thealgorithm into a non-recursive one?1.6 SummaryIn this section, we have dealt with various algorithm design and analysis tools through somesimple but important data processing problems: Selecting the largest element from a list,Sorting a list and Merging two sorted lists. Through these examples, we introduced the`big Oh' (O) notation, recursive algorithms, divide and conquer algorithm design technique,recurrence relations, algorithm analysis and lower bounds.2 Introduction to Data StructuresThe way in which the data used by the algorithm is organized will have an e�ect on howthe algorithm performs. In some algorithms a certain kind of operations on the input aremore frequently used. So a clever method to organize the data to support those operationse�ciently will result in the overall improvement of the algorithms. What is the e�cient wayto organize the data to support a given set of operatons is the question addressed in thestudy of Data Structures.2.1 Arrays and Linked ListsThroughout the last section, we assumed that the input is an array where the elements arein contiguous locations and any location can be accessed in constant time. Sometimes itmay be an inconvenience that the elements have to be in contiguous locations. Consider thebinary search example in the last section. Suppose you discover that the given element x isnot in the sorted array, and you want to insert it in the array. Suppose you also �nd thatx has to be in the fourth location to maintain the sorted order. Then you have to move allelements from the fourth location onwards one position to their right to make room for x. It7

would have been nice if we can simply grab an arbitrary empty cell of the array, insert thenew element and somehow logically specify that that element comes after the third locationand before the present fourth location. A linked list has the provision to specify next andprevious elements in such a way.A linked list is a data structure in which the objects are arranged in a linear order. Unlikein an array where the linear order is determined by the array indices, the order in a linkedlist is determined by a pointer in each object. So each element x of a linked list has two�elds, a data �eld x:key and a pointer �eld x:next. The pointer �eld points to the locationcontaining (i.e. gives the address of) the next element in the linear order. The next pointerof the last element is NIL. An attribute head[L] points to the �rst element of the list L. Ifhead[L] = NIL then the list is empty.The following psuedocode gives a procedure to search for an element x in a given linkedlist L. Procedure listsearch(L,x)beginp := head[L]while p <> NIL and p.key <> xp := p.nextendwhileif p.key = x return(p)else return('x not found')endThe following psuedocode gives a procedure to insert an element x not present in thegiven sorted list of elements arranged in a linked list.Procedure sortedlistinsert(L,x)beginp := head[L]if p.key >= x thennew(cell)cell.key := x; cell.next := p;head[l] := cellelsewhile p <> NIL and p.key < xq := pp := p.nextendwhilenew(cell)cell.key := x; cell.next := p;q.next := cellendifendIt is easy to see that the insert procedure takes only constant time after the position tobe inserted is found by the initial scan (the while loop).Coming back to the binary search example, we observed that if the sorted list is arrangedin a linked list then insertion is easy after the position to be inserted is found. But notethat doing a binary search in a linked list is signi�cantly harder. This is because the access8

to any element in the linked list is always through the header head[L]. So if we have tosearch as well as insert, then a more sophisticated data structure is required to performthese operations in O(log n) time. We will see more about this later.With each element x in the list, we could also have another pointer x:prev pointing to thelocation of the previous element. Such a list is called doubly linked list. If we have previouspointers available, we need not have used the variable q in the above code. We could haveobtained the �nal q using p:prev.2.1.1 Graph RepresentationsIn this section we will give two representations to represent a graph and discuss their advan-tages and disadvantages for various problems.Adjacency MatrixThe standard way to represent a graph G is by its adjacency matrix A. If G has n vertices1 to n, then A is an n by n matrix with A[i; j] = 1 if the vertex i and j are adjacent and 0otherwise. If there are m edges in the graph, then the adjacency matrix will have 1 in 2mlocations.Adjacency matrix can be represented easily as a two dimensional array as an array [1::n]of arrays [1::n] of integers or equivalently as an array [1::n; 1::n] of integers. We can accessAi;j by calling A[i; j].Adjacency ListIn an adjacency list, we simply have an array A[1..n] of linked lists. The linked list A[i] hasa list of vertices adjacent to the vertex i, arranged in some order (say, increasing order).Essentially each linked list in an adjacency list corresponds to the list of entries having 1in the corresponding row of the adjacency matrix.There are several graph operations for which an adjacency matrix representation of agraph is better and there are some for which an adjacency list representation is better. Forexample, suppose we want to know whether vertex i is adjacent to vertex j. In an adjacencymatrix, this can be performed in constant time by simply probing A[i; j]. In an adjacencylist, however, we have to scan the i-th list to see whether vertex j is present or scan the j-thlist to see whether vertex i is present. This could potentially take O(n) time (if for example,the graph is n=2-regular).On the other hand, suppose you want to �nd all the neighbours of a vertex in a graph.In an adjacency matrix, this takes O(n) time whereas in an adjacency list this takes timeproportional to the degree of that vertex. This could amount to a big di�erence in a sparsegraph (where there are very few edges) especially when the neighbours of all vertices haveto be traversed. We will see more examples of the use of adjacency list over an adjacencymatrix later as well as in the exercises below.Exercise 2.1:1. It is well known that a graph is Eulerian if and only if every vertex has even degree.Give an algorithm to verify whether a given graph on n vertices andm edges is Eulerian.How much time does your algorithm take in the worst case if (a) the graph is given byits adjacency matrix and (b) graph is given by its adjacency list?2. A Directed graph can be represented by an adjacency matrix A in a similar way:9

A[i; j] = 1 if there is an edge from i to j= �1 if there is an edge from j to i and= 0 if there is no edge between i and j.Tournaments form a special class of directed graphs where there is a directed edgebetween every pair of vertices. So we can modify the de�nition of an adjacency matrixof a tournament asA[i; j] = 1 if there is an edge from i to j= 0 if there is an edge from j to iIn a very similar way, we can also represent a tournament by an adjacency list as anarray of linked lists where list i contains all vertices j to which there is a directed edgefrom i.Given a tournament, your problem is to �nd a hamiltonian path (a directed pathpassing through all vertices exactly once) in the tournament by the following threealgorithms.For each of the three algorithms, write a psuedocode and analyse the running time ofyour algorithm assuming (a) the tournament is represented by an adjacency matrix asabove and (b) the tournament is represented by an adjacency list.(a) (By induction and linear search) Remove any vertex x of the tournament. Finda hamiltonian path P in the resulting tournament recursively. Find, in P , twoconsecutive vertices i and j such that there is an edge from i to x and from x toj by �nding the edge direction between x and every vertex of P . Insert x in Pbetween i and j to obtain a hamiltonian path in the original graph.(b) (By induction and binary search) The algorithm is the same as above except to�nd the consecutive vertices i and j, try to do a binary search.(c) (By divide and conquer technique) It is known that every tournament on n verticeshas a mediocre vertex, a vertex whose outdegree and indegree are at least n=4.Find a mediocre vertex v in the given tournament (use any naive and simplemethod for this). Find the set of vertices I from which there is an edge to vand the set of vertices O to which there is an edge from v. I and O individuallyinduce a tournament. Find hamiltonian path P and Q recursively in I and in Orespectively. Insert v between P and Q to obtain a hamiltonian path in the giventournament.How much time does your algorithm take if a mediocre vertex can be found in atournament in O(n) time?2.2 TreesIn a linked list, we saw that though the actual memory locations may be scattered, pointerscan be used to specify a linear order among them. It turns out that using pointers one canrepresent structures that form more than a linear order.A binary tree, or more speci�cally a rooted binary tree is another fundamental and usefuldata structure. A binary tree T has a root[T]. Each node or an element x in the tree hasseveral �elds including the data �eld key[x] along with several pointers. The pointer p[x]refers to the parent of the node x (p[x] is NIL for the root node), l[x] is a pointer to the leftchild of the node x, and similarly r[x] is a pointer to the right child of the node x. If node x10

has no left child then l[x] is NIL and similarly for the right child. If root[T] is NIL then thetree is empty.There are also several ways of representing a rooted tree where each node can have morethan two children. Since we will not be needing them in these lectures, we won't deal withthem here.2.3 Stacks and QueuesFrom the fundamental data structures arrays and linked list, one can build more sophisti-cated data structures to represent the input based on the operations to be performed on theinput. Stacks and Queues are data structures to represent a set of elements where elementscan be inserted or deleted but the location at which an element is inserted or deleted isprespeci�ed.Stack: In a stack, the element to be deleted is the one which is recently inserted. Insert intoa stack is often called a push operation and deletion from a stack is called a pop operation.Essentially the push and the pop operation are performed at one end of the stack. The stackimplements the last-in-�rst-out or LIFO policy.Queue: In a queue, the element to be deleted is the one which has been in the set for thelongest time. Insert into a queue is often called an enqueue operation and deletion from aqueue is called a dequeue operation. If the enqueue operation is performed at one of thequeue the dequeue operation is performed at the other end. The queue implements the�rst-in-�rst-out or FIFO policy.Implementation of Queues and Stacks: It is easy to implement Queues and Stacksusing arrays or linked list. To implement a stack, we will use a special variable to keeptrack of the top of the list. During a push operation, the top pointer is incremented and thenew element is added. Similarly during a pop operation, the element pointed to by the toppointer is deleted and the top pointer is decremented.Similarly to implement a queue, we need to keep track the head and tail of the list. Duringan enqueue operation, the tail pointer is incremented and the new element is inserted. Duringa dequeue operation, the element pointed to by the head pointer is deleted and the headpointer is decremented.2.4 Binary Search trees and HeapsThe structures we have de�ned so far simply give an implementation of a speci�c arrangementof memory locations. In a typical usage of these structures, there is also some order amongthe data �elds of the elements in those locations. Binary Search Trees and Heaps are binarytrees where the data �elds of the nodes in the binary tree satisfy some speci�c properties.2.4.1 Binary Search TreesA binary search tree is a binary tree where each node x has a key key[x] with the propertythat key[x] is larger than or equal to key[y] for all nodes y in the left subtree of x, and lessthan or equal to key[z] for all nodes z in the right subtree of x. There is a pointer to theroot of the binary search tree. 11

Suppose all the given n integers are arranged in a binary search tree, there is a cleverway to search for an element y. We compare with y with the key[root]. If y = key[root] westop. Otherwise if y < key[root] then we can abandon searching in the right subtree of rootand search only in the left subtree and similarly if y > key[root]. This procedure can beapplied recursively for the appropriate subtree of the root and the entire search will involvetraversing a root to leaf path. If we reach a NIL pointer without �nding y, then y is not inthe list. So the time taken by the above algorithm is proportional to a root to leaf path.This is the height of the tree in the worst case.If the binary tree is a complete binary tree where the tree is �lled on all levels exceptpossibly the lowest, which is �lled from the left up to a point, then it is easy to see that sucha binary tree on n nodes has height O(log n). So if the given n elements are arranged in abinary search tree on a complete binary tree, then searching for an element y in that listtakes O(log n) time. In fact, if we reach a NIL pointer without �nding y, the NIL pointerspeci�es the location where y has to be if it were there in the list. So we can simply inserty in that location (updating appropriate pointers) as we would insert an element in a linkedlist. So insert also takes O(log n) time in such a binary search tree.There is one catch. Suppose we start from a binary search tree where the underlyingbinary tree is complete and keep inserting elements. After a few insertions, the tree will nolonger remain complete and so height may no longer be O(log n). The solution is to keepthe tree `balanced' after every insertion. There are several balanced binary search trees inthe literature { implementations of insert or delete on these trees involve more operations tokeep the tree balanced after a simple insert or delete.2.4.2 HeapsA (min) heap is a complete binary tree (where all levels of the tree are �lled except possiblythe bottom which is �lled from the left up to a point) where each node x has a key key[x]with the property that key[x] is less than or equal to the key value of its children. There is apointer to the root as well as the �rst empty (NIL) location at the bottom level of the heap.It follows that the root of the heap contains the smallest element of the list. The keyvalues in the tree are said to satisfy the heap order.Since a heap is stored in a complete binary tree, the key values of all the nodes can bestored in a simple array by reading the key values level by level.To insert an element into a heap, insert it at the �rst empty location at the bottomlevel. Compare it with the parent and swap it with the parent if it doesn't satisfy the heapproperty with its parent. Then this procedure is recursively applied to the parent until theheap property is satis�ed with the node's parent. The execution simply involves traversinga root to leaf path and hence takes O(log n) time since the height of the tree is O(log n).To delete the minimum element from the heap, simply delete the root and replace it withthe element at the last nonempty node of the bottom level. Also the pointer to �rst emptylocation at the bottom level is pointed to this node. Now there may be a heap order violationat the root. Again this is �xed by traversing down the tree up to a leaf. This process alsotakes O(log n) time.Thus heap is also an e�cient data structure to support a priority queue where elementsare inserted and only the smallest element is deleted. We will come across graph problemswhere the only operations performed on the data list are to insert an integer into the listand to delete the smallest element in the list. For such applications a heap will be a usefuldata structure to represent the data list. 12

Exercise 2.2:1. Given a binary tree, there are various ways in which we can traverse all nodes of thetree.A preorder traversal of a binary tree visits the root, followed by a preorder traversal ofthe left subtree of the root, followed by a preorder traversal of the right subtree.An inorder traversal of a binary tree recursively performs an inorder traversal of theleft subtree of the root, followed by the root, followed by an inorder traversal of theright subtree of the root.A postorder traversal of a binary tree recursively performs a postorder traversal of theleft subtree of the root, followed by a postorder traversal of the right subtree of theroot, followed by the root.Write psuedocodes for each of the three traversals of a binary tree (with proper endcondition etc), and analyse their running time.2. Given n integers arranged in a binary search tree, how can we produce the integers insorted order in O(n) time?3. Given an array of n integers, it can be considered as the key values of a complete binarytree read level by level from left to right. Such an arrangement in a complete binarytree can be made into a heap as follows:Starting from the bottom level to the root level, make all subtrees rooted atevery node in that level a heap.The subtree rooted at a node x in a level can be made into a heap as follows. Bothsubtrees of x form heaps by themselves. If key[x] is smaller than or equal to the keyvalues of its children, then the subtree rooted at x is already a heap. Otherwise, swapkey[x] with the key value of the smaller child and continue down this process from thenode containing the smaller child.Write a proper psuedocode for this algorithm. Prove that this algorithm takes O(n)time in the worst case. (Note that in the array representation of the complete binarytree, the left child of a node at position x is at position 2x and the right child atposition 2x+ 1. Similarly the parent of a node at position x is at position bx=2c.)4. Give an O(log n) algorithm to perform the following operations on a heap.(a) To delete an arbitrary element speci�ed by its location in the tree.(b) To replace the value of an element by a smaller value.5. Given an array of n integers, give an algorithm to sort them into increasing order usingthe heap data structure in O(n log n) time. (Hint: In the �rst step, convert the arrayinto a representation of a heap in O(n) time using the previous exercise. The smallestelement will be in the �rst location. Then if you perform some heap operation n times,you get a sorted list.) 13

2.5 SummaryIn this section, we had an introduction to fundamental data structures like arrays, linkedlists, trees, stacks, queues, heaps and binary search trees. In graph representations, wesaw an application of arrays versus linked lists. We will see applications of the other datastructures in subsequent sections.3 Graph Search AlgorithmsIn this section, we will look at algorithms for several fundamental problems on graphs. Inthe initial step of these algorithms, the vertices and edges of the graph are traversed in aspeci�c way. There are two basic methods to systematically visit the vertices and edges ofa graph: breadth-�rst-search and depth-�rst-search. We begin with the description of thesemethods.3.1 Breadth First SearchHere, we visit the vertices of the graph in a breadthwise fashion. The idea is to start from avertex, and then visit all its neighbours and then visit the neighbours of its neighbours andso on in a systematic way. A queue will be an ideal data structure to record the neighboursof a vertex (at the other end) once a vertex is visited.See pages 469-472 of [3] for a more detailed description.Note that the way the BFS is described in those pages, the search will visit only verticesreachable from the vertex s. If the graph is disconnected, then one can pick an arbitraryvertex from another component (i.e. a vertex which is still coloured white at the end ofBFS(s)) and grow a BFS starting at that vertex. If this process is repeated until no vertexis coloured white, the search would have visited all the vertices and edges of the graph.3.1.1 ApplicationsThe following properties of the BFS algorithm are useful.1. For vertices v reachable from s, d[v] gives the length of the shortest path from s to v.Furthermore, a shortest path from s to v can be obtained by extending a shortest pathfrom s to �[v] using the edge (�[v]; v).Though this result is quite intuitive from the way a BFS algorithm works, it can beproved rigorously using induction.2. For a graph G = (V;E) with source s, the predecessor graph G� = (V�; E�) de�ned byV� = fv 2 V : �[v] 6= NILg [fsg and E� = f(�[v]; v) 2 E : v 2 V� � fsgg is a treecalled the breadth-�rst tree. Furthermore, for all vertices reachable from s, and for allvertices v 2 V�, the unique simple path from s to v in G� is a shortest path from s tov in G.3. If (i; j) 2 E is not an edge in the breadth �rst tree, then either d[i] = d[j] or d[i] =d[j] + 1 or d[i] = d[j]� 1.Connectivity: To verify whether the given graph G is connected, simply grow a BFS start-ing at any vertex s. If any vertex is still coloured white after BFS(s), then G is disconnected.Otherwise G is connected. Note that by growing a BFS starting at white vertices, we can14

obtain also the connected components of the graph. Thus in O(n+m) time it can be veri�edwhether a given graph on n vertices and m edges is connected and if it is not, the connectedcomponents of the graph can also be obtained in the same time.Shortest Paths: As we have observed in properties 1 and 2 above, the length of the shortestpath4 from a given vertex s can be obtained simply from a BFS search. In addition, BFSalso outputs a breadth-�rst tree from which one can also obtain a shortest path from s toevery vertex reachable from s.Spanning Forest: To �nd a spanning tree of a connected graph, simply perform a breadth-�rst search starting at any vertex. The breadth �rst tree gives a spanning tree of the graphif the graph is connected. If the graph is disconnected, we obtain a breadth-�rst forest whichis a spanning forest.Exercise 3.1:1. What is the running time of BFS if its input graph is represented by an adjacencymatrix and the algorithm is modi�ed to handle this form of input?2. Give an e�cient algorithm to determine if an undirected graph is bipartite. (Hint:Property 3 discussed above may be useful here.)3. Give an e�cient algorithm to �nd the shortest cycle in the graph. How much timedoes your algorithm take?3.2 Depth First SearchHere the idea is to visit the vertices in a depthwise fashion. Starting from a vertex, we�rst visit ONE of its neighbours, then one of ITS neighbours and so on until the currentvertex has no unvisited neighbours. At that point, we backtrack and continue visiting thenext neighbour of the earlier vertex and so on. A stack (Last in First out) is a good datastructure to record the neighbours of the visted vertices by this procedure. See pages 477-479of [3] for more details and some applications of DFS (pages 485-487).One of the early applications of DFS is to obtain strongly connected components of agraph. The readers are directed to the books in the References section for details of this.Exercise 3.2:1. Give an algorithm that determines whether or not a given undirected graph on nvertices contains a cycle. Your algorithm should run in O(n) time (independent of thenumber of edges in the graph).2. Another way to perform topological sorting on a directed acyclic graph on n verticesand m edges is to repeatedly �nd a vertex of in-degree 0, output it, and remove it allof its outgoing edges from the graph. Explain how to implement this idea so that thealgorithm runs in O(n + m) time. What happens to this algorithm if the graph hascycles?4Here, we assume that the edges of the graph are unweighted. The shortest path problem on weightedgraphs is discussed in the next section. 15

3.3 SummaryIn this section, we looked at the basic search procedures in a graph, Breadth First Search(BFS) and Depth First Search (DFS). We saw applications of the data structures Stacks andQueues in these procedures. As applications of BFS and DFS, we described algorithms totest whether a given graph is connected, and if so to �nd the spanning tree of the graph;to �nd the connected components and/or the spanning forest of the graph if the graph isdisconnected; to �nd the length of the shortest path from a source vertex to every vertexreachable from it; and to perform a topological sort of a directed acyclic graph. Using BFSand DFS, we observed that these problems can be solved in O(m+ n) time on a graph withn vertices and m edges.4 E�cient Algorithms on Weighted graphsGraph theory, and graph algorithms in particular, have several real-world applications. Inmodeling some of these applications as graphs, typically the edges of the graph have somereal weights - these could denote distances between two points and/or some cost. The goalis to �nd some optimum structure (with respect to the weights) in the weighted graph.For example, in the last section we saw that in a connected graph, a spanning tree as wellas the shortests paths to all vertices from a source can be found in O(m+n) time. However,when the edges have weights, the shortest path problem gets a little complicated. Similarly,instead of any spanning tree, a spanning tree with minimum weight (the total weight of alledges in the tree) is of interest in some applications. We will look at algorithms for theseproblems in this section. Though we will not speci�cally mention about the representationof the graph, it su�cies to represent it by an adjacency list where the weight of an edge (i; j)is kept with the vertex j in the adjacency list i as well as with the vertex i in the adjacencylist j.4.1 Minimum Spanning TreeGiven an undirected graph with weights on the edges, the problem here is to �nd, among allspanning trees, one with minimum (total) weight. Note that there may be several spanningtrees with the same weight. We give two classical algorithms which follow a `greedy` approachto �nd the minimum spanning tree.Greedy heuristic is a well known heuristic to solve optimization problems. It advocatesmaking the choice that is the best at the moment - i.e. a locally optimum choice. Such astrategy is not generally guaranteed to �nd globally optimum solution. For the minimumspanning tree problem, however, we can prove that certain greedy heuristics do yield aspanning tree with minimum weight.4.1.1 Kruskal's algorithmAn obvious greedy strategy is to sort the edges by their weights and to construct a spanningtree by considering edges in that order and adding those that do not form a cycle to thealready constructed graph (forest).This is the essence of Kruskal's algorithm. This algorithm actually produces a minimumspanning tree due to the following reason (which can be easily proved rigorously).� Let G = (V;E) be a connected undirected graph with each edge having a real valuedinteger as its weight. Let A be a subset of E that is in some minimumspanning tree for16

G. Let C be a connected component (a tree) in the forest GA = (V;A), and let (u; v)be an edge with minimumweight among those connecting C to some other componentin GA. Then A [f(u; v)g is included in some minimum spanning tree for G.The �rst sorting step can be performed in O(m logm) time using any of the e�cientsorting algorithms described in the �rst section. After that at any stage we have a forest ofedges spread over several components. When a new edge is considered, it is added to theforest only if it joins vertices from two di�erent components of the forest. There are e�cientdata structures to maintain such a structure (forest) in which one can check whether ornot an edge is inside one component in O(logm) time. Thus the overall algorithm can beimplemented in O(m logm) time.4.1.2 Prim's algorithmKruskal's algorithm constructs a spanning tree starting from a forest of n trees (vertices),by adding at every iteration a minimum weight edge connecting two components. At anystage of the Kruskal's algorithm, there is a forest.Prim's algorithm, on the other hand, always has a connected component (a tree) C ofedges and grows the tree by adding a minimum weight edge connecting C to the rest of thegraph. Initially C is a single vertex s from which the tree is grown.The correctness of Prim's algorithm also follows from the reason mentioned above for thecorrectness of Kruskal's algorithm.To implement Kruskal's algorithm, at every stage we need to �nd a minimum weightedge connecting C to the rest of the graph. Initially this is the edge that has the minimumweight among those incident on the starting vertex s. But at any intermediate stage C hasseveral vertices, and each of those vertices may have several edges incident with it.Suppose, for every vertex u not in C, we keep track of the weight d[u] (and also the otherend point) of the minimum weight edge connecting u to a vertex in C (d[u] will be 1 if u isnot adjacent to any vertex in C). Then the vertex p (and the corresponding edge) with theminimum d[p] among all those vertices not in C is the next vertex (and the correspondingedge) to be included in C according to Kruskal's algorithm. Once the vertex p is included inC, the d[] values of some vertices (those adjacent to p) need to be updated (more speci�allydecreased). Thus we need a data structure to maintain a set of at most n integers wherethe operations we will perform at any stage are a delete the minimum element - deletemin,and decrease the value - decreasekey for some elements. It is easy to see that on a graph onn vertices and m edges, overall there will be n� 1 deletemin operations and m decreasekeyoperations (why?).A heap is an appropriate data structure to implement these operations. As we havealready seen a deletemin or a decreasekey operation can be performed in O(log n) time in aheap. Thus Kruskal's algorithm can be implemented to take O(m log n) time.There are more sophisticated variations of the heap (Fibonacci Heap) that takes O(m)time to perform a sequence of m decreasekey operations while performing O(n log n) timeto perform n deletemin operations. Thus Kruskal's algorithm can be made to run in O(m+n log n) time. Note that for a dense graph where m is, say, n2=4, the former implementationtakes O(n2 log n) time whereas the latter implementation takes O(n2) algorithm.Notice the role played by the data structures in the implementation of algorithms. Bothimplementations above implement the same algorithm, but improvements are obtained byusing more e�cient data structures. 17

4.2 Shortest PathsAs we saw in the last section, the breadth-�rst-search method gives the shortest path froma source vertex in an unweighted graph (we could view the weight of each edge to be unit).There the length of a path is simply the number of edges in the path. In a weighted graph,however, the length of a path is the sum of the weights of the edges in the path.It turns out that Prim's algorithm to �nd the minimum spanning tree starting from thevertex s, actually constructs the shortest path tree from the vertex s (if the edge weightsare non-negative). That is, the unique path from s to a vertex v in the minimum spanningtree constructed by Prim's algorithm is the shortest This is essentially Dijkstra's algorithmto �nd the shortest paths from a source.There are several variants to the problem. If some edge weights are negative, there isan algorithm due to Bellman and Ford that �nds the shortest paths from a single source.Sometime we may be interested in the shortest paths between every pair of vertices in thegraph. This can be solved by applying the single source shortest path algorithm once foreach vertex; but it can usually be solved faster, and its structure is of interest on its ownright.See the references for more details of the algorithms for the variants.4.3 SummaryIn this section, we looked at algorithms for Shortest Paths and Minimum Spanning Tree onweighted graphs. Along the way we also saw the role of data structures in designing e�cientalgorithms; in particular, we saw an application of heaps. We also came across the greedyheuristic - an algorithm technique useful for designing exact or approximate solutions foroptimization problems.5 NP-completeness and Coping with itEach of the graph (and even other) problems we have seen so far has a very e�cient algorithm- an algorithm whose running time is a polynomial in the size of the input.Are there problems that don't have such an e�cient algorithm? For example, we sawin the second section that we can test whether a graph on n vertices and m edges is Eu-lerian in O(m + n) time. How about checking whether a given graph is Hamiltonian? I.e.whether the graph has a simple path which visits all vertices exactly once? The lack of a nicecharacterization (as for Eulerian graphs) for Hamiltonian graphs apart, there is no e�cientalgorithm for testing whether a graph is hamiltonian. All known algorithms are essentiallybrute force, checking all possible paths in the graph, and take roughly O(nn) time. Thisessentially means that to solve this problem for a graph even on 50 vertices on today's power-ful computers will take several centuries. Hence exponential time algorithms are consideredinfeasible or impractical in Computer Science. In practice, it also turns out that problemshaving polynomial time algorithms have a very low degree (< 4) in the runtime of theiralgorithms. So one is always interested in designing polynomial time algorithms.Can we show that the Hamiltonicity problem cannot have a polynomial time algorithm?Answering such questions takes us to the arena of lower bounds which we brie
y alluded to inthe �rst section. Unfortunately proving that a problem does not have an e�cient algorithmis more di�cult than coming up with an e�cient algorithm.Fortunately some evidence to the fact the Hamiltonian problem cannot have a polynomial18

time algorithm is known. In 1971, Cook[2] identi�ed a class of decision problems5 calledNP-complete problems. The class NP consists of decisions problems for which there is apolynomial time algorithm to verify the YES answer given a witness/proof for the answer.The class of NP-complete problems are those NP problems for which if there is a polynomialtime algorithm to compute the answer, then all problems in the class NP have polynomialtime algorithms. Cook identi�ed the (�rst) problem of Boolean CNF formula satis�abilityas an NP-complete problem proving from the �rst principles. Karp[9] in 1972 proved severalgraph problems NP-complete reducing from the Satis�ability problem as well as from theproblems he proved NP-complete. Now there is a list of thousands of NP-complete problems.A polynomial time algorithm for any one of them would imply a polynomial time algorithmfor all NP problems. Similarly a proof that any one of the NP-complete problems is notpolynomial time solvable would imply a proof that all the NP-complete problems are notpolynomial time solvable. Whether all NP problems have polynomial time algorithms isan important open problem in the area of Algorithms and Complexity. Proving a problemNP-complete is considered as an evidence that the problem is not e�ciently solvable.It is known that the decision version of the Hamiltonian Path problem (given an integerk, is there a path of length at least k in the graph), along with Independent Set problem(given an integer k, is there an independent set of size k?), Clique problem (is there a cliqueof size k in a graph) and Dominating Set problem, is NP-complete.Since the decision version of the Hamiltonian Path problem and that of the longest pathproblem are the same, it follows that there is no e�cient algorithm to �nd the longest pathin the graph. Contrast this to the problem of �nding the shortest path in the graph (Lecture2).An Example Reduction:Proving a problem NP-complete involves �rst proving that the problem is in NP and thene�ciently (in polynomial time) reducing an instance of a known NP-complete problem to aninstance of this problem in such a way that the original instance has a YES answer if andonly if the instance of this problem has a YES answer.Suppose the problem, `Given a graph and an integer k, does it have a clique of size atleast k' is already proved to be NP-complete. Using that result we will show that the VertexCover problem - `Given a graph and an integer k, does it have a vertex cover (a set S ofvertices such that for every edge in the graph, one of its end points is in S) of size at mostk' is NP-complete.The fact that the vertex cover problem is in NP is easy to show. To verify that the givengraph has a vertex cover of size at most k, the witness is a set S of at most k vertices andthe veri�cation algorithm has to simply go through all edges to make sure at least one of itsend points is in S.To prove it is NP-complete, we reduce the Clique problem to this. Given a graph G on nvertices (in which we are interested in solving the clique problem), construct its complementGc. G has a clique of size at least k if and only if Gc has an independent set of size at leastk. Gc has an independent set of size at least k if and only if Gc has a vertex cover of size atmost n � k (since the complement of an independent set is a vertex cover).Thus G has a clique of size at least k if and only if Gc has a vertex cover of size at mostn� k. This shows that the Vertex Cover problem is NP-complete.Essentially we have shown that if the Vertex Cover problem has a polynomial timealgorithm, then we can use that as a subroutine to solve the clique problem which has been5For some technical reason, this entire NP-completeness theory deals only with decisions problems -problems for which only a YES or NO answer is required. This is really not a constraint as most of theoptimization problems can be solved by calling an appropriate decision version a few times.19

proved to be NP-complete already.Note that quite often, the NP-complete reductions are much more complicated than this.5.1 Coping with NP-completenessOnce a problem has been shown to be NP-complete, one stops the search for an e�cientpolynomial time algorithm. However, the optimization versions of most of the NP-completeproblems are real world problem and so they have to be solved. There are various approachesto deal with these problems. We will describe a few approaches here.5.1.1 Approximate AlgorithmsOne approach to solve the optimization versions of the NP-complete problems is to look forpolynomial time approximate algorithms. One is interested in an approximate algorithmwhose solution quality can be guaranteed to be reasonably close to the optimal. The ap-proximation ratio of an approximate algorithm A for a minimization problem is de�ned tobe MaxfA(I)=opt(I)g where A(I) is the value of the solution produced by the approximatealgorithm A on the input sequence I, and opt(I) is the value of the optimal solution on theinput sequence I and the Max is taken over all inputs to the problems I of size n. Theapproximation ration for a Maximization problem is de�ned as Maxfopt(I)=A(I)g whereA(I) and opt(I) are de�ned as above. Note that the approximation ratio is always greaterthan 1, and one is interested in an approximation algorithm with approximation ratio closeto 1.Approximate Algorithms for Vertex Cover:The vertex cover problem asks, for a given graph G, the minimumnumber of vertices neededto cover all edges of G.One greedy approach is to repeatedly pick a vertex to the vertex cover that covers themaximum number of uncovered edges (once a vertex is picked to the vertex cover, all itsincident edges are covered). It can be shown that the approximate ratio of such an algorithmis O(log n).Consider the following simple approximate algorithm. Find a maximal (not maximum)matching in the graph6. Let the matching have k edges and hence 2k vertices. Output theset S of 2k end points of the edges in the matching as the vertex cover.The fact that S forms a vertex cover is clear. For, an edge with both its end pointsoutside S can be added to the maximal matching contradicting the fact that the matchingis maximal. Hence every edge has at least one end point in S.Computing the approximation ratio is usually di�cult as one doesn't know the optimalvalue for the given input. We can get around it by using some bounds for the optimalsolution. Note, in this case, that k is a lower bound on the optimal value of the vertexcover for the given graph. This is because, for each edge in the matching, at least oneend point must be in the vertex cover. Thus the approximation ratio of this algorithm isA(G)=opt(G) � 2k=k = 2.Thus this is a 2-approximation algorithm. The startling fact is that no signi�cant im-provement on this approximation ratio is known and it is a challenging open problem todesign an approximate algorithm for Vertex Cover with approximation ratio better than 2.6A maximal matching can be found in a graph by repeatedly picking an edge, and deleting all edgesincident on both its end points. 20

Approximate Algorithms for the Euclidean Traveling Salesperson Problem:The traveling saleperson problem is essentially a variation of the Hamilton cycle problem onweighted graphs. Given an undirected graph with non-negative weights on the edges (theweight of an edge (a; b) is denoted by wt(a; b)), the problem is to �nd a Hamiltonian cyclewith minimum total weight. 7It is known that it is NP-complete to �nd even a polynomial time, constant ratio approx-imate algorithm for the general version of the problem. Here we will look at approximatealgorithm for the problem for the special case when the distances (the weights) on the edgessatisfy the triangle inequality (for every triple of vertices a; b; c, wt(a; b)+wt(b; c) � wt(a; c).This is also known as the Euclidean Traveling Salesperson Problem and its decision versioncan also be shown to be NP-complete.Consider the following approximate algorithm for the problem.1. Find a minimum spanning tree T of the weighted graph.2. Duplicate every edge of the spanning tree to get an Eulerian graph T 0. Compute theEuler Tour E of T 0.3. From the Euler Tour E, obtain a Hamiltonian tour H of G as follows: whenever asequence of edges (a; b1); (b1; b2); :::(bl�1; bl) is repeated in the Euler tour, simply removethose edges and replace by the edge (a; bl) (the edge (a; bl) would not be present in theEuler tour since the edges of the Euler tour are the tree edges and in a tree there isonly one path between a pair of vertices). Output the resulting Hamiltonian tour.That the output produced is a hamiltonian tour of the graph is clear. Let W (F) isthe total weight of a collection of edges in a subgraph F . W (T) is the total weight of theminimum spanning tree T , and W (E) = 2W (T). Also W (H) � W (E) due to the triangleinequality (the new edges used have a total weight less than or equal to the total weightof the edges removed from the Euler tour). Thus W (H) � 2W (T). Also W (T) is a lowerbound for the optimal hamiltonian tour since if T 0 is an optimal hamiltonian tour of G, thenremoving an edge from T 0 gives a spanning tree of G and so W (T) � W (T 0).Thus the approximation ratio of the above algorithm isA(I)=opt(I) � 2W (T)=W (T) = 2.That is the above algorithm is a 2-approximate algorithm.Instead of duplicating every edge of the minimum spanning tree T to make it Eulerian, ifwe add to T a perfect matching on its odd degree vertices and then obtain an Eulerian tourand a hamiltonian tour as above, one can obtain a ratio 3=2-approximate algorithm. Thisis the best known approximate algorithm for the Euclidean Traveling Salesperson problemwhere the edge weights satisfy triangle inequality.Exercise 5.1:Given a graph G with p vertices, the following algorithm colours the vertices with positiveintegers in such a way that for each edge in the graph, the endpoints are coloured di�erently:Order the vertices of G in an arbitrary way. Colour the �rst vertex 1. For i = 2 top do: Pick the �rst uncoloured vertex v (this will be the i-th vertex in the orderchosen). Colour v with the smallest possible colour c such that no neighbour ofv is already coloured c.7This is a popular NP-complete problem due to its practical application. It gets this name, because itmodels the problem of �nding a minimumdistance tour for a traveling salesperson wanting to visit all citiesof a state exactly once. 21

Note that this algorithm may use di�erent number of colours on the same graph, depend-ing on the order chosen in the �rst step.1. Given a complete bipartite graph K(n; n), how many colours will this algorithm use?Justify.2. Consider a graph G constructed from K(n; n) by removing a perfect matching (i.e. aset of n edges in which no two edges share vertices). What is the maximum number ofcolours the above algorithm will use to colour G? How should the vertices be orderedin the �rst step for these many colours to be used?5.1.2 E�cient Algorithms in Special GraphsTypically when a problem is proved NP-complete, only the general version of the problem isshown to be NP-complete (Actually there are several results showing problems NP-completeeven for special cases of the problem.). For some special classes of graphs, the specialstructure of the class can be taken advantage to design polynomial time algorithms.For example, the NP-completeness result of the hamiltonian path problem for undirectedgraphs can be extended to general directed graphs also. However, for the special class ofdirected graphs, tournaments, we have already seen polynomial time algorithms for �ndinghamiltonian paths.Problems known to be NP-complete are studied in special classes of graphs (Bipartitegraphs, Chordal graphs, Interval graphs, Perfect Graphs, Planar graphs to name a fewclasses). This is a potential area of current research. For example, the Vertex Cover problemhas a polynomial time algorithm in Bipartite graphs. Similarly the clique problem is knownto be polynomial time solvable in bipartite graphs, chordal graphs, interval graphs etc.5.1.3 Parameterized ComplexityThis is a very recent direction of research to deal with parameterized versions of hard prob-lems.Consider the decision version of the Vertex Cover problem: Given a graph G on n verticesand m edges and an integer k, is there a vertex cover of size at most k. Since the problemis NP-complete we don't expect an algorithm polynomial in n;m and k.However there is an O(nkm) algorithm to solve this problem: Simply try all possible kelement subsets of the vertex set, for each such subset check whether it is a vertex cover. Ifsome such subset is a vertex cover, then the answer is YES and is NO otherwise. It is easyto see that the algorithm answers the question correctly in O(nkm) time.This algorithm becomes impractical even for k = 10 or so for a reasonably sized graph.So the question addressed by this new area of Parameterized Complexity is to ask whetherthere is an algorithm with running time O(f(k)p(n;m) where f(k) is an aribitrary (typicallyan exponential) function of k, and p(n;m) is a polynomial function of n and m. In particular,the parameter k is not an exponent of function of n or m. It turns out that it is easy to comeup with an O(2km) algorithm for Vertex Cover (and even this bound can be improved). Theidea is to pick an edge, say (a; b) and try including either of its end points in a proposedvertex cover (one of them must be in ANY vertex cover). Once we pick a vertex a in thevertex cover, we an delete that vertex and all edges incident on that vertex to get a newgraph. Recursively �nd whether the new graph has a vertex cover of size k � 1. If eitherG � a or G � b has a vertex cover of size k � 1, then we say YES else say No. It is easy tosee that the algorithm takes O(2km) time and it produces a vertex cover of size k if there is22

one in the graph. Such algorithms are very useful for a large value of the parameter k. Inpractice, such values of the parameter seems to cover practical ranges of the input and sosuch an approach attains practical importantance.Classifying which of the parameterized problems have such an e�cient (�xed parametertractable) algorithm is the main goal of this new area of research. See [4] [12] for moredetails.5.2 SummaryIn this section, we had a glimpse of problems hard for algorithmic approach. Speci�cally wehad a brief introduction to NP-complete problems and a few approaches to cope with NP-completeness. The approaches to deal with hard problems we saw are through approximatealgorithms and parameterized tractability. We also observed that there are several classes ofgraphs in which some of the problems that are NP-complete in general graphs are polynomialtime solvable.6 ConclusionsThrough these sections, we had a brief introduction to algorithm design and analysis conceptsand some basic graph algorithms. We also looked at some recent advanced topics. Otheradvanced topics in Algorithms include a study of randomized algorithms (where an algorithmcan make some careful random choices and one is interested in the expected runtime of thealgorithm, as opposed to the worst case) and parallel algorithms (where the algorithm canmake use of several available processors simultaneously).The topics we have seen are by no means exclusive. Algorithms continue to be a goldmineof problems and a hot area of current research due to its wide applicability and interestingtheoretical insights. Designing better algorithms or lower bounds form an open problemeven for some of the classical problems like MinimumSpanning Tree and MaximumweightedMatching.There are several good books on Algorithms and we list a few below. The reader isencouraged to look at them to get a more complete picture on some of the algorithmsdiscussed here, and also to �nd about other topics.References[1] A. V. Aho, J.E. Hopcroft and J. D. Ullman, The Design and Analysis of ComputerAlgorithms, Addison-Wesley (1974).(One of the classics and is popularly used as a text in courses. Though it is old andsome recent results are missing, some of the classical topics are dealt with thoroughlyhere.)[2] S. A. Cook, `The complexity of theorem-proving procedures", Proceedings of the 3rdACM Symposium on Theory of Computing, New York (1971) 151-158.[3] T. H. Cormen, C. L. Leiserson and R. L. Rivest, C.Stein Introduction to Algorithms,Second Edition, MIT Press, Prentice-Hall (2002).23

(A comprehensive book on Algorithms covering old and recent topics in detail. A goodbook to have in the library. The Indian edition is available for about 300Rs. There isan old edition without the last author which is also a reasonable book)[4] R. D. Downey and M. R. Fellows, Parameterized Complexity, Springer Verlag, (1999).[5] S. Even, Graph Algorithms, Computer Science Press (1979).(A good reference for Graph Algorithms. One of the rare books having a good treatmentof Planarity. For example, it gives e�cient algorithms to test whether a given graph isplanar or not.)[6] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theoryof NP-Completeness, Freeman and Company (1979).(A fascinating book on NP-completeness and coping strategies. It has a comprehensivelist of NP-complete problems. As this is also an old book, some recent results are missing.In paritcular, a problem listed as an open problem here is probably already solved.)[7] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press (1980)(A good book describing e�cient algorithms for several hard problems in various sub-classes of Perfect Graphs.)[8] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer SciencePress (1978).(A reasonable introductory book. There is an Indian edition.)[9] R. M. Karp, `Reducibility among combinatorial problems", in R. E. Miller and J. W.Thatcher (eds.), Complexity of Computer Computations, Plenus Press, New York (1972)85-103.[10] D. E. Knuth, Sorting and Searching, Volume 3 of the Art of Computer Programming,Addison-Wesley (1973).(A classic and a thorough treatment of Sorting and Searching, the kind of problemsdealt with in the �rst section. There is a recent second edition available. Kunth alsohas two other volumes in the series, one on Fundamental Algorithms and the otheron Seminumerical Algorithms. He is also planning on a Volume 4 on CombinatorialAlgorithms; that should be relevant to the topic of the present lectures.)[11] K. Mehlhorn, `Data Strucutures and Algorithms, Volume 2: Graph Algorithms and NP-Completeness', EATCS monograph on Theoretical Compuer Science, Springer Verlag(1984).(There are two other volumes of this book: Volume 1 is about Sorting and Searchingand Volume 3 is about Computational Geometry.)[12] R.Niedermier, An Invitation to Parameterized Complexity, Springer Verlag, (2006).[13] C. H. Papadimitrious and K. Steiglitz, `Combinatorial Optimization, Algorithms andComplexity', Prentice-Hall (1982).(Several graph problems like Shortest Paths, Network Flows, Matching have deep con-nections with Linear Programming and Integer Programming. This book is a good intro-ductory book for Linear Programming and Integer Programming and graph algorithmsthat apply these techniques.) 24

[14] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Ap-plied Mathematics (SIAM) (1983).(A good book on heaps, binary search trees, minimum spanning trees, shortest pathsand network
ows.)

25

