
Improved Exact Exponential Algorithms for Vertex

Bipartization and Other Problems

Venkatesh Raman, Saket Saurabh, Somnath Sikdar

The Institute of Mathematical Sciences, Taramani, Chennai 600113.

{vraman|saket|somnath}@imsc.res.in

Abstract. We study efficient exact algorithms for several problems in-
cluding Vertex Bipartization, Feedback Vertex Set, 3-Hitting
Set, Max Cut in graphs with maximum degree at most 4. Our main
results include:
1. an O∗(1.9526n) 1 algorithm for Vertex Bipartization problem in

undirected graphs;
2. an O∗(1.8384n) algorithm for Vertex Bipartization problem in

undirected graphs of maximum degree 3;
3. an O∗(1.945n) algorithm for Feedback Vertex Set and Vertex

Bipartization problem in undirected graphs of maximum degree 4;
4. an O∗(1.9799n) algorithm for 4-Hitting Set problem;
5. an O∗(1.5541m) algorithm for Feedback Arc Set in tournaments.

To the best of our knowledge, these are the best known exact algorithms
for these problems. In fact, these are the first known exact algorithms
with the base of the exponent < 2. En route to these algorithms, we
introduce two general techniques for obtaining exact algorithms. One is
through parameterized complexity algorithms, and the other is a ‘col-
ored’ branch-and-bound technique.

1 Introduction

In recent years there has been a growing interest in designing exact algorithms
for NP-Complete problems. Fast exponential-time algorithms lead to practical
algorithms for at least moderate instance sizes. Furthermore, there is a wide
variation in the time complexities of exact algorithms for NP-complete prob-
lems. Classical complexity theory cannot explain these differences. The study of
exact algorithms may lead to a finer classification, and hopefully a better un-
derstanding, of NP-complete problems. For a recent survey on exact algorithms
see Woeginger [14].

Parameterized complexity is a recently developed approach devised by Dow-
ney and Fellows for dealing with hard computational problems arising from in-
dustry and applications. The theory of parameterized complexity is based on
the observation that many hard problems are associated with a parameter that

1 The O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for a time
complexity of the form O(T (x) · poly(|x|)) where T (x) grows exponentially with |x|,
the input size. See the survey by Woeginger[14] for a detailed discussion on this.

varies within a small or moderate range. By taking advantage of small parameter
values many hard problems can be solved practically. A parameterized problem
consists of a tuple (π, k) where π is the problem instance and k is the parameter.
A parameterized problem is said to be fixed parameter tractable if there exists an
algorithm for the problem with time complexity O(f(k) · |π|O(1)), where f is a
function of k alone and |π| represents the size of the input instance. For an intro-
duction to parameterized complexity see the book by Downey and Fellows [2].
For recent developments see the survey by Downey and Fellows [3].

The Vertex Bipartization problem is to find, given an undirected graph
G on n vertices, the minimum number of vertices whose removal makes the
graph bipartite. This problem has numerous applications, for instance, in VLSI
design [1], computational biology [11], and register allocation [15]. The Ver-
tex Bipartization problem is known to be NP-Complete even for graphs with
maximum degree 3 [1]. This problem has been studied extensively from different
algorithmic paradigms. An approximation algorithm with factor log n is known
for the problem [4]. The parameterized version of this problem has been recently
shown to fixed parameter tractable by Reed et al [10]. Their algorithm runs in
time O(3k · kmn), where k is the parameter, n is the number of vertices and
m is the number of edges. The (optimization) problem can be solved exactly
by exhaustively looking at all possible sets of vertices in time O∗(2n). So far
there have been no exact algorithms that are better than this trivial brute-force
algorithm.

In this paper we describe a generic technique that allows us to construct
efficient exact algorithms for a problem using a parameterized algorithm for
the same problem. More specifically, we show that if a (parameterized) problem
(π, k) has a fixed parameter algorithm with time complexity ck · |π|O(1) then
its optimization version has an exact algorithm with time complexity O∗(d|π|),
where d < c, and |π| is the size of the input instance. Using this technique we
obtain an exact algorithm for the Vertex Bipartization problem that runs
in time O∗(1.9526n), where n is the number of vertices. For maximum degree
3 graphs we can do better. We devise another technique which is a modified
form of the branch-and-bound method and obtain an exact algorithm with time
complexity O∗(1.8384n) for the Vertex Bipartization problem in maximum
degree 3 graphs. We extend this technique to obtain exact algorithms for the
Feedback Vertex Set and Vertex Bipartization problems in maximum
degree 4 graphs. Note that the Feedback Vertex Set problem is polynomial
time solvable in maximum degree 3 graphs [12], but is NP-complete for maximum
degree 4 graphs.

The paper is organised as follows. In Section 2, we present exact algorithms
for the Vertex Bipartization problem in graphs with maximum degrees 3
and 4, and the Feedback Vertex Set problem in graphs with maximum
degree 4. In Section 3, we develop a general technique by which we can convert
a parameterized algorithm of time complexity O∗((4 − ε)k), ε > 0 to an exact
algorithm of time complexity O∗((2 − η)k), η > 0. This technique is based on
a careful use of the parameterized algorithm for certain values of the parameter

and a brute-force algorithm for other values. In Section 3.1, we give several
applications of Algorithm Exact() and Theorem 4. In particular, we give the
best known exact algorithms for the following problems:

1. Vertex Bipartization in general undirected graphs;
2. 4-Hitting Set;
3. Feedback Arc Set in tournaments;

Apart from this, we also give simple efficient exact algorithms based on Theo-
rem 4 for the Max Cut problem in graphs with average vertex degree 3 and
4 and for the 3-Hitting Set problem; these are not the best known exact
algorithms for these problems but are stated in this paper to highlight the appli-
cability of Theorem 4. Finally in Section 4, we conclude with some remarks and
open problems. All graphs in this paper are undirected unless stated otherwise.

2 Exact Algorithms for Vertex Bipartization and Feedback Vertex Set

in Graphs with Maximum Degree 4

In this section, we give improved exact algorithms for the Vertex Biparti-
zation problem in graphs of maximum degrees 3 and 4 and the Feedback
Vertex Set problem in graphs of maximum degree 4.

The main idea behind these algorithms is to use the techniques of prepro-
cessing and branching. Typical branch-and-bound algorithms (for Independent
Set, Vertex Cover) build a solution by either picking a vertex or excluding it
from the solution. When they exclude a vertex from the solution they typically
delete it and work on the resulting smaller graph. For the problems we work on,
you cannot delete a vertex because removing a vertex that is not part of the
solution may kill cycles passing through it.

To overcome this, we resort to coloring the vertices. All vertices are colored
good initially. When we branch on a good vertex, we either include it in our
solution and delete it, or exclude it and color it bad. Coloring a vertex bad

decreases the number of good vertices. As we always branch on good vertices we
end up reducing the graph size in both cases. This gives us an O∗(2n) algorithm.
Our main contribution is in pushing this idea to get an O∗(cn) algorithm where
c < 2.

2.1 Vertex Bipartization in Graphs with Maximum Degree 3

The algorithm is recursive and is depicted in Figure 1. It makes use of a prepro-
cessing routine P described in Figure 2.
Correctness Step 2a of the algorithm VBP-D3 simply does a brute-force enu-
meration. In Step 2b, the algorithm branches on a good vertex and constructs
a solution containing that vertex and one not containing that vertex and re-
turns the solution with minimum size. Both these steps do not need any further
justification. We only need to justify the steps of the preprocessing algorithm P .

Algorithm VBP-D3(G = (V, E), S, Col)
Input: An undirected multigraph G = (V, E) with maximum degree 3, whose vertices
have been colored. Here n is the number of vertices in the input graph. Initially the
algorithm is called with S ← ∅ and Col(v) = good for all vertices v ∈ G(V).
Output: A minimum odd cycle transversal of G.
Step 1 Call P (G, S, Col). If P returns no then return no.
Step 2 Apply the first step which is applicable:

Step 2a Let n′ be the number of vertices in the current graph. If n′ ≤ 0.6n or if
every path of length 2 has at least one bad vertex then try all possible solutions
S ∪ T , where T is a some subset of the remaining good vertices, and return the
one with minimum size.

Step 2b Pick a path xyz in G where all of x, y, and z are good. Call the algorithm
on the following instances and return the smaller solution.
– S ← S ∪ {z} and call VBP-D3(G− {z}, S, Col).
– Set Col(z) = bad and call VBP-D3(G, S, Col).

Fig. 1. Algorithm VBP-D3()

In Step 1 of the preprocessing algorithm, we recursively remove vertices of
degree ≤ 1. Such vertices cannot be part of any minimum solution and can
be safely removed. In Step 2, we check whether the subgraph G[B] induced by
the bad vertices contains an odd cycle. If this is the case then there cannot
be a minimum solution containing good vertices only. Thus P returns no. The
correctness of Step 3 is obvious.

We next consider Step 4 in detail. In this step, we look for a vertex vi of
degree 2 which does not have self-loop. Such a vertex must be part of some path
uv1 . . . vi . . . vkw, where u and w are of degree 3 and are possibly identical. There
are two broad cases to handle:

Case 1: At least one of u or w is colored good. Without loss of generality
assume that Col(u) = good. Every odd cycle that passes through vi also passes
through u and w. Thus if there is a good vertex vj that is part of some minimum
solution S, then (S \ {vj}) ∪ {u} is also a minimum solution. Therefore we can
label all the vertices vj bad, (1 ≤ j ≤ k). We would also like to maintain the
parity of all cycles passing through u (and w). Thus we retain only one of the
vertices vj if the path length is even and none if the path length is odd.

Case 2: Both u and w are colored bad. In this case, we remove vertices from
the path v1 . . . vk taking care to maintain parity of cycles passing through u
and w, and if there exists one good vertex among the vj ’s to retain it. This is
necessary because these good vertices could be the only good ones on the odd
cycles passing through u and w.

In Step 5, we add vertices having self-loops in our solution. This is because
vertices with self-loops represent an odd cycle in the original graph and there-
fore must be included in any minimum solution. A similar argument holds for
triangles containing only one good vertex. A degree 2 vertex which is part of a

Preprocessing Algorithm P (G, S, Col)
Input: A multigraph G whose vertices have been colored good or bad along with a
partially constructed solution S.
Output: A (possibly smaller) colored multigraph along with a (possibly larger) solution
or no signifying that there does not exist a solution containing good vertices only.
Let B be the set of bad vertices of G. Perform the following steps as long as possible.
1. If G has a vertex of degree ≤ 1, remove it along with the incident edge.
2. Check whether G[B] is bipartite. If not then return no.
3. Check whether any connected component is a cycle. Remove all connected compo-

nents that are even cycles; if a connected component C is an odd cycle, include a
good vertex of C in S and remove this cycle.

4. If G has a vertex vi of degree 2 (which is not a self-loop) then it must be that vi is
part of some path of the form uv1 . . . vi . . . vkw where each vj 1 ≤ j ≤ k is a degree
2 vertex and degree of u and w are ≥ 3. Here u and w could be the same vertex.
(a) Case 1: At least one of the vertices u and w are colored good. If the path length

(k +1 above) between u and w is odd then delete all the vertices vj and add the
edge (u, w) (although u and w might already have an edge between them). If
the path length between u and w is even then delete vertices v2, v3, . . . , vk and
add an edge between v1 and w and color v1 bad.

(b) Case 2: Both u and v are colored bad. Suppose the path length (k + 1 above) is
even and there is at least one vi colored good, then replace the path uv1v2 . . . vkw
by uviw. If no vertex vi is colored good then replace the path uv1v2 . . . vkw by
uv1w. Next suppose the path length is odd. If there is a good vertex vi then
replace the path uv1v2 . . . vkw by uvivjw, where i 6= j and color vj bad if it is
not already so. If there are no good vertices then replace the path uv1v2 . . . vkw
by the edge uw. (See Figure 3 for an explanation.)

5. Include all vertices with self loops in S and remove them from the graph. Also
remove degree 2 vertices from all cycles of length 2. Find all triangles ∆uvw with
Col(u) = good, Col(v) = bad, Col(w) = bad. Set S ← S ∪{u} and remove u from the
graph.

Fig. 2. The preprocessing algorithm for the Vertex Bipartization problem

length 2 cycle can be safely removed from the graph since such a vertex cannot
be part of the solution as it is not part of any odd cycle in the current graph.
Time Complexity Let G = (V, E) be the input graph of maximum degree 3
with n vertices and m edges. Since the graph is of maximum degree 3, m ≤ 3n

2 .
First we will show that if we reach Step 2a of the algorithm the number of

good vertices n′ in the current graph is at most 0.6n. To do this we partition
the set of good vertices into following three types.

Type 1: Degree 2 good vertices.
Type 2: Degree 3 good vertices with one good neighbour.
Type 3: Degree 3 good vertices with all bad neighbours.

Step 4 of the preprocessing routine ensures that any degree 2 good vertex u
has both its neighbours bad. Also observe that a good vertex of degree 3 can

u v1 vi vk w u w

Case 1: u is good and k + 1 is odd.

u v1 vi vk w u

Case 2: u is good and k + 1 is even.

v1 w

w

u v1 vi vk w u

Case 4: vi is good and k + 1 is even.

vi w

u

Case 3: vi is good and k + 1 is odd.

v1 vi vk w u v1 vi

Fig. 3. Step 4 of the Preprocessing Algorithm P . The black vertices are bad and the
shaded ones are good.

have at most one good neighbour; for if not then there exists a path of length 2
containing only good vertices. Thus any good vertex will be of one of the three
types mentioned above. Let n1, n2, and n3 be the number of vertices of Type 1,
Type 2, and Type 3 respectively. We obtain an upper bound on the number of
good vertices by counting the number of edges between good and bad vertices.
Define ng = n1 + n2 + n3. Define a good-bad edge to be one with one end point
labelled good and the other labelled bad. Similarly define a good-good edge.
The number of good-bad edges in the current graph is 2n1 + 2n2 + 3n3 and the
number of good-good edges is n2/2. Moreover the graph has maximum degree
3. We therefore have the following inequalities.

2n1 + 2n2 + 3n3 ≤
3(n − n1) + 2n1

2
−

n2

2

2.5(n1 + n2 + n3) ≤
3n

2
⇒ ng ≤ 0.6n.

In Step 2b, we find a path xyz of length 2 consisting of good vertices only. Here
we have two situations to deal with. If we include the vertex z in the solution,
we remove it from the graph which results in at least one good vertex y with
degree at most 2 having a good neighbour x. But the preprocessing algorithm
will either delete y or label it bad. In either case, the number of good vertices
reduces by at least 2. If we don’t pick z in our solution, then we label it bad,
and this reduces the number of good vertices by 1. Thus the time complexity is
given by the recurrence below:

T (ng) ≤ T (ng − 1) + T (ng − 2)

T (0.6ng) = 20.6ng .

Here T (ng) is bounded by (1.62)0.4ng ·20.6ng which is O∗(1.8384ng). Moreover on
any path in the recursion tree, the algorithm takes polynomial space. Initially
ng = n and therefore we have the following.

Theorem 1. Let G = (V, E) be an undirected graph with maximum degree 3
with n vertices and m edges. Then Vertex Bipartization problem on G can
be solved exactly using polynomial space and in time O∗(1.8384n).

2.2 The FVS and VBP problems in graphs with maximum degree 4

In this subsection, we extend the ideas described previously for the Vertex
Bipartization problem to graphs with maximum degree 4. We also give an
exact algorithm for Feedback Vertex Set problem on graphs with maxi-
mum degree 4. Again both algorithms in this subsection rely on preprocessing

Preprocessing Algorithm P1(G, S, Col)
Input: A multigraph G whose vertices have been colored good or bad along with a partially
constructed solution S.
Output: A (possibly smaller) colored multigraph along with a (possibly larger) solution
or NO signifying that there does not exist a solution containing good vertices only.
Let B be the set of bad vertices of G. Perform the following steps as long as possible.
1. If G has a vertex of degree ≤ 1, remove it along with the incident edge.
2. Check whether G[B] is acyclic. If not then return NO.
3. Check whether any connected component is a cycle. If a connected component C is a

cycle, include a good vertex of C in S and remove this cycle.
4. If G has a vertex vi of degree 2 (which is not a self-loop) then it must be that vi is

part of some path of the form uv1 . . . vi . . . vkw where each vj 1 ≤ j ≤ k is a degree 2
vertex and u and w are vertices of degree ≥ 3. Here u and w could be the same vertex.
(a) Case 1: At least one of the vertices u and w is colored good. Then delete all the

vertices vj and add the edge (u, w) (although u and w might already have an edge
between them).

(b) Case 2: Both u and v are colored bad. Suppose there is at least one vi colored
good, then replace the path uv1v2 . . . vkw by uviw. If no vertex vi is colored good
then replace the path uv1v2 . . . vkw by the edge uw.

5. Include all vertices with self loops in S and remove them from the graph. Find all
cycles of length 2 with a good vertex and include it in S and remove it from the
graph. Find all triangles ∆uvw with Col(u) = good, Col(v) = bad, Col(w) = bad. Set
S ← S ∪ {u} and remove u from the graph.

Fig. 4. The preprocessing algorithm for the Feedback Vertex Set problem

and branching. We will use the same preprocessing algorithm for the Vertex
Bipartization problem. The preprocessing algorithm for Feedback Vertex
Set is almost the same and is described in Figure 4.

We first describe the algorithm for the Feedback Vertex Set problem.
The main strategy of the algorithm is to find a good vertex with a sufficient
number of good neighbours so that on the branch where we include a good
vertex v in the solution, we can either delete at least one good neighbour of v
or color the neighbour bad without making any further branches. The algorithm
achieves this by looking for a good vertex of degree 3 with at least two good
neighbours or a good vertex of degree 4 with at least three good neighbours.
The detailed algorithm is described in Figure 5.

Algorithm FVS-D4(G = (V, E), S, Col)
Input: A multigraph G = (V, E) with maximum degree 4, whose vertices have been colored.
Here n is the number of vertices in the input graph. Initially the algorithm is called with
S ← ∅ and Col(v) = good for all vertices v ∈ G(V).
Output: A minimum feedback vertex set of G.
Step 1 Call P1(G, S, Col). If P1 returns no then return NO.
Step 2 Apply the first step which is applicable:

Step 2a Let n′ be the size of the current graph. If n′ ≤ 2n/3 or if every good vertex v
of degree 3 has at most one good neighbor or if every good vertex v of degree 4 has
at most two good neighbours, then use brute-force and try all possible solutions
S∪T , where T is some subset of the good vertices of the current graph, and return
the one with minimum size.

Step 2b Find a vertex u of degree 3 with at least two good neighbours, say v and w.
Call the algorithm on following instances and return the smaller solution.
– Set S ← S ∪ {v} and call FVS-D4(G− {v}, S, Col).
– Set Col(v) = bad and call FVS-D4(G, S, Col).

Step 2c Find a vertex u of degree 4 with at least 3 good neighbours, say v, w and
z. Here we consider three cases and branch accordingly: 1. v is not part of the
solution, 2. both v and w are part of the solution, and 3. v is part of the solution
but w isn’t and return the smallest solution.
– Set Col(v) = bad and call FVS-D4(G, S, Col).
– Set S ← S ∪ {v, w} and call FVS-D4(G− {u, w}, S, Col).
– Set S ← S ∪ {v} and Col(w) = bad and call FVS-D4(G− {v}, S, Col).

Fig. 5. Algorithm FVS-D4()

Correctness The argument for correctness closely follows the one given for the
Vertex Bipartization problem in the previous section and is omitted.
Time Complexity We will now analyze all cases handled by the algorithm
carefully and bound the overall time taken by it. We claim that in Step 2a, the
number of good vertices is bounded by 2n/3. If we reach Step 2a then either
n′ ≤ 2n/3 or every good vertex of degree three has at most one good neighbor
and every good vertex of degree four has at most two good neighbours. In the
case when n′ ≤ 2n/3, our claim follows trivially since the number of good vertices
is ≤ n′. As for the second case, we can bound the number of good vertices by

counting the number of edges between good vertices and bad vertices. We can
have following types of good vertices:

Type 1 Degree 2 good vertex (with both its neighbours bad).
Type 2 Degree 3 good vertex with one good neighbour.
Type 3 Degree 3 good vertex with all its neighbours bad.
Type 4 Degree 4 good vertex with two good neighbours.
Type 5 Degree 4 good vertex with one good neighbour.
Type 6 Degree 4 good vertex with all its neighbours bad.

It should be clear that any good vertex at this stage falls in one of the types
mentioned above. Let ni represent the number of good vertices of Type i and
let ng be the total number of good vertices. Then ng =

∑6
i=1 ni.

We will now count the number of good-bad edges in the graph. The total
number of good-bad edges is 2n1 + 2n2 + 3n3 + 2n4 + 3n5 + 4n6. It is easy to
see that the quantity n2 + 2n4 + n5 counts every good-good edge twice. Thus
number of good-good edges is (n2 + 2n4 + n5)/2. Thus,

2n1 + 2n2 + 3n3 + 2n4 + 3n5 + 4n6 ≤
4(n − n1 − n2 − n3) + 3(n2 + n3) + 2n1

2

−
n2

2
−

2n4

2
−

n5

2

A simple calculation shows that 3ng ≤ 2n from which it follows that ng ≤ 2n
3

This shows that number of good vertices in Step 2a is bounded by 2n/3.
In Step 2b, we have a good vertex u of degree 3 that has at least two good

neighbors v and w. When we include v in the solution, the degree of u becomes
2 and since it has a good neighbour w it is removed by the preprocessing step.
Thus we end up eliminating at least two good vertices from the graph. If we do
not include v in the solution, we label it bad and end up decreasing the number
of good vertices by one. Then we have

T (ng) ≤ T (ng − 1) + T (ng − 2).

In Step 2c, we have a vertex u of degree 4 with at least three good neighbours
v, w and z. We branch on three cases:

1. v is not in the solution,
2. v and w are in the solution, and
3. v is in the solution but w isn’t.

In the first case, v is labelled bad and the number of good vertices reduces by at
least 1. When both v, w are part of the solution then, on removing them, u has
degree 2 and since it has a good neighbour z it is removed by the preprocessing
step. Thus we eliminate at least 3 good vertices in this case. In the last case, v
is removed from the graph and w is labelled bad, which reduces the number of
good vertices by at least 2. Thus we have the following recurrence on the number
of good vertices.

T (ng) ≤ T (ng − 1) + T (ng − 2) + T (ng − 3).

Combining the above, we get the following recurrence for the problem in the
worst case, modulo the polynomial time used at every node to find the vertex of
required type.

T (ng) ≤ T (ng − 1) + T (ng − 2) + T (ng − 3)

T (2ng/3) = 22ng/3

T (ng) is bounded by (1.8393)ng/3 ·22ng/3 which is O∗(1.945ng). Setting the initial
value of ng as n we get the following theorem.

Theorem 2. Let G = (V, E) be an undirected graph with maximum degree 4
with n vertices and m edges. Then the Feedback Vertex Set problem on G
can be solved exactly using polynomial space and in time O∗(1.945n).

We can modify our algorithm for the Feedback Vertex Set presented above
for the Vertex Bipartization problem in graphs of maximum degree 4. The
only modification we need to do is to call the preprocessing algorithm for Vertex
Bipartization problem in Step 1. This gives us following theorem.

Theorem 3. Let G = (V, E) be an undirected graph with maximum degree 4
with n vertices and m edges. Then the Vertex Bipartization problem on G
can be solved exactly using polynomial space and in time O∗(1.945n).

3 Using FPT algorithms to design exact algorithms

In the last section, we gave efficient algorithms for Vertex Bipartization and
Feedback Vertex Set, but they critically used the fact that the maximum
degree of the graphs is 3 or 4. Here we give a general technique of designing
exact algorithms using parameterized algorithms as a subroutine and apply it to
several problems. Let Q be an NP-optimization problem and suppose that it’s
parameterized version (Q, k) is fixed parameter tractable. Let us also suppose
that the FPT algorithm A for (Q, k) has a time complexity of the form O∗(ck,
where k is the parameter, and c is a constant. This algorithm A immediately
gives us an exact algorithm for Q with time complexity O∗(cn). What is interest-
ing is that there actually exists an exact algorithm for Q with time complexity
O∗(dn), where d < c. Moreover, if c < 4 then we will show that d < 2.

This fact has an interesting consequence. There are many optimization prob-
lems such as Max Independent Set, Min Vertex Cover, Min Feedback
Vertex Set which have trivial brute-force enumeration algorithms of time com-
plexity 2n. If the parameterized versions of any of these problems is solvable in
time O∗(ck), where c < 4 then we immediately obtain exact algorithms for these
problems which are better than the trivial brute-force algorithms. We will show
that this technique simplifies exact algorithms for many optimization problems
and for some (e.g. Vertex Bipartization) gives the best known exact algo-
rithm.

Our algorithm makes clever use of the FPT algorithm A and brute-force
enumeration. Consider a problem such as Vertex Bipartization. Had we used
brute-force throughout, then the time complexity would have been O∗(

∑i=n
i=0

(

n
i

)

)

= O∗(2n). It is well known that the function
(

n
i

)

increases with increasing i,
attains a maximum at i = n/2, and then decreases. Also, it is symmetric in that
(

n
i

)

=
(

n
n−i

)

. Brute-force pushes the time complexity to O∗(2n) because it is

costlier to search exhaustively when i is near n/2, since
(

n
n/2

)

≈ 2n. Therefore,

if we adopt the strategy of using brute-force only for those values of i which
are far removed from n/2 and using the FPT algorithm A for the remaining i
values (that is, those near n/2), then we might end up with an exponential time
complexity better than that of A . And indeed we do. Our algorithm is given
in Figure 6. For simplicity the algorithm considers minimization problems only.
For maximization problems we can modify the algorithm to output the largest
i for which there exists a solution.

Algorithm Exact(Q,A ,c)
Q is a minimization problem and A is the FPT algorithm that solves its pa-
rameterized version in time O∗(ck), where c is a constant and k is a parameter.
Here n is the input size.
Compute λ from the equation cnλ =

`

n

n−λn

´

.

for i = 1 to λn
use the FPT algorithm A for Q to check whether there is solution of
size i; if yes output i and halt.

for i > λn
use brute-force to check whether there exists a solution of size i; if yes,
then output i and halt.

Fig. 6. Algorithm Exact()

Suppose the FPT algorithm A for Q takes O∗(ck) time, where c is some
constant. Then from the description of Algorithm Exact, it is easy to observe
that its time complexity is upper bounded by following:

O∗

(

max

{

cλn,

(

n

n − λn

)})

(1)

Now suppose that the trivial brute-force algorithm for Q has time complexity
O∗(2n). We show that if we want Algorithm Exact to beat this trivial time bound
then we must have c < 4. We need a lemma.

Lemma 1. Let 1
2 < λ < 1. Then

(

n
n−λn

)

is bounded by dn, where d is some
constant < 2.

Proof. We know that

(

n

n − λn

)

=

(

n

λn

)

≤
nn

(λn)λn((1 − λ)n)(1−λ)n
=

(

(

1

λ

)λ(
1

1 − λ

)1−λ
)n

One can easily verify using calculus that the function

h(λ) =

(

1

λ

)λ(
1

1 − λ

)1−λ

(0 < λ < 1)

attains a maximum of 2 at λ = 1/2. At other points in the interval (1
2 , 1) it has

a value less than 2. This proves the claim. ut

Equating cλ and h(λ) = d we get c = {h(λ)}1/λ < 21/λ. Since 1/2 < λ < 1 we
see that c < 4. Also note that d = cλ < c. We thus have the following theorem.

Theorem 4. Let Q be an NP-optimization problem with input size n such that
a trivial brute force algorithm for Q takes time O∗(2n). Suppose also that the
parameterized version of Q is FPT with time complexity O(c kpoly(n)) for some
c < 4. Then there is an exact algorithm for Q with time complexity O∗(d n) for
some d < c and d < 2.

3.1 Applications

In this section, we apply the algorithm developed in Section 3 to various prob-
lems and obtain exact algorithms with nontrivial worst-case time bounds. The
problems for which we give efficient exact algorithms include the Vertex Bi-
partization problem in general undirected graphs, the 3 and 4-Hitting Set
problems, the Feedback Set problem in tournaments and the Max Cut prob-
lem in graphs with average degree 3 and 4. Some of these results are new and
some of them are given here to show the applicability of the theorems and algo-
rithms developed in the Section 3.

Vertex Bipartization Problem We apply the algorithm developed in Sec-
tion 3 to the Vertex Bipartization problem in general undirected graphs. This
problem can be solved exactly in O∗(2|V |) time. Reed, Kaleigh, and Vetta [10]
have recently given an FPT algorithm for the parameterized version of this
problem with running time O(3kkmn). If we use their FPT algorithm directly
to solve the optimum version of the problem we will take time O∗(3n) which is
worse than that taken by the trivial exponential time algorithm. However, if we
use the algorithm in Figure 6 then with c = 3, λ = 0.6091 and we get a running
time of O∗(1.9526n). The time taken by the first for-loop is O∗(30.6091n) which
is O∗(1.9526n). The second step takes O∗(

(

n
0.6091n

)

) time which works out to
O∗(1.9526n). We therefore have the following theorem.

Theorem 5. Let G = (V, E) be an undirected graph with n vertices then Ver-
tex Bipartization problem can be solved in time O∗(1.9526n).

3- and 4-Hitting Set Problems The Hitting Set (HS) problem is defined
as follows:

Instance A finite family of sets S1, S2, . . . , Sm comprised of elements from a
universal set U .

Goal Find a minimum sized subset T ⊆ U such that Si ∩T 6= ∅ for all i.

The 3- and 4-HS problems are special cases of the Hitting Set problem. In
the 3-HS problem |Si| (1 ≤ i ≤ m) is bounded by 3 and in the 4-HS problem
by 4. The parameterized versions of these problems have been shown to be fixed
parameter tractable by Neidermeier et al [7]. The main results in [7] can be
summarized in the following theorem.

Theorem 6. [7] The parameterized version of the 3-HS and the 4-HS problem
can be solved in time O∗(2.27k) and O∗(3.3k) respectively.

Recently Wahlström [13] proposed an exact algorithm for the 3-HS problem
with time complexity O∗(1.6316). This algorithm makes use of the parameterized
algorithm of Neidermeier et al [7] but only when there is an upper bound on the
size of the optimum solution set.

We can apply Algorithm Exact() to solve the 3- and 4-HS problems; the
parameterized algorithm we use is the one by Neidermeier et al [7] with λ = 0.72
for the 3-HS problem and λ = 0.5721 for the 4-HS problem. This gives us the
following.

Theorem 7. The 3- and 4-Hitting Set problems can be solved exactly in time
O∗(1.80933)n and O∗(1.9799n), where n = |U |.

The algorithm for the 3-HS problem in [13] does not directly generalize to the
4-HS problem. To the best of our knowledge our algorithm is the first exact
algorithm for the 4-HS problem with the base of the exponent less than 2.

Feedback Set Problems in Tournaments The Feedback Arc (Vertex)
Set problem in directed graphs is defined as follows:

Instance A directed graph G = (V, E).
Goal Find a minimum sized subset F ⊆ E (F ⊆ V) such that G′ =

(V, E − F) (G′ = (V − F, E′)) is acyclic.

We will use the parameterized algorithms developed by Raman and Saurabh [9]
for feedback set problems in tournaments. They give an O∗(2.415k) and O∗(2.27k)
algorithm for the Feedback Arc Set and the Feedback Vertex Set prob-
lem respectively. For the Feedback Arc Set problem in tournaments we get
λ = 0.696; for the Feedback Vertex Set we get λ = 0.72. Then using Algo-
rithm Exact() we obtain the following theorem.

Theorem 8. Let G = (V, E) be a tournament with n vertices and m arcs.
Then the minimum feedback arc set and feedback vertex set can be found in
time O∗(1.84821m) and O∗(1.80933n) respectively.

Observe that in any directed graph, the size of the minimum feedback arc set is
at most m/2. This fact combined with Algorithm Exact() gives us the following
theorem.

Theorem 9. Let G = (V, E) be a tournament with n vertices and m arcs. Then
the minimum feedback arc set can be found in time O∗(1.5541m).

Max Cut in graphs of average degree 3 or 4 We will solve the Max Cut
problem using the parameterized algorithm for Edge Bipartization developed
by Niedermeier et al [6] and a lower bound on the size of the maximum cut. The
parameterized algorithm for Edge Bipartization presented in [6] has time
complexity O(2k · nO(1)). Recall that an instance of the Edge Bipartization
problem is an undirected graph G = (V, E) and the question is to find a minimum
set of edges that needs to be deleted from G to make it bipartite. The relationship
between this problem and the Max Cut problem is straightforward: the maxi-
mum cut in a graph is E−the minimum set of edges to make the graph bipartite.
Thus solving the Edge Bipartization problem is equivalent to solving the Max
Cut problem.

Poljak et al in [8] give a lower bound of m
2 + 1

2

⌈

n−c
2

⌉

for maximum cut, where
c is number of connected components and m and n are, respectively, the number
of edges and vertices in the graph. If G is a connected graph on n vertices and
m edges with average degree 3, then m = 1.5n. The minimum number of edges
to be removed from G to make it bipartite is then

m − |max cut| ≤ m −

(

m

2
+

n − 1

4

)

=
3n

2
−

(

3n

4
+

n − 1

4

)

=
n

2
+

1

4
.

We now use the algorithm in [6] to solve the Edge Bipartization problem.
Because of the upper bound on the the number of edges needed to be removed,
we achieve a time complexity of O∗(2n/2) = O∗(1.414n). Had G been of average
degree 4, then the upper bound on the number of edges to be deleted would be
3n/4+1/4 and the time complexity of solving the Edge Bipartization problem
would be O∗(23n/4) = O∗(1.6818n). We thus have the following theorem.

Theorem 10. The Max Cut problem can be solved exactly in time O∗(1.4141n)
in graphs with average degree 3 and in time O∗(1.6818n) in graphs with average
degree 4. Both of these algorithms take polynomial space.

Neidermeir et al [5] achieve the same time bound for graphs with maximum
degree 3 and a better time bound of O∗(1.5871n) for graphs with maximum
degree 4.

4 Conclusion

In this paper, we have obtained improved exact algorithms for several problems
including Vertex Bipartization, 4-Hitting Set, Feedback Vertex Set in

graphs with maximum degree at most 4, Feedback Arc Set in tournaments.
We introduced two general techniques to obtain efficient exact algorithms. One
of these is a modified version of the general branch-and-bound technique and the
other one is based on parameterized complexity algorithms. Further reduction
in the base of the exponent of all these algorithms remains open.

We leave it open to explore the practical performance of these algorithms.
Another major open problem is to devise an exact algorithm with time com-
plexity less than O∗(2n) for the Feedback Vertex Set problem in general
undirected graphs.

References

1. H. Choi, K. Nakajima and C. S. Rim. Graph Bipartization and Via Minimiza-
tion. SIAM Journal of Discrete Mathematics 2 (1): 38-47, 1989.

2. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag
(1998).

3. R. Downey and M. Fellows. Parameterized Complexity for the Skeptic. In
Proc. of 18th CCC : 147-169, 2003.

4. N. Garg, V. Vazirani and M. Yannakakis. Approximate Max-Flow Min-
(Multi) Cut Theorems and Their Applications. SIAM Journal on Computing 25
(2): 235-251, 1996.

5. J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith Worst-case
upper bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Applied
Mathematics 130 (2): 139-155, 2003.

6. J. Guo, J. Gramm, F. Hüffner, R. Neidermeier and S. Wernicke. Improved
Fixed-Parameter Algorithms for Two Feedback Set Problems. Manuscript.

7. R. Niedermeier and P. Rossmanith. An effiecient fixed parameter algorithm
for 3-Hitting Set. Journal of Discrete Algorithms 1 (1): 89-102, 2003.

8. S. Poljak and D. Turzik. A Polynomial Algorithm for Constructing a Large
Bipartite Subgraph, with an Application to a Satisfiability Problem. Canad. J.
Math 34 (3): 519-524, 1982.

9. V. Raman, and S. Saurabh. Parameterized Algorithms for Feedback Set Prob-
lems and Their Duals in Tournaments. To appear in TCS.

10. B. Reed, K. Smith and A. Vetta. Finding Odd Cycle Transversals, Operations
Research Letters 32 (2004) 299-301.

11. R. Rizzi, V. Bafna, S. Istrail and G. Lancia. Practical Algorithms and Fixed-
Parameter Tractability for the Single Individual SNP Haplotyping Problem. WABI:
29-43, 2002.

12. S. Ueno, Y. Kajitani and S. Gotoh. On the Nonseparating Indepedent Set
Problem and Feedback Set Problem for Graphs with no Vertex Degree Exceeding
Three. Discrete Mathematics 72 (1988) 355-360.

13. M. Wahlström. Exact algorithms for finding minimum transversals in rank-3
hypergraphs. Journal of Algorithms 51(2): 107 - 121, 2004.

14. G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combina-

torial Optimization—Eureka! You shrink! Springer LNCS 2570: 185-207, 2003.
15. X. Zhunag and S. Pande. Resolving Register Bank Conflicts for a Network

Processor. In Proc. of 12th PACT: 260-278, 2003.

