Fixed-parameter tractable canonization and

isomorphism test for graphs of bounded treewidth

Michat Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Workshop on Exact Algorithms and Lower Bounds, IIT Delhi,
December 14th 2014

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Source

@ Joint work with:

o Daniel Lokshtanov,
o Marcin Pilipczuk, and
o Saket Saurabh.

@ Presented at FOCS 2014.
@ Check out arxiv.org/abs/1404.0818

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

In the GRAPH ISOMORPHISM problem, given two graphs G; and G, we
are to check if they are isomorphic.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

In the GRAPH ISOMORPHISM problem, given two graphs G; and G, we
are to check if they are isomorphic.

Michat Pilipczuk Graph Isomorphism parameterized by ti

Graph Isomorphism

In the GRAPH ISOMORPHISM problem, given two graphs G; and G, we
are to check if they are isomorphic.

GRAPH ISOMORPHISM

Input: Graphs G; and G,
Question: Is there a bijection ¢: V(G1) — V(Gy) s.t. uv € E(Gy) iff

P(u)o(v) € E(G2)?

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.
@ Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]

planar graphs [Hopcroft-Wong'74]

interval graphs [Booth-Lueker'79]

permutation graphs [Colbourn’81]

bounded genus graphs [Miller'80], [Filotti-Mayer'80]
bounded degree graphs [Luks'82]

graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount'82]

bounded treewidth graphs [Bodlaender'90]

e graphs excluding a fixed minor [Ponomarenko’91]

e graphs excluding a fixed topological minor [Grohe-Marx'12]

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.
@ Many polynomial-time algorithms for special graph classes:

trees [Kelly'57]

planar graphs [Hopcroft-Wong'74]

interval graphs [Booth-Lueker'79]

permutation graphs [Colbourn’81]

bounded genus graphs [Miller'80], [Filotti-Mayer'80]
bounded degree graphs [Luks'82]

graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount'82]

bounded treewidth graphs [Bodlaender'90]

o graphs excluding a fixed minor [Ponomarenko’91]

o graphs excluding a fixed topological minor [Grohe-Marx'12]

@ In almost all the relevant cases above, these are XP algorithms.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism of trees

@ Root Gj in r; and guess its image r>.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism of trees

@ Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism of trees

@ Root Gj in r; and guess its image r».
@ Run a bottom-up dynamic programming with the following table:
For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

e Fill T[-,:] in a bottom-up manner. T[r, ry] is the answer.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism of trees

Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T[-,-] in a bottom-up manner. T[r, r2] is the answer.

Computation at one step boils down to a matching problem.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism of trees

Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T[-,-] in a bottom-up manner. T[r, r2] is the answer.

Computation at one step boils down to a matching problem.
Hard exercise: Do it in linear time.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Planar Graph Isomorphism

Theorem (Hopcroft-Tarjan'73)

Given a graph G, one can in linear time compute its decomposition into
3-connected components. Moreover, the decomposition is
isomorphism-invariant.

+

Theorem (Whitney)

A 3-connected planar graph has unique planar embedding.

It is easy to compare embedded graphs.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

(0]
L=
o
T
—
a0
L=
4
S
=
[}
(]
—
-+
e
[}
O
=
>
O
m

tree

=
T
z
3
4
5
z
-
2
N
53
2
©
E
fd
5
a
=
.2
=
E
o
=
o
2
=
5
e

G

Michat Pilipczuk

Bounded treewidth graphs

tree treelike

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

<

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5.

Theorem (Our result)

There is an algorithm, that given a graph G and integer k, runs in
20(K*log k) . 5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1,2, ..., n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

@ Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and

(G2, (T2, B3)).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

o We can have some preliminary guessing, like guess one matched pairs
of vertices etc.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.
o We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
e More formally, we can generate f(k)no(l) candidate decompositions,
and compare every pair.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.

e Due to unique decomposition into 3-connected components.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.

o Due to unique decomposition into 3-connected components.

@ Assumption 1: no clique separators.

o A decomposition by clique separators with unique set of bags.
[Tarjan’85]
o In particular, 2-connected.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.
o Due to unique decomposition into 3-connected components.

@ Assumption 1: no clique separators.

o A decomposition by clique separators with unique set of bags.
[Tarjan’85]

o In particular, 2-connected.

e Assumption 2: Yuv ¢ E(G), there is a u-v vertex cut of size < k.
e If not true for some uv, add edge uv. (So-called improved graph.)
o Isomorphism-invariant operation if done at once for all such uv.
e Maintains assumption tw(G) < k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Assumptions:
@ 2-connected graph G, no clique separators.

o For every uv ¢ E(G), there is a u-v vertex cut of size at most k.

Task:
Compute isomorphism-invariant tree decomposition of G of width ~ k.
(Possibly after some small preliminary guessing.)

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

e E

Task in the recursion:
@ given a graph G and a set S C V(G), |S| < 10k,

@ compute a tree decomposition of G of width O(k) with S in the top
bag.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

O

|- mde

- @@

Task in the recursion:
@ given a graph G and a set S C V(G), |S| < 10k,
@ compute a tree decomposition of G of width O(k) with S in the top
bag.

Step 1: If S = V(G), return single bag S.
Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.

There exists Y C V(G), |Y| < k + 1, such that every connected
component of G — Y contains at most |S|/2 vertices of S.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.

There exists Y C V(G), |Y| < k + 1, such that every connected
component of G — Y contains at most |S|/2 vertices of S.

@ There is a partition S = 51 W S, with |S1],]5:] < 2|5]/3 s.t. the
minimum S;-S, cut has size at most k + 1.

@ lIterate through all such partitions and let X be the found mincut.

@ Pick X U S as the root bag.

@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

e Find X by checking mincut for every balanced partition S = 5; W S,.
@ Pick XU S as a root bag.
o Size <10k + k + 1.
@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
o [N(C)| <2|S|/3+ |X| < 10k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

e Find X by checking mincut for every balanced partition S = 5; W S,.
@ Pick XU S as a root bag.
o Size <10k + k + 1.
@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
o [N(C)| <2|S|/3+ |X| < 10k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

e Find X by checking mincut for every balanced partition S = 5; W S,.
@ Pick XU S as a root bag.
o Size <10k + k + 1.
@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
o [N(C)| <2|S|/3+ |X| < 10k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Robertson-Seymour approximation

Two arbitrary decisions:
o Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.
o Which vertex to choose?
@ Step 3: Pick any separator X that splits S well.
o Which separator to choose?

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Submodularity of cuts

/ N

o Let N(A) and N(B) be two minimum uv separators.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Submodularity of cuts

o Let N(A) and N(B) be two minimum uv separators.
@ Then N(AN B) and N(AU B) are also minimum uv separators.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Submodularity of cuts

o Let N(A) and N(B) be two minimum uv separators.

@ Then N(AN B) and N(AU B) are also minimum uv separators.

@ Therefore there is a notion of minimum wuv separator closest to u
and closest to v.

o Unique minimum separators that leaves inclusion-wise minimal and
maximal set of vertices reachable from w.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

e Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

o Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.

@ Suppose |S| < 10k. For every u,v € S, uv ¢ E(G), u# v, let X, ,
be the minimum uv separator closest to u.
Pick root bag

B = 5 U U Xu,v-
u,veS,uv¢E(G),u#v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

B:=SU U Xy v
u,veS,uv¢E(G),u#v

@ Again, recurse on (G[N[C]], N(C)) for C being connected
components of G — B.

o Definition is isomorphism invariant, and |B| = O(k|S|?).
o N(C) can be as big as O(k|S|?).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

B:=SU U Xy v
u,veS,uv¢E(G),u#v

@ Again, recurse on (G[N[C]], N(C)) for C being connected
components of G — B.

o Definition is isomorphism invariant, and |B| = O(k|S|?).
o N(C) can be as big as O(k|S|?).

@ Issue: do we always make progress?

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

B:=SuU U Xy
u,veS,uv¢E(G),u#v

e We will always recurse on instances of the form
(G[N[C]], S := N(C)) for some connected C.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 2

B:=SuU U Xy
u,veS,uv¢E(G),u#v

@ We will always recurse on instances of the form
(G[N[C]], S := N(C)) for some connected C.
@ Hence S = N(C) is always a separator, and thus never a clique.

o We need to hack it at the begining of the recursion, but we can use
preliminary guessing for that, e.g., guess a mapping on one non-edge.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

optimum

decomposition of G:

Step 3: We have |S| > 10k and tw(G) < k.

There exists a partition S = S1 W S, with |S1],|S2| < 2|S|/3 such that
there is X C V(G) with |X| < k + 1 that separates S; from S,.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

@ Pick root bag

B=su |J Xee
P,Q as above

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

@ Pick root bag

B=su |J Xeoe
P,Q as above

@ Recurse as previously on all (G[N[C]], N(C)) for C being connected
components of G — B.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|>**4).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|***4).

@ But the main question is: how big can be N(C) for C being a
connected component of G — B.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|***4).

@ But the main question is: how big can be N(C) for C being a
connected component of G — B.

Lemma (The crux)

For every connected component C of G — B we have |[N(C)| < |S].

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

Lemma (The crux)

For every connected component C of G — B we have |N(C)| < |S|.

@ We analyze adding sets Xp o to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G — B.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

Lemma (The crux)

For every connected component C of G — B we have |N(C)| < |S|.

@ We analyze adding sets Xp g to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G — B.

@ Initially, every component of G — S has neighborhood contained in S.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Now consider adding one new pink cut Xp q.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Now consider adding one new pink cut Xp q.

@ A border replacement argument says that the borders of components
do not increase.

o Formally, we use the notion of a separation and submodularity.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Solution to Step 3

@ Now consider adding one new pink cut Xp q.

@ A border replacement argument says that the borders of components
do not increase.

o Formally, we use the notion of a separation and submodularity.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.

Step 3: If |S| > 10k, add a minimum cut of size < k + 1 for every pair
(P, Q) of sets of size k + 2.

o Bag of size O(k|S|?+4).
@ The crux: does not blow up |S] in the subcalls.

@ Thus, |S| = O(k3) all the time and bags size is bounded by
20(k|og k).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.

Step 3: If |S| > 10k, add a minimum cut of size < k + 1 for every pair
(P, Q) of sets of size k + 2.

o Bag of size O(k|S|?+4).
@ The crux: does not blow up |S] in the subcalls.

@ Thus, |S| = O(k3) all the time and bags size is bounded by
20(k|og k).

For a graph G of treewidth < k, we can obtain an isomorphism-invariant

family of at most n? tree decompositions with bags of size 2°(k1°€k) and

adhesions of size O(k®).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

For a graph G of treewidth < k, we can obtain an isomorphism-invariant

(k log k)

family of at most n® tree decompositions with bags of size 2© and

adhesions of size O(k3).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

Theorem

For a graph G of treewidth < k, we can obtain an isomorphism-invariant
family of at most n® tree decompositions with bags of size 20(k1ogk) and
adhesions of size O(k3).

Theorem

| \

We can check if two graphs of treewidth < k are isomorphic in time
22@(k log k) . no(l)

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Graph Isomorphism

Theorem

For a graph G of treewidth < k, we can obtain an isomorphism-invariant
family of at most n® tree decompositions with bags of size 20(k1ogk) and
adhesions of size O(k3).

Theorem

| \

We can check if two graphs of treewidth < k are isomorphic in time
22@(k log k) . no(l)

Now: a quick sketch how to reduce dependency on k to 2k

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and

adhesions of size O(k%), but the graph is of treewidth < k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and
adhesions of size O(k?), but the graph is of treewidth < k.

@ Every our bag B can be further decomposed with width < k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and
adhesions of size O(k?), but the graph is of treewidth < k.

@ Every our bag B can be further decomposed with width < k.

e We output every subset of size O(k*) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k*).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of
V(G) of size O(k*) and B contains all bags of some tree decomposition

of G.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

Theorem

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of

V(G) of size O(k*) and B contains all bags of some tree decomposition
of G.

Theorem

| A,

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5

v

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Getting single-exponential running time

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of
V(G) of size O(k*) and B contains all bags of some tree decomposition

of G.

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5

There is an algorithm, that given a graph G and integer k, runs in
20(Klog k) . n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1,2, ... n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Conclusions

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20K 1og k) . 5.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

Conclusions

Isomorphism of two n-vertex graphs of treewidth at most k can be tested

- . 5
in time 20K logk) . 5

Open problems:

@ What about FPT algorithm for graph isomorphism parameterized by
the maximum degree?

o Luks’ algorithm has running time O(n"(®)).

@ What about FPT algorithm for graph isomorphism parameterized by
the size of an excluded minor?

o Ponomarenko’s algorithm has running time O(n("D).

Michat Pilipczuk Graph Isomorphism parameterized by treewidth

