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Introduction

Satisfiability (SAT) needs no 

introduction



OK, I’m Not That Lazy

• SAT     =  { satisfiable boolean formulas in CNF }

• k-SAT  =  { SAT where all clauses have at most k literals}

Two measures of the size of a formula:

• n = number of variables 

• m = number of clauses

Best known worst-case algorithms:

• SAT: [CIP’06]

• k-SAT: [PPZ’97]2n - n/k poly(m)  time

2n – n/O(log m/n) poly(m) ≈ 2n – o(n) time



Can we improve the exponents?

• Is k-SAT always in 2± n poly(m)  time for a universal ± < 1 ?

Let SETH be the hypothesis that the answer is “no”

• Is 3-SAT in 2² n time, for every ² > 0?

Let ETH be the hypothesis that the answer is “no”

Theorem: SETH implies ETH

These hypotheses have been very useful in recent years.

For many polynomial time problems, improving the best 

known algorithms, even slightly, implies ¬SETH or ¬ETH

Contrapositive: If SAT needs exponential time, get strong 

polynomial lower bounds for interesting problems.



The Point(s) of This Talk

I believe SETH is false.

My belief is the minority opinion. 
(But the chances I’ll be proved wrong in my lifetime are nil!)

Even if SETH is true, my belief in the opposite has led 

me to many ideas I’d have never found otherwise.

Will tell you about some of these ideas.



A Few Years Ago in Ithaca, NY

• 1998: Thought I proved P=NP (3SAT in polytime)

• 1999: Learned of Schoening’s local search algorithm for k-SAT 

[FOCS’99] from J. Kleinberg

• July ‘01: Submitted a paper to SODA’02 on solving QBF 

• October ‘01: Paper got in! G. Woeginger saw it. He was

writing a survey about exact algorithms,

sent a draft to me for comment

– Open Problem 4.4: Design an exact algorithm for Max-Cut with time 

complexity �∗ �� for some � <  	

– Open Problem 7.4: Assuming ETH, obtain evidence for SETH

– I became obsessed with solving Woeginger’s open problems…



A Few Years Ago in Pittsburgh, PA

• 2002: Became enamored of the 
(�) time algorithm for

finding a triangle in an �-node graph of Itai and Rodeh

Thm [IR78] 

If � by � matrices can be multiplied in O(�) additions and 

multiplications, then 3-CLIQUE on n-node graphs is in O(�) time.

Proof:

Let A be the � by � adjacency matrix of graph G, and let B = A⋅A

There is a 3-Clique in G 

⇔

There are i, j=1,…,n such that A[i,j] ≠ 0 and B[i,j] ≠ 0

i k j

In fact, can count

the 3-cliques!

B[�, �] = ∑ A �, � ⋅ A �, �� ≠ 0

A[�, �] ≠ 0



A Few Years Ago in Pittsburgh, PA

• 2002: Became enamored of the 
(�) time algorithm for

finding a triangle in an �-node graph of Itai and Rodeh

If we think of �� = 2� for some �, then � = 
 1.74�

• Summer ‘03:  IDEA: express CNF-SAT on � variables 

as an instance of triangle detection on � = 2�/� nodes.

FAILED! Edges can only encode so much!

• Fall ‘03: Edges can encode constraints on two variables

– Max-Cut on � nodes is in � $. %&� time (Open Problem 4.4)

– Max-2Sat on � variables is in � $. %&� time

Appeared in ICALP’04, generalized in my PhD thesis [2007]

• 2005-07: Found other polytime problems whose faster 

solution would refute SETH [Appeared in SODA’10]

(But FAILED to solve them faster)



• k-Dominating Set: Given a graph (V,E), 
find a k-set of nodes S such that  S ∪ N(S) = V.  

Solvable in nk+o(1) time  [EG’04]

If solvable in O(nk-²) time for some k > 2, ² > 0 ⟹ ¬SETH

• 2SAT2: Given a 2CNF on n1+o(1) clauses with two extra clauses of 

arbitrary length, is it satisfiable?    Solvable in n2+o(1) time

If solvable in O(n2-²) time for some ² > 0   ⟹ ¬SETH

• d-SUM:  Given n numbers, are there d that sum to zero?

ETH ⟹ d-SUM requires nΩ(d) time

• OV: Given a set of n binary d-dimensional vectors, 

are there two with inner product equal to zero?

If solvable in n2-² 2o(d) time for some ² > 0 ⟹ ¬SETH

Some Results [PW’10]



Faster K-Dominating Set ⇒ SETH

Theorem. k-Dominating Set in O(nk-²) time 

⇒ SAT in 2(1-²/k)n poly(m) time

Proof.   Given F with n variables and m clauses, we 

construct a graph G on O(k 2n/k + m) nodes, where

G has a dominating set of size k  ⇔ F is satisfiable

Note:  Theorem shows that even tiny improvements 

in solving k-DS imply tiny SAT improvements 



We construct a graph G on O(k 2n/k + m) nodes, where

G has a dominating set of size k  ⇔ F is satisfiable

Split n vars into k parts P1, …, Pk with ≤ n/k+1 variables each. 

Make nodes for all assignments to the variables in a part.

P1 2n/k  

clique

Make a node for every clause in F

P2 2n/k

clique

M
Pk 2n/k

clique

Claim: ∃ k dom set in G ⇔ F is SAT

m

C
A

Put (A, C) as an edge 

⇔ assignment A satisfies clause C



Faster O.V. ⇒ SETH

Theorem. Orthogonal Vectors with n vectors and 

d dimensions in n2-² 2o(d) time 

⇒ SAT in 2(1-²/2)n 2o(m) time

[Sparsification Lemma] ⇒ k-SAT in 2(1-²/2)n time, for all k

Proof Sketch.   Given F with n variables and m clauses, we 

construct a set S of 2n vectors in m+2 dimensions s.t.

S has an orthogonal pair  ⇔ F is satisfiable

Split n variables into two parts P1, P2 with ≤ n/2 variables each. 

Make vectors for all assignments to the variables in a part.

For all assignments A in P1 define a vector vA

vA[i] := 1 iff A doesn’t satisfy ith clause of F, vA[m+1] := 1, vA[m+2] := 0

For all assignments A in P2

vA[i] := 1 iff A doesn’t satisfy ith clause of F, vA[m+1] := 0, vA[m+2] := 1



A Few Years Ago in San Jose, CA

• Summer 2010: Another approach to solving CNF-SAT

IDEA: Try to CNF-SAT by expressing it as some multivariate 

polynomial problem, then using algebraic algorithms like 

Fast Fourier Transform

FAILED! CNF-SAT algs which were much worse than [CIP06]

– But they worked not only for CNF, but also AC0, and ACC0…

• Fall ’10: SAT of ACC0 circuits is in O(2n/nlog n) time

• Next day: Proved that this implies NEXP not in ACC0.

(Was a notorious open problem in circuit complexity)



ACC-SAT Algorithm

• ACC-SAT Constant-depth AND/OR/NOT/MODm

MODm(*$, … , *,) = 1   iff ∑ *-- is divisible by m

[W ‘11]  ACC-SAT  is in 2n – ne
time for circuits of size 2no(1)

MOD6

ORMOD6

AND MOD6

*$    *	 *. *& */ *0 *$ *	 *. *& */ *0



Algorithm for ACC-SAT [W’11]

The ingredients:

1. A known representation of ACC via polynomials

[Yao ’90, Beigel-Tarui’94] Every ACC function 
f : {0,1}n→{0,1} can be put in the form  

f(x1,...,xn) = g(h(x1,...,xn))

- h is a multilinear polynomial with K monomials, 

and over all 0-1 assignments, h(x1,...,xn) ∈ {0,…,K}

- K is not “too large” (quasipolynomial in circuit size)

- g : {0,...,K}  → {0,1} can be arbitrary.

2. Fast Fourier Transform for multilinear polynomials to 

quickly evaluate h on all its possible assignments 



Fast Multipoint Evaluation

Theorem: Given the 2n coefficients of a multilinear

polynomial h in n variables, the value h(x) can be 
computed on all points x ∈ {0,1}n in 2n poly(n) time.

Can write  h(x1, … , xn) = x1 h1(x2, …, xn) + h2(x2, …, xn)

Want a 2n table T that contains the value of h on all 2n points.

Algorithm:  If n = 1 then return T = [h(0), h(1)]

Recursively compute the 2n-1 table T1 for the values of h1, 

and the 2n-1 table T2 for the values of h2

Return the table T = (T2)(T1 + T2) of 2n entries  

Running time has the recurrence R(2n) ≤ 2 R(2n-1)  +  2n poly(n)

Corollary: We can compute g of h on all x ∈ {0,1}n 

in only 2n poly(n) time



ACC Satisfiability Algorithm

Theorem For all d, there’s an ε > 0 such that ACC-SAT with 

depth d, n inputs, 2nε
size can be solved in 2n - Ω(nε)  time

Proof:

n inputs

2nO(ε) 

size

n-nε inputs

C

Size 
2nε

g

…

Take an OR of all assignments 

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Evaluation Alg
For small ε > 0, evaluate 

on all 2n - nε
assignments in 

2n -nε
poly(n)  time

n-nε inputs

22nε
size

Poly.

h



A Year Ago in Stanford, CA

• Summer 2013: Yet another attack on SETH

IDEA: Try to solve O.V. in sub-quadratic time… 

By applying a polynomial reduction to a circuit expressing a 

group of orthogonal vector queries, 

then use matrix multiply/FFT 

FAILED! 
But later [SODA’15] got CNF-SAT algorithms as good as [CIP06]

– However, the idea there could be used to compute another 

kind of inner product instead…



Key Idea 1:  Min-plus inner products are EASY wrt circuit complexity!

Computable with AC0 circuits: constant depth, AND/OR/NOT, polynomial size

Key Idea 2: EASY inner products can be reduced to polynomials over 42

[Razborov-Smolensky’87]  

Randomized reduction from AC0 circuits to polylog-degree polynomials over 4	: 

for every input, the probability the polynomial agrees with the circuit is > ¾.

Key Idea 3: Polynomials can be eff. evaluated on many pairs of points

[Coppersmith’82] (Very) fast rectangular matrix multiplication

All-Pairs Shortest Paths (APSP)
Let 5, 6 ∈ ℕ8. Define the min-plus inner product of 5 and 6 to be 

5 ○ 6 ≔ min
>

5> + 6>

Theorem [Fischer-Meyer, Munro ‘71]

To solve APSP, it suffices to compute the min-plus matrix product of @, A ∈ ℝn × n

@ ○ A -, C = min
>

@ -, > +  A >, C



All-Pairs Shortest Paths (APSP)

Theorem 1: There is a randomized algorithm for

APSP on n-node weighted graphs running in
�.

	D �
time

where D � ≥ F log � $/	.

Was open for 40 years whether 
�.

JKL� �
time was possible for every constant c.



Open Problems

• Give more evidence that SETH is true?

- Prove that ETH is equivalent to SETH?

[Cygan et al. CCC’12] Equivalences

- Prove that ¬SETH implies an unlikely collapse of  

complexity classes?

• Give more evidence that SETH is false? ☺

(Make future talks more satisfying?)



Thank you!


