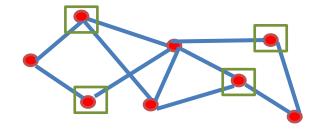
Independent sets in sparse graphs

[B'15]: Bansal[BGG]: Bansal, Anupam Gupta, Guru Guruganesh

Independent set Problem

Given graph G find the largest independent set (size = α (G))

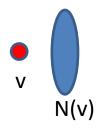
Approx. ratio (Alg) = $\max_{G} \alpha(G) / Alg(G)$



Notoriously hard: $\Omega(n^{0.999...})$ [Hastad 96]Best approx: $n/\log^3 n$ [Feige' 04]

Our Focus: max. degree = d (d+1) approximation trivial (avg. degree d suffices) [Greedy $\geq \frac{n}{d+1}$]

Pick each vertex independently with prob. 1/(2d). Retain v if no conflicts



Sparse graphs

In general n/d bound is tight n/d disjoint copies of K_d

IP: max $\sum_i x_i$ s.t. $x_i + x_j \le 1$ if (i, j) $\in E$ $x_i \in \{0,1\}$ LP relaxation useless: $\Omega(d)$ integrality gap (each $x_i = 1/2$)

First o(d) guarantee: O(d/log log d) [Bopanna, Halldorsson '94] [Ajtai, Erdos, Kolmos, Szemeredi' 81]

Current best: d (log log d) / log d using SDPs [Halperin' 02 , Alon Kahale' 96 + Vishwanathan, Halldorsson'98]

Hardness

 $\Omega(d/\log^2 d)$ assuming UGC [Austrin-Khot-Safra'11] $\Omega(d/\log^4 d)$ assuming P \neq NP. [Chan'13]

Hardness only for small d (For d=n: best approx $O(n/\log^3 n)$ [Feige' 04])

Right answer: $d/\log^2 d$ or $d/\log d$?

(i) SDP seems to not help beyond d log log d/log d (ii) Ramsey theoretic barrier to showing > $d/\log^2 d$ hardness

Generic Approach

If $OPT \le n/k$ (easy, Alg returns greedy n/d) OPT > n/k must return something non-trivial

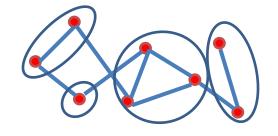
(i) Certify $\alpha(G) < n/k$

(ii) If cannot certify, find non-trivial solution.

Certifying $\alpha(G)$ is small

Clique cover: $V = S_1 \cup \cdots \cup S_t$ (each S_i a clique)

 $\alpha(G) \leq \chi(G)$



Theta number: $\alpha(G) \le \vartheta(G) \le \chi(\overline{G})$ (SDP captures cliques)

If $\vartheta(G) > n/k$, find non-trivial independent set.

Ramsey theory: No large clique \Rightarrow large independent sets

Ramsey theory (bounded degree graphs)

[Ajtai, Komlos, Szemeredi' 80]: If K_3 -free, $\alpha(G) \ge \left(\frac{n}{d}\right) \log d$ (celebrated result; pioneered nibble method)

Tight: Random graph G(n,d/n) (girth $\approx \log n$)

Several other proofs known by now.

Johansson'96a: $\chi(G) \le \frac{d}{\log d}$ [unpublished; Molloy-Reed'02] (several nice ideas)

But K_3 is special: Even K_4 -free case, much more challenging

Ramsey theory (bounded degree graphs)

 K_r – free

[Ajtai, Erdos, Komlos, Szemeredi' 82]: $\alpha(G) \ge c_r\left(\frac{n}{d}\right)\log\log d$

[Shearer'95]: Beautiful entropy method (non-algorithmic)

 $\alpha(G) \ge c_r \left(\frac{n}{d}\right) \frac{\log d}{\log \log d} \qquad \text{(major question: remove log log d)}$ $c_r \approx \frac{1}{r} \qquad \text{(get trivial bound for r > log d / log log d)}$

[Johansson'96b]: Never published, impossible to find, never verified ...

Much stronger: $\chi(G) = O\left(\frac{r d \log \log d}{\log d}\right)$ & Algorithmic!

What does Ramsey give us?

Suppose SDP = n/r

(\approx each vertex contributes 1/r, say K_r -free)

Shearer:
$$\alpha(G) \ge \frac{1}{r} \left(\frac{n}{d}\right) \frac{\log d}{\log \log d}$$

Integrality gap =
$$\frac{SDP}{\alpha(G)} \leq d \frac{\log \log d}{\log d}$$

Same as given by Halperin, Alon-Kahale, ... (perhaps not so surprising)

Can we combine Halperin + Ramsey?

Our Results

Thm[B'15]: $O(\log^4 d)$ levels of SA+ hierarchy, integrality gap $\approx \frac{a}{\log^2 d}$ (Entropy method: does not give a algorithmic result)

Thm[B'15]: n^c quasipoly(d) time, d/log d approx. (beats Halperin by log log d)

Use O(log d) levels of SA+ to simulate AEKS'82 + Halperin

Thm[BGG] : Can get $\approx d/\log^2 d$ approximation in $n^c exp(d)$ time.

(Use Johansson instead of entropy method, but need d levels of SA+) (Johansson described in BGG)

Our Results

Thm [BGG] : Standard SDP, integrality gap $\approx d/\log^{3/2} d$ Non-algorithmic. Extend Shearer's result.

[Shearer'95]: $\alpha(G) \ge \left(\frac{n}{d}\right) \frac{\log d}{r \, \log \log d}$

Thm[BGG]: For any r, $\alpha(G) \ge \left(\frac{n}{d}\right)\sqrt{\log d / \log r}$ Eg. can set r = $\log^{100} d$

Thm [BGG]: LP based \approx d/log d approximation (SA d-levels)

Rest of the talk

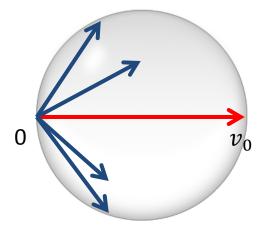
- SA+ -> better guarantees
- Shearer's entropy method
- Sketch of our K_r -free result
- Nibble Methods

See main idea behind each

Standard SDP formulation

SDP (vector program): vector v_i for vertex i. Intended solution: $v_i = v_0$ if i chosen, 0 otherwise.

$$\begin{array}{ll} \text{Max } \Sigma_i \quad v_i \cdot v_i \\ v_i \cdot v_j &= 0 & \text{if } (i,j) \in E \\ v_i \cdot v_0 &= v_i \cdot v_i \\ v_0 \cdot v_0 &= 1 \end{array}$$



$$\left(v_i - \frac{v_0}{2}\right) \cdot \left(v_i - \frac{v_0}{2}\right) = \frac{v_0 \cdot v_0}{4} = \frac{1}{4}$$

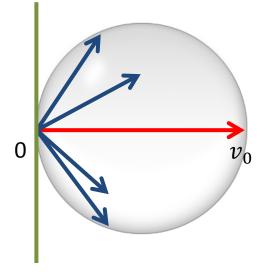
Exercise: Total contribution of a clique ≤ 1

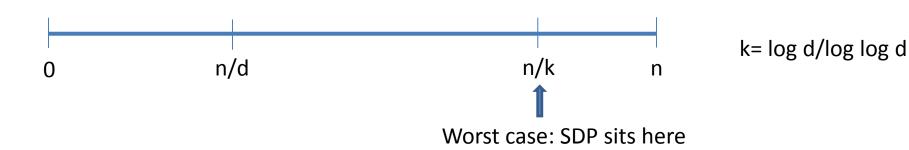
Halperin's Rounding

Halperin: If SDP value = c n log log d/ log d, gives independent set of size (n/d) $(\log d)^{2c-0.5}$

Sketch: Consider subspace v_0^{\perp} Let $w_i = \operatorname{Proj}(v_i)$ on v_0^{\perp} $(w_i = v_i - a_i v_0)$

If v_i and v_j orthogonal, then w_i and w_j are negatively correlated KMS rounding: Get advantage over random





$\frac{d}{\log^2 d}$ -approx with d levels of SA+ hierarchy

Hierarchies

Automatic way to strengthen LP or SDP relaxation by adding constraints (Lovasz Schrijver, Sherali Adams, Lasserre, ...)

k-levels: $\approx n^k$ variables n-levels = exact integer program

$$\max \sum x_{i,1} \\ x_{i,1} + x_{j,1} \le 1 \quad (i,j) \in E \\ x_{i,0} + x_{i,1} = 1$$

Distributional view: $x_{i,1}$ = Pr[vertex i is picked] (marginals) For an edge (i,j), cannot pick simultaneously

All-half solution: For edge (i,j) have (1,0) or (0,1) with prob. 0.5

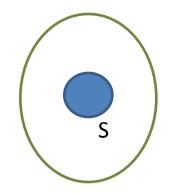
Hierarchies

Automatic way to strengthen LP or SDP relaxation by adding constraints (Lovasz Schrijver, Sherali Adams, Lasserre, ...)

k-levels: $\approx n^k$ variablesn-levels = exact integer program $\max \sum x_{i,1}$ $x_{i,1} + x_{j,1} \leq 1$ (i, j) $\in E$ Variables: $x_{\{S,\alpha\}}$ $\alpha \in \{0,1\}^{|S|}$ $x_{i,0} + x_{i,1} = 1$ Various constraints

For any subset of \leq k vertices S,

- 1) A distribution over valid 0-1 assignments to S.
- 2) For S and T, distributions are consistent over $S \cap T$.



Strengthen SDP with d-levels of SA

Let $x_i = v_i \cdot v_i$ (contribution of i to objective)

If $Val \le n/\log^2 d$, done. Assume each $x_i \ge 1/(2\log^2 d)$ (delete i if not)

Claim: For any v, neighborhood N(v) is $O(\log^3 d)$ colorable.

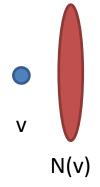
Proof: $|N(v)| \le d$, SA solution defines distribution over independent sets of N(v), s.t. each vertex lies in $\ge 1/(2 \log^2 d)$ fraction of sets.

Alon'96: For locally-r colorable graphs

$$\alpha(G) \ge c \, \left(\frac{n}{d}\right) \left(\frac{\log d}{\log r}\right)$$

Make algorithmic via Johansson

Recall SDP \approx n/log d



Locally-r-colorable graphs [Alon]

Goal:
$$\alpha(G) \ge c \left(\frac{n}{d}\right) \left(\frac{\log d}{\log r}\right)$$

Proof: Pick set S uniformly from all independent sets.

$$p_{v} = E_{S}[|S \cap \{v\}|] \quad \text{and} \quad Y_{v} = E_{S}[|S \cap N(v)|]$$
$$E[S] = \sum_{v} p_{v} \quad \text{and} \quad E[S] \ge \frac{1}{d} \sum_{v} Y_{v}$$

Suffices to show :
$$p_v + \frac{Y_v}{d} \ge 2c \left(\frac{1}{d}\right) \frac{\log d}{\log r}$$
 for all v.

In fact will show this holds for every conditioning of $S \setminus (v \cup N(v))$

$$p_v + \frac{Y_v}{d} \ge 2c \left(\frac{1}{d}\right) \frac{\log d}{\log r}$$

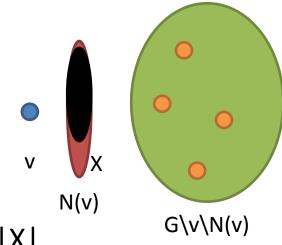
Condition on $S \cap G \setminus v \setminus N(v)$ Let X be vertices still available in N(v), and x = |X|

To extend independent set to G

- 1) Either pick v (only)
- 2) Pick an independent set in X (and not v)

Let $2^{\epsilon x}$ be the number of independent sets in X.

$$\frac{1}{2^{\epsilon x} + 1} + \frac{1}{d} S \frac{2^{\epsilon x}}{2^{\epsilon x} + 1}$$
 s = avg. size of independent set in X



$$p_{v} + \frac{Y_{v}}{d} \ge 2c \left(\frac{1}{d}\right) \frac{\log d}{\log r}$$
Condition on $S \cap G \setminus v \setminus N(v)$
Let X be vertices still available in N(v), and x = |X|

Let $2^{\epsilon x}$ be the number of independent sets in X.

Fact: $2^{\epsilon x}$ subsets in a universe of size x have size $\geq c \frac{\epsilon x}{\log 1/\epsilon}$

$$\frac{1}{2^{\epsilon x} + 1} + \frac{1}{d} C \frac{\epsilon x}{\log 1/\epsilon} \frac{2^{\epsilon x}}{2^{\epsilon x} + 1}$$

If
$$2^{\epsilon x} \leq \sqrt{d}$$
 done.
Otherwise, $\frac{\epsilon x}{\log 1/\epsilon} \geq \frac{\frac{1}{2}\log d}{\log r}$ (as $\epsilon \geq \frac{1}{r}$)

Reducing the number of levels

Don't really need locally-r-colorable

Suffices if every subset S of N(v) with $|S| \le r \log^2 d$ is fractionally r-colorable

For us, $r = \log^2 d$. So $O(\log^4 d)$ levels of SA+ suffice

Gives an existential proof.

Open: Can Johansson's work with this weaker condition?

Shearer's K_r -free proof

 K_r -free graph has an independent set of size $\approx x^{1/r}$ Off-diagonal Ramsey: R(s,t) $\approx {\binom{s+t}{s}}$

So $\geq \exp(x^{1/r})$ independent sets in X. Apply to entropy method (with $\epsilon x \geq x^{1/r}$)

Some algebra:
$$\alpha(G) \ge \frac{1}{r} \left(\frac{n}{d}\right) \frac{\log d}{\log \log d}$$

Our idea to extend to higher r: Do a more refined counting of independent sets.

Puzzle

For K_3 -free graphs $\alpha(G) \ge \frac{n}{d} \log d$

Number of independent sets $\geq 2^{\alpha(G)}$, at most $\binom{n}{\alpha(G)} \approx d^{\frac{n}{d} \log d}$ Where is the truth?

Thought experiment: Sample each vertex with $p = \frac{1}{\sqrt{d}}$. Get G': $N' \approx pn$ $d' \approx pd$ so $\frac{n'}{d'} \approx \frac{n}{d}$ So $\alpha(G') \ge \left(n'\frac{\log d'}{d'}\right) = (n/d)$ (½ log d) G G G'

Key: Now, G must contain many such sets

A word about nibble methods

Nibble Methods (Johansson)

Coloring with s << d colors.

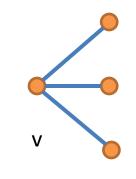
Each vertex maintains list of available colors. Initially L(v) = {1,...,s} Each round:

Some vertices activate, pick a random color from list. Neighbors update their lists.

or from list.

Thought experiment: If $s = 2 d / \log d$ Each neighbor of v picks independently Pr [color i left for v] $= \left(1 - \frac{1}{s}\right)^d = \frac{1}{\sqrt{d}}$

Enough colors will be left for v.



Nibble Methods (Johansson)

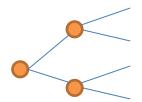
Coloring with s << d colors.

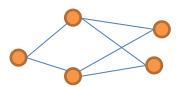
Each vertex maintains list of available colors. Initially L(v) = {1,...,s} Each round: Some vertices activate, pick a random color from list. Neighbors update their lists.

Kim'95: Girth 5, lists of neighbors of $v \approx$ independent

Triangle-free: Not true (new ideas: entropy, energy) Johansson'96a: Never published; Molloy Reed book

 K_r free, locally r-colorable (new ideas: modifies the process) Johansson'96b





Open questions

Is SDP integrality gap $d/\log^2 d$?

Best upper bound on $\alpha(G)$ for K_r -free graphs: $\alpha(G) \leq \left(\frac{n}{d}\right) \frac{\log d}{\log r}$ Matching tight (lower) bound will imply the result

Obtain an algorithmic $d / \log^{3/2} d$ approximation for SDPs (extend Johansson's approach)?

Using SA+, $d/\log^2 d$ approximation in n^c quasi-poly(d) time.

Questions!