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Representing Trees of Higher Degree1

David Benoit,2 Erik D. Demaine,3 J. Ian Munro,4 Rajeev Raman,5
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Abstract. This paper focuses on space efficient representations of rooted trees that permit basic navigation
in constant time. While most of the previous work has focused on binary trees, we turn our attention to trees of
higher degree. We consider both cardinal trees (or k-ary tries), where each node has k slots, labelled {1, . . . , k},
each of which may have a reference to a child, and ordinal trees, where the children of each node are simply
ordered. Our representations use a number of bits close to the information theoretic lower bound and support
operations in constant time. For ordinal trees we support the operations of finding the degree, parent, i th child,
and subtree size. For cardinal trees the structure also supports finding the child labelled i of a given node apart
from the ordinal tree operations. These representations also provide a mapping from the n nodes of the tree
onto the integers {1, . . . , n}, giving unique labels to the nodes of the tree. This labelling can be used to store
satellite information with the nodes efficiently.

Key Words. Data structures, Analysis of algorithms, Succinct data structures, Data compression, Information
theory, Cardinal trees, Ordinal trees, Tries, Digital search trees, Dictionary, Hashing.

1. Introduction. Trees are a fundamental structure in computing. They are used in
almost every aspect of modelling and representation for explicit computation. Their spe-
cific uses include searching for keys, maintaining directories, primary search structures
for graphs, and representations of parsing—to name just a few. Explicit storage of trees,
with a pointer per child as well as other structural information, is often taken as a given,
but can account for the dominant storage cost.

This cost can be prohibitive. For example, suffix trees on binary alphabets (which
are indeed binary trees) were developed for the purpose of indexing large files to permit
full text search. That is, a suffix tree permits searches in time bounded by the length of
the input query, and in that sense is independent of the size of the database. However,
assuming our query phrases start at the beginning of words and that words of text are
on average five or six characters in length, we have an index of about three times the
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size of the text. That the index contains a reference to each word of the text accounts for
less than a third of this overhead. Most of the index cost is in storing its tree structure.
Indeed, this is the main reason for the proposal [14], [21] of simply storing an array of
references to positions in the text rather than the valuable but costly structure of the tree.

These and many other applications deal with large static trees. The representation of
a tree is required to provide a mapping from the n nodes to {1, . . . , n}. Any information
that needs to be stored for the application (e.g., the location of a word in the database) is
found through this mapping. The suffix tree applications used binary trees, though trees
of higher degree, for example degree 256 for text or 4 for DNA sequences, might be
better. Trees of higher degree, i.e. greater than 2, are the focus of this paper.

Starting with Jacobson [16], [17] some attention has been focused on succinct repre-
sentation of trees—that is, on representations requiring close to the information theoretic
number of bits necessary to represent objects from the given class, but on which a rea-
sonable class of primitive operations can be performed quickly. Such a claim requires
a clarification of the model of computation. The information theoretic lower bound on
space is simply the logarithm to the base 2 (denoted lg) of the number of objects in
the class. The number of binary (cardinal) trees on n nodes is Cn ≡

(2n+1
n

)
/(2n + 1)

[15]; lg Cn = 2n −�(lg n). Jacobson’s goal was to navigate around the tree with each
step involving the examination of only O(lg n) bits of the representation. As a conse-
quence, the bits he inspects are not necessarily close together. If one views a word as a
sequence of lg(n + 1) consecutive bits, his methods can be shown to involve inspecting
�(lg lg(n+1))words. We adopt the model of a random access machine with a lg(n+1)
(or so) bit word. Basic operations include the usual arithmetics and shifts. Fredman and
Willard [12], [13] call this a transdichotomous model because the dichotomy between
the machine model and the problem size is crossed in a reasonable manner.

Clark and Munro [6], [7] followed the model used here and modified Jacobson’s
approach to achieve constant time navigation. They also demonstrated the feasibility
of using succinct representations of binary trees as suffix trees for large-scale full-text
searches. Their work emphasized the importance of the subtree-size operation, which
indicates the number of matches to a query without having to list all the matches. As a
consequence, their implementation was ultimately based on a different, 3n bit represen-
tation that included subtree size but not the ability to move from child to parent. Munro
and Raman [24] essentially closed the issue for binary trees by achieving a space bound
of 2n + o(n) bits, while supporting the operations of finding the parent, left child, right
child, and subtree size in constant time. Recently, Munro et al. [26] have given a dynamic
binary tree representation taking the same amount of space.

Trees of higher degree are not as well studied. There are essentially two forms to
study, which we call ordinal trees and cardinal trees. An ordinal tree is a rooted tree of
arbitrary degree in which the children of each node are ordered, hence we speak of the
i th child. The one-to-one mapping between these trees and binary trees is a well known
undergraduate example [19, p. 333], and so about 2n bits are necessary for representation
of such a tree. Jacobson [16], [17] gave a 2n + o(n) bit structure to represent ordinal
trees and efficiently support queries for the degree, parent, or i th child of a node. The
improvement of Clark and Munro [7] leads to constant execution for these operations.
However, determining the size of a subtree essentially requires a traversal of the subtree.
In contrast, Munro and Raman [24] implement parent and subtree size in constant time,
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but take �(i) time to find the i th child, and �(d) time to find the degree d of a given
node. Their representation was augmented by Chiang et al. [5] to support the degree
operation in O(1) time. The structure presented here performs all four operations in
constant time, in the same optimal space bound of 2n + o(n) bits.

By a cardinal tree (or trie) of degree k, we mean a rooted tree in which each node
has k positions for an edge to a child. Each node has up to k children and each child
of a given node is labelled by a unique integer from the set {1, 2, . . . , k}. A binary
tree is a cardinal tree of degree 2. Since there are Ck

n ≡
(kn+1

n

)
/(kn + 1) cardinal trees

of degree k [15], lg Ck
n = (k lg k − (k − 1) lg(k − 1))n − O(lg(kn)) bits is a lower

bound on the space required to store a representation of an arbitrary k-ary cardinal tree,
for fixed k and n increasing. If k is viewed as a (slowly growing) function of n, then
this bound approaches (lg k + lg e)n bits. Our techniques answer queries asking for
parent, the child with label i , and subtree size in constant time. The structure requires
(�lg k� + 2)n + o(n)+ O(lg lg k) bits. This can be written to resemble the lower bound
more closely as (�lg k� + �lg e�)n + o(n)+ O(lg lg k) bits.

Our result is related to, but more precise in terms of the model than, that of [8]. More
recently, building on the results of this paper, some of us have given a representation of
k-ary that supports all the above operations except the subtree-size operation in O(1)
time, but uses lg Ck

n + o(n + lg k) bits [29].
The rest of this paper is organized as follows. Section 2 describes previous encodings

of ordinal trees. These techniques are combined in Section 3 to achieve an ordinal
tree encoding supporting all the desired operations in constant time. Section 4 extends
this structure to support cardinal trees. Finally, in Section 5, we tune our results to the
particular case of degree 4, the size of the alphabet describing DNA sequences.

2. Previous Work. First we outline two ordinal tree representations that use 2n+o(n)
bits, but do not support all of the desired operations in constant time.

2.1. Jacobson’s Ordinal Tree Encoding. Jacobson’s [16] encoding of ordinal trees
represents a node of degree d as a string of d 1s followed by a 0, which we denote 1d0.
Thus the degree of a node is represented by a simple binary prefix code, obtained from
terminating the unary encoding with a 0. These prefix codes are then written in a level-
order traversal of the entire tree. This method is known as the level-order unary degree
sequence representation (which we abbreviate to LOUDS), an example of which is given
in Figure 1(b). Using auxiliary structures for the so-called rank and select operations
(see Section 2.1.1), LOUDS supports, in constant time, finding the parent, the i th child,
and the degree of any node.

Every node in the tree, except the root node, is a child of another node, and therefore
has a 1 associated with it in the bit-string. The number of 0s in the bit-string is equal to
the number of nodes in the tree, because the description of every node (including the root
node) ends with a 0. Jacobson introduced the idea of a “superroot” node which simply
prefixes the representation with a 1. This satisfies the idea of having “one 1 per node”, thus
making the total length of the bit-string 2n. Unfortunately, the LOUDS representation is
ill-suited to computing the subtree size, because in a level-order encoding, the information
dealing with any subtree is likely to spread throughout the encoding.
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(a) The Ordinal Tree
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(b) Jacobson's LOUDS Representation (without

the superroot). The commas have been added to

aid the reader.
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(c) Munro and Raman's Balanced Parentheses

Representation
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Second subtree of ‘a’
(a leaf)

(d) Our DFUDS Representation

Fig. 1. Three encodings of an ordinal tree.

2.1.1. Rank and Select. The operations performed on Jacobson’s tree representation
require the use of two auxiliary structures: the rank and select structures [6], [17], [23],
[24]. These structures support the following operations, which are used extensively,
either directly or implicitly, in all subsequent work, including this paper:

Rank: rank1( j) returns the number of 1s up to and including position j in an n bit
string. One can support this operation in O(1) time by augmenting the bit string
with an auxiliary o(n) bit structure [17], [23]. rank0( j) is the analogous function
counting the 0s.

Select: select1( j) returns the position of the j th 1. It also requires an auxiliary o(n)
bit structure [17]. Jacobson’s method takes more than constant time, but inspects
only O(lg n) bits. The modification by Munro [23] reduces this to �(1) time, on
RAM with word-size �(lg n) bits. select0( j) is the analogous function locating
a 0.

The auxiliary structures for rank [6], [17] are constructed as follows:

• Conceptually break the array into blocks of length
⌈
(lg n)2

⌉
. Keep a table containing

the number of 1s up to the last position in each block.
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• Conceptually break each block into sub-blocks of length
⌈

1
2 lg n

⌉
. Keep a table con-

taining the number of 1s within the block up to the last position in each sub-block.
• Keep a table giving the number of 1s up to every possible position in every possi-

ble distinct sub-block. Since there are only O(
√

n) distinct possible sub-blocks and
O(lg n) positions, this takes O(

√
n lg n lg lg n) = o(n) bits of space.

A rank query, then, is simply the sum of three values, one from each table. For select,
the approach is a bit more complicated, though similar in spirit [6], [25].

Traversals on Jacobson’s encoding are performed using rank and select as follows.
To compute the degree of a node given the position in the bit-string, p, at which its
description begins, simply determine the number of 1s up to the next 0. This can be
done using rank0 and select0 by taking select0(rank0(p) + 1) − p. To find the parent
of p, select1(rank0(p) + 1) turns out to find the 1 in the description of the parent of p
that corresponds to p. Thus, searching backwards to the previous zero (using rank0 and
select0 operations) finds the bit before the beginning of the description of the parent.
Note that the “+1” term is because of the superroot. Inverting this formula, the i th child
is computed by select0(rank1(p + i − 1) − 1). Of course, we must first check that i is
at most the degree of the node.

2.2. Balanced Parentheses Representation. The binary tree encoding of Munro and
Raman [24] is based on the isomorphism with ordinal trees, reinterpreted as balanced
strings of parentheses. Our work is based upon theirs and we also find it more convenient
to express the rank and select operations in terms of operating on parentheses. We
therefore equate: rankopen( j) ≡ rank1( j), rankclose( j) ≡ rank0( j), selectopen( j) ≡
select1( j), and selectclose( j) ≡ select0( j). The following operations, defined on strings
of balanced parentheses, can be performed in constant time [24]:

findclose(i): find the position of the close parenthesis matching the open parenthesis
in position i .

findopen(i): find the position of the open parenthesis that matches the closing paren-
thesis in position i .

excess(i): find the difference between the number of open and closing parentheses
before position i .

enclose(i): given a parenthesis pair whose open parenthesis is in position i , return the
position of the open parenthesis corresponding to the closest matching parenthesis
pair enclosing i .

The balanced parenthesis representation is derived from a depth-first traversal of
the tree, writing a left (open) parenthesis on the way down, and writing a right (close)
parenthesis on the way up. In this encoding of ordinal trees as balanced strings of
parentheses, the key point is that the nodes of a subtree are stored contiguously. The
size of the subtree, then, is implicitly given by the begin and end points of the encoding.
Using the findopen(i) and findclose(i) operations, one can determine the subtree size by
taking half the difference between the positions of the left and right parentheses that
enclose the description for the subtree of the node. The parent of a node is also given
in constant time using the enclose() operation. An example of this encoding is given in
Figure 1(c).
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The problem with this representation is that finding the i th child takes �(i) time.
However, it provides an intuitive method of finding the size of any subtree. Indeed, we use
the balanced parenthesis structure in the next section for our ordinal tree representation.

3. Our Ordinal Tree Representation. Munro and Raman’s representation is able to
give the size of the subtree because the representation is created in depth-first order, and
so each subtree is described as a contiguous balanced string of parentheses. Jacobson’s
representation allows access to the i th child in constant time because there is a simple
relationship between a node and its children based on rank and select.

To combine the virtues of these two methods, we write the unary degree sequence
of each node but in a depth-first traversal of the tree, creating what we call a depth-
first unary degree sequence (DFUDS) representation. The representation of each node
contains essentially the same information as in LOUDS, written in a different order. This
creates a string of parentheses which is almost balanced; there is one unmatched closing
parenthesis. We add an artificial opening parenthesis at the beginning of the string to
match the closing parenthesis (like Jacobson’s superroot). We use the redefinitions of
rank and select in terms of strings of parentheses and the operations described in Section
2.2. An example of our encoding is given in Figure 1(d).

THEOREM 3.1. The DFUDS representation of an ordinal tree on n nodes is a string of
balanced parentheses, of length 2n, for n > 0.

PROOF. The validity of the construction follows by induction and the following
observations:

1. If the root has no children, then the representation is “()” (of length 2).
2. Assume that the method produces p strings, R1, R2, . . . , Rp, of balanced parentheses

for p different trees, whose total length is 2n−2. We must prove that the method will
produce a string of balanced parentheses of length 2n when all p “subtrees” are made
children of a single root node (note that it would not make sense for any of these trees
to be null, as they would not be included as “children” of the new root node).

By definition, we start the representation, Rn , of the new tree with a leading “(”
followed by p “(”s and a single “)” representing that the root has p children. So far,
Rn is “((p )” meaning that there are p “(”s which have to be matched.

Next, for each i from 1 to p, strip the leading (artificial) “(” from Ri , and append
the remainder of Ri to Rn . First, note that Rn gives the DFUDS representation of
the new tree. Because R1, . . . , Rp were strings of balanced parentheses, we stripped
the leading “(” from each, and appended them to a string starting with p unmatched
“(”, the string is balanced. The total length of the representation can be easily seen to
be 2n.

3.1. Operations. This section details how the navigation operations are performed on
this representation. This leads to our main result for ordinal trees.
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THEOREM 3.2. There is a 2n + o(n) bit representation of an n node ordinal tree, that
provides a mapping from the nodes of the tree to {1, . . . , n} and permits finding the
degree, parent, i th child, and subtree size in constant time.

PROOF. We describe procedures for performing the operations on the DFUDS repre-
sentation of the ordinal tree. A node (with degree d) is referred to by the position of the
first of the (d + 1) parentheses that represent it. This gives a numbering of the nodes
using integers from 1 to 2n, which is easily converted to a number from 1 to n by means
of a rankclose operation.

Degree. The degree of a node is equal to the number of opening parentheses that are
listed before the next closing parenthesis, starting from the beginning of the description
of the current node. This can be found using the rankclose and selectclose operations. More
precisely, the degree of a node p is given by the expression

selectclose(rankclose(p)+ 1)− p.(1)

ith Child. From the beginning of the description of the current node:

• Find the degree d of the current node. If i > d, then child i cannot be present; abort.
• Jump forward d − i positions. This places us at the left parenthesis whose matching

right parenthesis immediately precedes the description of the subtree rooted at
child i .
• Find the right parenthesis that matches the left parenthesis at the current position. The

encoding of the child begins after this position.

More precisely, assuming that the node p has at least i children, the description of its
i th child is a sequence of parentheses beginning at position

findclose(selectclose(rankclose(p)+ 1)− i)+ 1.(2)

Parent. From the beginning of the description of the current node:

• Find the opening parenthesis that matches the closing parenthesis that comes before
the current node. (If the parenthesis before the current node is an opening parenthesis,
we are at the root of the tree, which has no parent, so we abort.) We are now within
the description of the parent node.
• To find the beginning of the description of the parent node, jump backwards to the

first preceding closing parenthesis and the description of the parent node is after this
closing parenthesis. If there are no closing parentheses before the given position, then
the parent is the root of the tree (and its description starts at the beginning of the
representation of the tree).

More precisely, the description of the parent of a node p is a sequence of parentheses
beginning at position

selectclose(rankclose( findopen(p − 1)))+ 1.(3)

Note that this is correct even when the parent is the root node, because rankclose(i) returns
0 if there are no closing parentheses up to position i in the string, and selectclose(0)
returns 0.
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Subtree size. From the beginning of the description for the current node, the number
of items in the subtree of the current node is equal to the number of open parentheses
in the string of balanced parentheses that describes the subtree. If the current node is a
leaf, then the answer is trivial. Otherwise, the algorithm is as follows:

• Find the innermost set of parentheses that enclose the current position.
• The subtree size is the difference between the number of open parentheses up to the

closing parentheses of those found above, and those before the current position.

Equivalently, the size of the subtree rooted at node p is

rankopen( findclose(enclose(p)))− rankopen(p)+ 2.(4)

Alternatively, we can find the subtree size as half the number of characters in the string
which describes the subtree, or

( findclose(enclose(p))− p) /2+ 1.

Next we use this data structure as a component to represent cardinal trees.

4. Our Cardinal Tree Encoding. A simple cardinal tree encoding can be obtained
by a slight modification to a binary tree encoding by Jacobson [16], [17]. The modified
encoding for k-ary trees simply encodes a node by k bits, where the i th bit specifies
whether child i is present. We call this the bitmap representation of a node. It can be
applied to any tree ordering such as level order or, for our present purposes, depth-first
order. An example of this encoding, for k = 4, is given in Figure 2.

This encoding has the major disadvantage of taking kn bits, far from the lower bound
of roughly (lg k + lg e)n. This section describes our method for essentially achieving
“the lower bound with ceilings added”, i.e., (�lg k�+�lg e�)n+ o(n+ lg k) bits. We use
as a component the succinct encoding of ordinal trees from the previous section, which
takes the �lg e�n = 2n (+o(n)) term of the storage bound. The remaining storage allows
us to use, for each node, “essentially” d�lg k� bits to encode which children are present,
where d is the number of children of that node (the qualification in the space bound is
clarified below).

Fig. 2. Generalized Jacobson encoding of a 4-ary tree: 1111 1111 1111 1011 1110 1101 1001 0000 0011 0000
1111 0010 1111 1001 1101 1100 0011 1101 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000—200 bits.
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The ordinal tree representation in Section 3 gives, in constant time, four of the five
major operations we wish to perform on cardinal trees: subtree size, i th child, parent,
and the degree. In a cardinal tree, we also want to perform the operation “go to the
child with label j” as opposed to “go to the i th child”. This can be done by storing
additional information at each node, which encodes the labels of the present children,
and efficiently supports finding the ordinal number of the child with a given cardinal
label. More precisely, when asked for the child with label j , we determine whether it
exists, and if so how many children are listed before child j , i.e., its rank r among the
children of the parent node. The desired child is thus the r th child of the node, which
can be found in constant time using the ordinal tree structure.

This leads us to define the dictionaries with rank problem, which is to represent a
subset S of a finite universe U so that the following operation can be supported in O(1)
worst-case time:

rank(x): Given x ∈ U , return −1 if x �∈ S and |{y ∈ S | y < x}| otherwise.

Note that if U is a range of integers, the rank1 operation on the characteristic vector
of S is related to rank above: rank1 and rank are similar on the 1s, but rank returns an
uninteresting value on the 0s. However, the data structure for rank must use no more
than O(|S| log |U |) bits. Under this constraint, one cannot support rank1 in O(1) time,
as we would be solving the fixed-universe predecessor problem, to which stronger lower
bounds apply [1]. Thus, the weaker functionality of rank is essential. In our application
of cardinal k-ary tree encoding, U = {1, . . . , k} is the set of child positions of a node,
and the size of S is the degree d of the node.

If k ≤ (1−ε) lg n for some constant ε > 0, there is a simple solution for this problem.
As the ordinal tree representation gives us the number of children, d, of a given node, we
only need to distinguish the set of labels stored at this node from among the

(k
d

)
possible

subsets of size d from {1, . . . , k}. Hence, we represent the set of labels implicitly as a
b = �lg (k

d

)�-bit number which gives the index of this set in some fixed enumeration of all
possible subsets of size d from {1, . . . , k}. Since b ≤ d�lg k�, we can store this number
in a field of d�lg k� bits, filling the field out with leading zeros if need be. We answer
rank queries by using this b-bit number together with the argument to the rank query to
index into a precomputed table that contains the answer to the query. The precomputed
table, which is common to all nodes in the tree, has O(k2b) entries of O(lg k) bits
each. Since b ≤ k ≤ (1 − ε) lg n, the table is of size o(n) bits; equally, the index into
this table also fits in a word of lg n bits. This approach is easily extended to the case
k = O(lg n), but larger values of k need more work; this is the focus of the rest of this
section.

4.1. Static Dictionary with Rank. A dictionary with rank is a generalization of a static
dictionary, which only supports (yes/no) membership queries on S. The most space-
efficient static dictionary is due to Pagh [27] and requires �lg (k

d

)�+o(d)+O(lg lg k) =
d lg k−d lg d+O(d+ lg lg k) bits of space. Pagh’s approach is based on minimal perfect
hashing [11], [22], [31] and does not maintain the ordering of elements of S.

We begin by noting that one can add d�lg d� bits of explicit rank information to Pagh’s
approach, giving a dictionary with rank that takes d lg k+O(d+ lg lg k) bits. In turn, we
then show how to remove the additional terms and arrive at a dictionary with rank that
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requires d�lg k� bits. As it is known that
(lg lg k) bits are needed to represent minimal
perfect hash functions [22], we cannot remove the lg lg k term in the space bound for a
single node using this approach. However, as the k-ary tree representation requires the
storage of several dictionaries (one for each node), we share components of the hash
functions across dictionaries. This reduces the space bound to d lg k + O(d) bits per
node, plus shared information that adds up to o(n)+ O(lg lg k) bits over all nodes. The
space per node is improved to d�lg k� bits by storing the rank information approximately
and reconstructing the exact values during a query.

A common extension to the dictionary problem is that every element of the set S is
associated with satellite data from a set V . A membership query “x ∈ S?” should then
return the satellite data associated with x if x ∈ S. In what follows, if f is a mapping
from a finite set X to a finite totally ordered set Y , by ‖ f ‖we mean max{ f (x) : x ∈ X},
and for integer m ≥ 1, [m] denotes the set {1, . . . ,m}. For y ≥ x ≥ 1, and z ≥ 1,
c > 0, let gc(x, y, z) = x(lg y − lg x + lg z + c). If x, y, z are all positive powers of
2, gc represents a “nearly” space-optimal cost of storing x keys from [y] with satellite
information from [z].

The following lemma will be used in Theorem 4.1 to augment a dictionary support-
ing just membership (along with some satellite information) to support also the rank
operation with little extra space. The main trick is to store explicitly some partial rank
information as satellite information (except for a sparse number of elements for whom
the full rank information is implicitly stored). This saves a linear number of bits.

LEMMA 4.1. Let N ,M be integers such that M ≥ N ≥ 1, and let A ⊆ [M] with
|A| = N . Suppose there is a constant c > 0 such that a dictionary for an arbitrary
A′ ⊆ A, |A′| ≥ N/2, along with satellite information from [s] for any s ≥ 1 can be
stored using at most gc(|A′|,M, s) bits to support membership queries on A′ in O(1)
time. Then there is a dictionary with rank that stores A using at most N�lg M� bits that
supports rank() queries in O(1) time.

PROOF. Suppose without loss of generality that N ≥ 2c+4 (otherwise just list A explic-
itly). Let x0 < · · · < xN−1 be the elements of set A. Let 4 ≤ r ≤ N be an integer and
let N ′ = N − �N/r�.

We write down r using �lg N� bits and explicitly write down the keys B = {x0, xr , x2r ,

. . .} in sorted order using (N−N ′)�lg M� bits. Finally we store A′ = A\B in the assumed
dictionary, where the key xi ∈ A′ is stored along with satellite information i mod r . Note
that |A′| = N ′ ≥ N/2.

To answer rank(x) queries, we do a binary search to find the predecessor of x in B.
If x ∈ B we are done, as x’s rank in A is easily calculated. Otherwise, we locate x in the
dictionary for A′, and if x is found, we take the associated satellite data and, x’s rank in
B, and thereby calculate its rank in A.

We choose r = ⌊N/2c+2
⌋

, and note that r ≥ 4. The set A′ together with its satellite
information is stored in at most N ′(lg M − lg N ′ + lg N − (c+ 2)+ c) ≤ N ′(lg M − 1)
bits (recall that lg N ≤ lg N ′ + 1). Adding in the �lg N� bits that represent r , this is
still less than N ′�lg M� bits, since N ≥ 4. Thus, the overall data structure takes at most
N�lg M� bits as desired. Since |B| = �N/r� = O(2c), the binary search on B takes
O(c) = O(1) time, and all other operations on this data structure also take O(1) time.
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THEOREM 4.1. Let N ,M ≥ 1 be integers, and let S ⊆ [M] be a set of size n ≤ N .
Suppose we have access to two functions hS, qS : [M] �→ IN, satisfying the following
conditions:

1. hS is 1–1 on S.
2. hS and qS can be evaluated in O(1) time and from hS(x) and qS(x) one can uniquely

reconstruct x in O(1) time.
3. ‖hS‖ is O(N 2) if n >

√
lg N and ‖hS‖ is (lg N )O(1) otherwise.

4. �lg ‖hS‖� + �lg ‖qS‖� is lg M + O(1).

Then we can represent S using n�lg M� bits plus a precomputed table of size o(
√

N )
bits that depends only upon ‖hS‖, if n ≤ √lg N . Assuming a word size of at least
lg max{M, N } bits, and that ‖hS‖ and ‖qS‖ are known, we can support rank in O(1)
time.

PROOF. Let n0 be a sufficiently large constant, to be determined later. Depending upon
the value of n, we apply one of three approaches. If n ≤ n0, we explicitly write down the
elements of S. If n >

√
lg N , we represent hS(S) using a perfect hash function; since n

is not too small, the space for the hash function can be seen to be O(n) bits. Finally, in
the intermediate range we represent hS(S) implicitly and operate upon it by table lookup
(see the paragraph before the start of Section 4.1). In both the latter cases, additive O(n)
terms are hidden by using Lemma 4.1.

Case I: n0 ≤ n <
√

lg N . We begin by showing that any T ⊆ S, |T | ≥ |S|/2, can be
stored along with satellite data from [�] in at most gc(|T |,M, �) bits for some constant
c > 1 and for any integer �.

Let T = {x1, . . . , xn′ }. As hS is 1–1 on T , let π be the permutation such that yi =
hS(xπ(i)), for i = 1, . . . , n′ and y1 < y2 < · · · < yn′ . The data structure consists of the
following three components:

1. An implicit representation of the set T ′ = {y1, . . . , yn′ }.
2. An array sat of size n′ such that sat[i] contains the satellite information associated

with xπ(i).
3. An array Q of size n′ such that Q[i] = qS(xπ(i)), i.e, Q[i] is the quotient corresponding

to yi .

Given a query key x , we first find the index i such that yi = hS(x), if such an i exists.

Since the size of the representation of T ′ is
⌈

lg
(‖hS‖

n′
)⌉ = O(n′ lg ‖hS‖) = o(lg N ), one

can use this representation to index into a table of size o(
√

N ) and accomplish this in
O(1) time. If no such i exists, then x �∈ T . If such an i exists, then xπ(i) is the only
candidate for a match in T . Next, we reconstruct this key from yi and Q[i], and if it
matches we return sat[i].

The size of the representation of T is
⌈

lg
(‖hS‖

n′
)⌉ + n′(�lg ‖qS‖� + �lg ��); since

lg
(‖hS‖

n′
) = n′(lg ‖hS‖ − lg n′) + O(n′), and �lg ‖hS‖� + �lg ‖qS‖� is lg M + O(1) by

assumption, the space used is n′(lg M − lg n′ + lg �) + O(n′), which is expressible as
gc(|T |,M, �) bits for some constant c > 0, as required.
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Now, by applying Lemma 4.1, we can represent S using n�lg M� bits and support
rank queries in O(1) time.

Case II: n ≥ √lg N . We again show that any T ⊆ S, |T | ≥ |S|/2, can be stored along
with satellite data from [�] in at most gc′(|T |,M, �) bits for some constant c′ > 0. Again,
let T = {x1, . . . , xn′ } and T ′ = {hS(x) | x ∈ T }. Our approach is essentially as above,
except that we use observations from [27] in place of item 1 in Case I to store T ′ (see
Remark 2 after proof).

Recall that a function f : [‖hS‖] → [n′] is said to be perfect for T ′ if it is 1–1 on
T ′. Schmidt and Siegel [31] have shown that such a function f can be represented in
O(n′ + lg lg ‖hS‖) = O(n + lg lg N ) = O(n) bits, and can be evaluated in O(1) time
for any argument in its range. For i ∈ [n′] we let f −1(i) denote the unique y ∈ T ′ such
that f (y) = i . A first cut at the data structure consists of:

1. A function f as above.
2. An array Y of size n′ such that Y [i] contains f −1(i).
3. An array sat of size n′ such that sat[i] contains the satellite information associated

with f −1(i).
4. An array Q of size n′ such that Q[i] = qS( f −1(i)).

As observed by Pagh [27, Proposition 2.2] we can save space by storing not the full key
f −1(i) in location Y [i], but only the quotient information that distinguishes it from the
part of [‖hS‖] that is mapped to i under f (Knuth [20, p. 525] attributes the general
concept to Butler Lampson). By doing this, we can store Y in n′(lg ‖hS‖− lg n′)+O(n′)
bits and still support membership queries in T ′ in O(1) time.

Given a query key x , we determine if hS(x) ∈ T ′ by calculating i = f (hS(x)) and
inspecting Y [i]. If so, we determine if x ∈ T by inspecting Q[i], and if so, we return
sat[i]. The size of the representation of T is clearly n′(lg M − lg n′ + lg �)+ O(n′) =
gc′(|T |,M, �) bits, as desired. Again, by Lemma 4.1, we can represent S using n�lg M�
bits and support rank queries in O(1) time.

Case III: n < n0. We write down the elements of S in sorted order, using n�lg M� bits.
Note that n0 can be chosen to be 2max{c,c′}+3.

REMARKS. 1. The function hS is essentially a “range reduction” commonly used in
perfect hashing. Indeed, the first two steps of the FKS scheme [11] show the existence
of the function hS with a range of O(|S|2) and qS(x) is simply the quotient information
required to recover x given hS(x). However, for a small set S, the space to represent
the function hS can become dominant. The solution to this is to use the same function
for several small sets. This is why hS has a relaxed range of O((lg N )c), rather than the
minimum range of O(lg N ). We get to these details in the next lemma.

2. The argument for Case II could be shorter if we could use Theorem 6.1 of [27], and
store the qS() values as additional satellite data. Unfortunately, the condition s = mO(1)

at the start of Section 6 of [27] may not hold in our case.

LEMMA 4.2. Let N ,M ≥ 1 be integers, and let 0 < i1 < i2 < · · · < is < N be a
sequence of integers. Let Si1 , Si2 , . . . , Sis all be subsets of [M] such that

∑s
j=1 |Sij | ≤ N .
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Then there exist functions hSij
and qSij

for j = 1, . . . , s that satisfy the conditions of
Theorem 4.1, and that can be represented in o(N )+ O(lg lg M) bits.

PROOF. Let nij = |Sij | and let S∗ = ⋃s
j=1 Sij . We first define a function f , which is a

“global” range reduction.
If M ≤ N 2 define f as f (x) = x . Otherwise, if M > N 2, then we find a hash

function f given by f (x) = (ax mod p) mod N 2 for some prime p ≤ N 2 lg M and
1 ≤ a ≤ p − 1 which maps S∗ bijectively into the set [N 2]. The existence of such a
function is guaranteed by FKS [11]. Let a−1 be the inverse of a modulo p, i.e., the unique
integer x, 1 ≤ x ≤ p − 1, such that ax mod p = 1. The function f , along with a−1, is
represented using O(lg N + lg lg M) bits.

Note that choosing hSij
= f suffices if nij ≥

√
lg N , but if Sij is small, i.e., nij <√

lg N , then we need to reduce the range even further. We form N/ lg N groups of sets,
where the �th group consists of the sets {Sij |��lg N� + 1 ≤ i j < (�+ 1)�lg N }�. Let S�
be the union of all elements in the small sets in the �th group. For the �th group, find
a prime p� such that the function g�(x) = f (x) mod p� is 1–1 on the set f (S�). Such
a p� whose value is at most O(|S�|2 lg N ) exists, since ‖ f ‖ is O(N 2) [11], [31]. Since
|S�| ≤ (lg N )3/2 we can represent p� using O(lg lg N ) bits.

We store these primes, indexed by their group number in a separate table. Each prime
is stored in a field of b = �(lg lg N ) bits. If S� is empty (i.e., there is no small set in the
�th group) then the table contains a string of b zeros in the entry corresponding to that
group. The total space required by this table is o(N ) bits. For a small set Sij the function
hSij

which is required by Theorem 4.1 is defined by hSij
(x) = g�( f (x)) if Sij belongs to

the �th group.
Next we go on to describe the functions qS required in Theorem 4.1. To recover the

original element x from g�(x), we need to store the following “quotient” value:

q�(x) =
(
(x div p)

⌈
p/N 2

⌉+ ((ax mod p) div N 2
)) ⌈

N 2/p�
⌉+ f (x) div p�.

From g�(x), q�(x) and using p and p� (and a−1, if needed) one can obtain x in constant
time. Observe that lg‖hSij

‖ + lg‖qSij
‖ ≤ lg M + 4, which satisfies the hypothesis of

Theorem 4.1.

THEOREM 4.2. Let S1, S2, . . . , Ss all contained in [k] be given sets with Si containing
di elements, such that

∑s
i=1 di = n. Then this collection of sets can be represented using

n�lg k� + o(n) + O(lg lg k) bits, supporting rank(x, Si ) operations in constant time.
Here rank(x, Si ) returns the rank of the element x in set Si if x ∈ Si and returns −1
otherwise. We assume that we have access to a constant time oracle which returns the
starting position of the representation of each dictionary.

PROOF. This follows almost immediately from Theorem 4.1, applied with N = n and
M = k. The first thing to note is that there are only polylogarithmically many tables for
operations on small sets, thus the space required by all tables put together is o(n). The
second thing is that in order to find the start of the representation of a set Si easily, the
representations of all sets Si would need to be padded out to precisely |Si |�lg k� bits if
necessary.
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Fig. 3. Our cardinal tree encoding of the tree in Figure 2.

4.2. Putting Things Together. To summarize, the construction of the representation of
a k-ary cardinal tree is a two-stage process; see Figure 3 for an example. First we store the
representation of the ordinal tree (the cardinal tree without the labels), and any auxiliary
structures required for those operations, in 2n + o(n) bits. Next, to facilitate an easy
mapping from the ordinal representation to the cardinal information, we traverse the tree
in depth-first order (as in creating the ordinal-tree representation) and store the child
information in a separate array. Besides a global three words, each of �2 lg n + lg lg k�
bits (used for global range reduction), each child-information structure is written using
d�lg k� bits (using Theorem 4.2), and if less space than that is required, the structure is
padded to fill the entire d�lg k� bits. To find the child-information structure for a node
starting at position p in the ordinal tree encoding, we compute the number of open
parentheses strictly before position p, rankopen(p−1), and look at position rankopen(p−
1)�lg k� in the child-information array. Thus we have:

THEOREM 4.3. There is an n(�lg k� + 2) + o(n) + O(lg lg k) bit representation of a
k-ary cardinal tree on n nodes that provides a mapping from the nodes of the tree to
{1, . . . , n} and supports the operations of finding the parent of a node, the child with
label j , and the size of the subtree rooted at any node, in constant time.

Compared with the lower bound of approximately lg k + lg e bits per node, there is
a difference of 0.557305 + o(1) bits per node plus the effects of the ceiling on the lg k
term.

5. Representations for Fixed k. The above structures are intended for situations in
which k is very large and not viewed as a constant. In most applications of cardinal
trees (e.g., B-trees or tries over the Latin alphabet), k is given a priori. It is a matter of
“data structure engineering” to decide what aspects of our solution for “asymptotically
large” k are appropriate when k is 256 or 4. While it may be a matter of debate as to the
functional relationship between 256 and k, it is generally accepted that 4, the cardinality
of the alphabet describing genetic codes, is a (reasonably) small constant.
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A naı̈ve encoding of a cardinal tree of degree 4 is to represent each node as three
nodes in a binary tree, resulting in an encoding that uses 6n + o(n) bits. Theorem 4.3
improves this bound to 4n + o(n) bits. Up to a ceiling and o(n) term, this matches the
information theoretic lower bound of (4 lg 4− 3 lg 3)n = 3.24511 . . . bits. Simplifying
and tuning our prior discussions, we show how to obtain a more succinct encoding:

COROLLARY 5.1. There exists a (3+ 5
12 )n+ o(n) = 3.41667 . . . n+ o(n) bit represen-

tation of a 4-ary cardinal tree on n nodes that provides a mapping from the nodes of the
tree to {1, . . . , n} and supports the operations of finding the parent of a node, the child
of a node with label j , and the size of the subtree rooted at any node, all in constant time.

The basic idea is that some types of cardinal nodes are more common than other types
in a single tree. More precisely, there are 2k types of cardinal nodes, represented by a
characteristic vector of which children are present, but trees necessarily bias towards
certain node types. For example, assuming for the moment that there are no degree-one
nodes, half of the nodes are leaves, and hence half the nodes have type 00 · · · 0. Thus if
we use fewer bits to represent leaves than other nodes, we should be able to achieve an
overall improved space bound.

To achieve this goal, we use a prefix code to encode nodes, that is, an assignment
of bit-strings to node types such that no bit-string is a prefix of another. The particular
prefix code for k = 4 is shown in Table 1.

The overall organization of the data structure is as follows. We first store a bit-string
obtained by concatenating the prefix codes of the nodes of the given 4-ary cardinal tree in
depth-first order of the tree (see Figure 4 for an example). This requires at most (3+ 5

12 )n

Table 1. Prefix code for 4-ary trees.∗

Node degree Node Code(s) Bits per node
0 (leaf) 0000 00

1 0001 010
0010 011
0100 101

3 1
4

1000 1001
2 0011 10000

0101 10001
1001 1100
0110 1101

4 2
3 + 1 · 2

2
= 3 1

3

1010 11100
1100 11101

3 0111 111100
1011 111101
1101 111110

6 1
4 + 2 · 2

3
= 3 5

12

1110 1111110

4 1111 1111111
7+ 3 · 2

4
= 3 1

4

∗The bits per node are calculated by including the cost of representing any leaves
in the subtree of the node, using the fact that d − 1 leaves can be associated to a
node with degree d in a one-to-one manner. Note that these are set-to-set mappings
of node arrangements to codes; we permute the encodings so that the shorter code
is chosen for more frequently occurring nodes of a given degree.
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1111111 1111111 111110 00 00 00 1100 00 00 00 10000 00 00 1111111 00 1111111
00 00 00 00 011 00 1111111 00 00 00 00 111101 1100 00 00 111110 00 00 00 11101

00 00 1111110 10000 00 00 111110 00 00 00 111101 00 00 00—158 bits.

Fig. 4. Prefix encoding of the tree in Figure 2.

bits. We augment this bit-string with o(n) additional bits to allow the bit-string to act as
an array, i.e., to permit access to the i th element (prefix code) in constant time. This is
done by combining Jacobson’s technique for building an index into Huffman coded files
[18] with the ideas used in improving the time complexity of the select structure [6].

Let D be the balanced parenthesis sequence obtained by writing the degrees of nodes
in unary in the depth-first order of the tree, as in Section 3. We store the o(n) bit
auxiliary structures described in Section 3 that are used to support all the navigational
operations on the tree, without storing the sequence D itself. In order to run in O(1)
time, the navigational operations need, in addition to these auxiliary structures, access
to a constant number of segments of O(lg n) bits from D. Thus, if we can reconstruct
a segment of D of length O(lg n) starting at a given position in constant time, then we
can support all the operations supported by the DFUDS representation in O(1) time as
well. Together with the prefix code sequence, we can support the operation of finding a
child with a given label (this also follows from the fact that the maximum degree of a
node is 4). Thus, we now describe how to support the operation of finding a segment of
D of length O(lg n) starting at a given position in constant time, using the prefix code
sequence. For this purpose, we store the following auxiliary structures:

• An array A of size O(n/(lg n)2) that, for every position i ≤ n in D which is a
multiple of (lg n)2, stores: (a) the index j of the node, in the depth-first order of the
tree, to which the i th parenthesis in D corresponds (i.e., it appears in the unary degree
representation of that node), and (b) the offset of the position i from the beginning of
the representation of the corresponding node (which is a number between 0 and 4).
• An array B of size O(n/lg n) that, for every position i ≤ n in D which is a multiple

of (lg n)/2, stores: (a) the value j mod(lg n)2 where j is the index of the node that
corresponds to the i th parenthesis in D, and (b) the offset of the position i from the
beginning of the representation of the corresponding node.
• A o(n) bit precomputed table that, for every possible sequence of ε lg n prefix codes

(for some ε < 1
8 , as the longest prefix code is of length 7), stores the parenthesis

sequence corresponding to this, and also its length.

Now, to find a segment of length O(lg n) starting at position i in D, we first find,
using A, an index j and a value i ′ ≤ (lg n)2 such that the index j corresponds to the
position �i/(lg n)2�(lg n)2 in D, and (i − i ′) is the number of parentheses in the prefix
codes 1 to j − 1. Again, using B, we find another index j ′ and a value i ′′ ≤ (lg n)/2
such that the index j ′ corresponds to the position �2i/lg n�(lg n)/2 in D, and (i − i ′′) is
the number of parentheses in the prefix codes from 1 to j ′. Now, by doing a linear scan
from the j ′th prefix code (in the prefix code sequence) and using the precomputed table,
we can output the required sequence in constant time. Here we use the fact that we can
read (write) prefix codes (unary degree sequences) of O(lg n) nodes in O(1) time.
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6. Conclusion. We have given succinct representations for ordinal and cardinal trees
that require space within a lower-order term of the information theoretic lower bound in
many cases, and are always within an additive linear number of bits of the lower bound.
Our representations support all basic navigational operations in constant time, and also
support the subtree-size operation in constant time. En route we gave a representation
of a static dictionary that supports membership and rank queries of present elements in
constant time.
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