
Fixed-parameter tractable canonization and
isomorphism test for graphs of bounded treewidth

Micha l Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Workshop on Exact Algorithms and Lower Bounds, IIT Delhi,
December 14th, 2014

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 1/30

Source

Joint work with:

Daniel Lokshtanov,
Marcin Pilipczuk, and
Saket Saurabh.

Presented at FOCS 2014.

Check out arxiv.org/abs/1404.0818

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 2/30

Graph Isomorphism

In the Graph Isomorphism problem, given two graphs G1 and G2, we
are to check if they are isomorphic.

Graph Isomorphism

Input: Graphs G1 and G2

Question: Is there a bijection φ : V (G1)→ V (G2) s.t. uv ∈ E (G1) iff
φ(u)φ(v) ∈ E (G2)?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 3/30

Graph Isomorphism

In the Graph Isomorphism problem, given two graphs G1 and G2, we
are to check if they are isomorphic.

a

b

c

x

y

z

a

b

c

x y z

Graph Isomorphism

Input: Graphs G1 and G2

Question: Is there a bijection φ : V (G1)→ V (G2) s.t. uv ∈ E (G1) iff
φ(u)φ(v) ∈ E (G2)?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 3/30

Graph Isomorphism

In the Graph Isomorphism problem, given two graphs G1 and G2, we
are to check if they are isomorphic.

a

b

c

x

y

z

a

b

c

x y z

Graph Isomorphism

Input: Graphs G1 and G2

Question: Is there a bijection φ : V (G1)→ V (G2) s.t. uv ∈ E (G1) iff
φ(u)φ(v) ∈ E (G2)?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 3/30

Graph Isomorphism

Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schöning’88].

Some believe it’s an intermediate problem.

Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]
planar graphs [Hopcroft-Wong’74]
interval graphs [Booth-Lueker’79]
permutation graphs [Colbourn’81]
bounded genus graphs [Miller’80], [Filotti-Mayer’80]
bounded degree graphs [Luks’82]
graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount’82]
bounded treewidth graphs [Bodlaender’90]
graphs excluding a fixed minor [Ponomarenko’91]
graphs excluding a fixed topological minor [Grohe-Marx’12]

In almost all the relevant cases above, these are XP algorithms.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 4/30

Graph Isomorphism

Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schöning’88].

Some believe it’s an intermediate problem.

Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]
planar graphs [Hopcroft-Wong’74]
interval graphs [Booth-Lueker’79]
permutation graphs [Colbourn’81]
bounded genus graphs [Miller’80], [Filotti-Mayer’80]
bounded degree graphs [Luks’82]
graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount’82]
bounded treewidth graphs [Bodlaender’90]
graphs excluding a fixed minor [Ponomarenko’91]
graphs excluding a fixed topological minor [Grohe-Marx’12]

In almost all the relevant cases above, these are XP algorithms.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 4/30

Graph Isomorphism

Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schöning’88].

Some believe it’s an intermediate problem.

Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]
planar graphs [Hopcroft-Wong’74]
interval graphs [Booth-Lueker’79]
permutation graphs [Colbourn’81]
bounded genus graphs [Miller’80], [Filotti-Mayer’80]
bounded degree graphs [Luks’82]
graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount’82]
bounded treewidth graphs [Bodlaender’90]
graphs excluding a fixed minor [Ponomarenko’91]
graphs excluding a fixed topological minor [Grohe-Marx’12]

In almost all the relevant cases above, these are XP algorithms.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 4/30

Graph Isomorphism

Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schöning’88].

Some believe it’s an intermediate problem.

Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]
planar graphs [Hopcroft-Wong’74]
interval graphs [Booth-Lueker’79]
permutation graphs [Colbourn’81]
bounded genus graphs [Miller’80], [Filotti-Mayer’80]
bounded degree graphs [Luks’82]
graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount’82]
bounded treewidth graphs [Bodlaender’90]
graphs excluding a fixed minor [Ponomarenko’91]
graphs excluding a fixed topological minor [Grohe-Marx’12]

In almost all the relevant cases above, these are XP algorithms.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 4/30

Graph Isomorphism of trees

Root G1 in r1 and guess its image r2.

Run a bottom-up dynamic programming with the following table:

For u ∈ V (G1) and v ∈ V (G2), T [u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T [·, ·] in a bottom-up manner. T [r1, r2] is the answer.

Computation at one step boils down to a matching problem.

Hard exercise: Do it in linear time.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 5/30

Graph Isomorphism of trees

Root G1 in r1 and guess its image r2.

Run a bottom-up dynamic programming with the following table:

For u ∈ V (G1) and v ∈ V (G2), T [u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T [·, ·] in a bottom-up manner. T [r1, r2] is the answer.

Computation at one step boils down to a matching problem.

Hard exercise: Do it in linear time.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 5/30

Graph Isomorphism of trees

Root G1 in r1 and guess its image r2.

Run a bottom-up dynamic programming with the following table:

For u ∈ V (G1) and v ∈ V (G2), T [u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T [·, ·] in a bottom-up manner. T [r1, r2] is the answer.

Computation at one step boils down to a matching problem.

Hard exercise: Do it in linear time.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 5/30

Graph Isomorphism of trees

Root G1 in r1 and guess its image r2.

Run a bottom-up dynamic programming with the following table:

For u ∈ V (G1) and v ∈ V (G2), T [u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T [·, ·] in a bottom-up manner. T [r1, r2] is the answer.

Computation at one step boils down to a matching problem.

Hard exercise: Do it in linear time.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 5/30

Graph Isomorphism of trees

Root G1 in r1 and guess its image r2.

Run a bottom-up dynamic programming with the following table:

For u ∈ V (G1) and v ∈ V (G2), T [u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T [·, ·] in a bottom-up manner. T [r1, r2] is the answer.

Computation at one step boils down to a matching problem.

Hard exercise: Do it in linear time.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 5/30

Planar Graph Isomorphism

Theorem (Hopcroft-Tarjan’73)

Given a graph G, one can in linear time compute its decomposition into
3-connected components. Moreover, the decomposition is
isomorphism-invariant.

+

Theorem (Whitney)

A 3-connected planar graph has unique planar embedding.

It is easy to compare embedded graphs.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 6/30

Bounded treewidth graphs

tree treelike

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 7/30

Bounded treewidth graphs

treeliketree

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 7/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

defdef efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d

f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

def

def efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d

f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

def

def efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

defdef efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

defdef efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

Bounded treewidth graphs

a

b

c

d

e

f

g

h

i

j

k

l

m

n

d f

a

b

c

d

e

f

g

h

i

j

k

l

m

n

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

ad

bd

cd

defdef efg f ig

fhi

f ij

ik

def efg

ad

bd

cd

def efg fig

fhi ik

fij jl

lmn

Definition

A tree decomposition of a graph G is a pair (T , β) where T is a tree and
β : V (T)→ 2V (G) satisfying:

1 {t : v ∈ β(t)} is nonempty and connected for every v ∈ V (G);

2 for every uv ∈ E (G) there exists t ∈ V (T) such that u, v ∈ β(t).

Width of the decomposition is maxt∈V (T) |β(t)| − 1.
Treewidth of G is minimum possible width of tree decomposition of G .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 8/30

GI in bounded treewidth graphs

Theorem (Bodlaender’90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time nO(k).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem (Our result)

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 9/30

GI in bounded treewidth graphs

Theorem (Bodlaender’90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time nO(k).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem (Our result)

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 9/30

GI in bounded treewidth graphs

Theorem (Bodlaender’90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time nO(k).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem (Our result)

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 9/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.

More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Comparing tree decompositions

In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

Similarly, it is not hard to compare pairs (G1, (T1, β1)) and
(G2, (T2, β3)).

Guess matching roots of tree decompositions.
Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.
I.e., for every v1 ∈ V (T1), v2 ∈ V (T2), and every bijection
π : β1(v1)→ β2(v2), compute if Gi restricted to the subtree rooted in
vi are isomorphic consistently with π.

Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
More formally, we can generate f (k)nO(1) candidate decompositions,
and compare every pair.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 10/30

Simplifications

Recall: in the planar case, we could assume the graph is
3-connected.

Due to unique decomposition into 3-connected components.

Assumption 1: no clique separators.

A decomposition by clique separators with unique set of bags.
[Tarjan’85]
In particular, 2-connected.

Assumption 2: ∀uv /∈ E (G), there is a u-v vertex cut of size ≤ k.

If not true for some uv , add edge uv . (So-called improved graph.)
Isomorphism-invariant operation if done at once for all such uv .
Maintains assumption tw(G) ≤ k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 11/30

Simplifications

Recall: in the planar case, we could assume the graph is
3-connected.

Due to unique decomposition into 3-connected components.

Assumption 1: no clique separators.

A decomposition by clique separators with unique set of bags.
[Tarjan’85]
In particular, 2-connected.

Assumption 2: ∀uv /∈ E (G), there is a u-v vertex cut of size ≤ k.

If not true for some uv , add edge uv . (So-called improved graph.)
Isomorphism-invariant operation if done at once for all such uv .
Maintains assumption tw(G) ≤ k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 11/30

Simplifications

Recall: in the planar case, we could assume the graph is
3-connected.

Due to unique decomposition into 3-connected components.

Assumption 1: no clique separators.

A decomposition by clique separators with unique set of bags.
[Tarjan’85]
In particular, 2-connected.

Assumption 2: ∀uv /∈ E (G), there is a u-v vertex cut of size ≤ k.

If not true for some uv , add edge uv . (So-called improved graph.)
Isomorphism-invariant operation if done at once for all such uv .
Maintains assumption tw(G) ≤ k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 11/30

Task summary

Assumptions:

2-connected graph G , no clique separators.

For every uv /∈ E (G), there is a u-v vertex cut of size at most k.

Task:
Compute isomorphism-invariant tree decomposition of G of width ∼ k.
(Possibly after some small preliminary guessing.)

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 12/30

Robertson-Seymour approximation

G

S

⇒

S

Task in the recursion:

given a graph G and a set S ⊆ V (G), |S | ≤ 10k ,

compute a tree decomposition of G of width O(k) with S in the top
bag.

Step 1: If S = V (G), return single bag S .
Step 2: If |S | < 10k, then add an arbitrary vertex to S and recurse.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 13/30

Robertson-Seymour approximation

G

S

⇒

S

Task in the recursion:

given a graph G and a set S ⊆ V (G), |S | ≤ 10k ,

compute a tree decomposition of G of width O(k) with S in the top
bag.

Step 1: If S = V (G), return single bag S .
Step 2: If |S | < 10k, then add an arbitrary vertex to S and recurse.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 13/30

Robertson-Seymour approximation

optimum

decomposition of G :

Step 3: Assume then |S | = 10k and tw(G) ≤ k .

Lemma

There exists Y ⊆ V (G), |Y | ≤ k + 1, such that every connected
component of G − Y contains at most |S |/2 vertices of S.

There is a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 s.t. the
minimum S1-S2 cut has size at most k + 1.

Iterate through all such partitions and let X be the found mincut.

Pick X ∪ S as the root bag.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 14/30

Robertson-Seymour approximation

optimum

decomposition of G :

Step 3: Assume then |S | = 10k and tw(G) ≤ k .

Lemma

There exists Y ⊆ V (G), |Y | ≤ k + 1, such that every connected
component of G − Y contains at most |S |/2 vertices of S.

There is a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 s.t. the
minimum S1-S2 cut has size at most k + 1.

Iterate through all such partitions and let X be the found mincut.

Pick X ∪ S as the root bag.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 14/30

Robertson-Seymour approximation

optimum

decomposition of G :

Step 3: Assume then |S | = 10k and tw(G) ≤ k .

Lemma

There exists Y ⊆ V (G), |Y | ≤ k + 1, such that every connected
component of G − Y contains at most |S |/2 vertices of S.

There is a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 s.t. the
minimum S1-S2 cut has size at most k + 1.

Iterate through all such partitions and let X be the found mincut.

Pick X ∪ S as the root bag.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 14/30

Robertson-Seymour approximation

X

C C

Lemma

There exists a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 such that
there is X ⊆ V (G) with |X | ≤ k + 1 that separates S1 from S2.

Find X by checking mincut for every balanced partition S = S1] S2.

Pick X ∪ S as a root bag.

Size ≤ 10k + k + 1.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

|N(C)| ≤ 2|S |/3 + |X | < 10k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 15/30

Robertson-Seymour approximation

X

C C

Lemma

There exists a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 such that
there is X ⊆ V (G) with |X | ≤ k + 1 that separates S1 from S2.

Find X by checking mincut for every balanced partition S = S1] S2.

Pick X ∪ S as a root bag.

Size ≤ 10k + k + 1.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

|N(C)| ≤ 2|S |/3 + |X | < 10k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 15/30

Robertson-Seymour approximation

X
C

C

Lemma

There exists a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 such that
there is X ⊆ V (G) with |X | ≤ k + 1 that separates S1 from S2.

Find X by checking mincut for every balanced partition S = S1] S2.

Pick X ∪ S as a root bag.

Size ≤ 10k + k + 1.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

|N(C)| ≤ 2|S |/3 + |X | < 10k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 15/30

Robertson-Seymour approximation

X

C

C

Lemma

There exists a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 such that
there is X ⊆ V (G) with |X | ≤ k + 1 that separates S1 from S2.

Find X by checking mincut for every balanced partition S = S1] S2.

Pick X ∪ S as a root bag.

Size ≤ 10k + k + 1.

Recurse on every connected component C of G − (S ∪ X) with
graph G [N[C]] and S := N(C).

|N(C)| ≤ 2|S |/3 + |X | < 10k.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 15/30

Robertson-Seymour approximation

Two arbitrary decisions:

Step 2: If |S | < 10k , then add an arbitrary vertex to S and recurse.

Which vertex to choose?

Step 3: Pick any separator X that splits S well.

Which separator to choose?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 16/30

Submodularity of cuts

u v

N(A) N(B)

N(A ∩ B) N(A ∪ B)

Let N(A) and N(B) be two minimum uv separators.

Then N(A ∩ B) and N(A ∪ B) are also minimum uv separators.

Therefore there is a notion of minimum uv separator closest to u
and closest to v .

Unique minimum separators that leaves inclusion-wise minimal and
maximal set of vertices reachable from u.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 17/30

Submodularity of cuts

u v

N(A) N(B)

N(A ∩ B) N(A ∪ B)

Let N(A) and N(B) be two minimum uv separators.

Then N(A ∩ B) and N(A ∪ B) are also minimum uv separators.

Therefore there is a notion of minimum uv separator closest to u
and closest to v .

Unique minimum separators that leaves inclusion-wise minimal and
maximal set of vertices reachable from u.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 17/30

Submodularity of cuts

u v

N(A) N(B)

N(A ∩ B) N(A ∪ B)

Let N(A) and N(B) be two minimum uv separators.

Then N(A ∩ B) and N(A ∪ B) are also minimum uv separators.

Therefore there is a notion of minimum uv separator closest to u
and closest to v .

Unique minimum separators that leaves inclusion-wise minimal and
maximal set of vertices reachable from u.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 17/30

Solution to Step 2

Step 2: If |S | < 10k , then add an arbitrary vertex to S and recurse.

Suppose |S | < 10k. For every u, v ∈ S , uv /∈ E (G), u 6= v , let Xu,v

be the minimum uv separator closest to u.
Pick root bag

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 18/30

Solution to Step 2

Step 2: If |S | < 10k , then add an arbitrary vertex to S and recurse.

Suppose |S | < 10k . For every u, v ∈ S , uv /∈ E (G), u 6= v , let Xu,v

be the minimum uv separator closest to u.
Pick root bag

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 18/30

Solution to Step 2

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

Again, recurse on (G [N[C]],N(C)) for C being connected
components of G − B.

Definition is isomorphism invariant, and |B| = O(k|S |2).
N(C) can be as big as O(k|S |2).

Issue: do we always make progress?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 19/30

Solution to Step 2

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

Again, recurse on (G [N[C]],N(C)) for C being connected
components of G − B.

Definition is isomorphism invariant, and |B| = O(k|S |2).
N(C) can be as big as O(k|S |2).

Issue: do we always make progress?

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 19/30

Solution to Step 2

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

We will always recurse on instances of the form
(G [N[C]],S := N(C)) for some connected C .

Hence S = N(C) is always a separator, and thus never a clique.

We need to hack it at the begining of the recursion, but we can use
preliminary guessing for that, e.g., guess a mapping on one non-edge.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 20/30

Solution to Step 2

B := S ∪
⋃

u,v∈S,uv /∈E(G),u 6=v

Xu,v .

We will always recurse on instances of the form
(G [N[C]],S := N(C)) for some connected C .

Hence S = N(C) is always a separator, and thus never a clique.

We need to hack it at the begining of the recursion, but we can use
preliminary guessing for that, e.g., guess a mapping on one non-edge.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 20/30

Solution to Step 3

optimum

decomposition of G :

Step 3: We have |S | ≥ 10k and tw(G) ≤ k .

Lemma

There exists a partition S = S1] S2 with |S1|, |S2| ≤ 2|S |/3 such that
there is X ⊆ V (G) with |X | ≤ k + 1 that separates S1 from S2.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 21/30

Solution to Step 3

P Q

For every P,Q ⊆ S , P ∩ Q = ∅, |P| = |Q| = k + 2, if there exists a
PQ separator of size at most k + 1, let XP,Q be the minimum one
closest to P.

Pick root bag

B := S ∪
⋃

P,Q as above

XP,Q .

Recurse as previously on all (G [N[C]],N(C)) for C being connected
components of G − B.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 22/30

Solution to Step 3

P Q

For every P,Q ⊆ S , P ∩ Q = ∅, |P| = |Q| = k + 2, if there exists a
PQ separator of size at most k + 1, let XP,Q be the minimum one
closest to P.

Pick root bag

B := S ∪
⋃

P,Q as above

XP,Q .

Recurse as previously on all (G [N[C]],N(C)) for C being connected
components of G − B.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 22/30

Solution to Step 3

P Q

For every P,Q ⊆ S , P ∩ Q = ∅, |P| = |Q| = k + 2, if there exists a
PQ separator of size at most k + 1, let XP,Q be the minimum one
closest to P.

Pick root bag

B := S ∪
⋃

P,Q as above

XP,Q .

Recurse as previously on all (G [N[C]],N(C)) for C being connected
components of G − B.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 22/30

Solution to Step 3

B := S ∪
⋃

P,Q as before

XP,Q .

We have a bound |B| = O(k |S |2k+4).

But the main question is: how big can be N(C) for C being a
connected component of G − B.

Lemma (The crux)

For every connected component C of G − B we have |N(C)| ≤ |S |.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 23/30

Solution to Step 3

B := S ∪
⋃

P,Q as before

XP,Q .

We have a bound |B| = O(k |S |2k+4).

But the main question is: how big can be N(C) for C being a
connected component of G − B.

Lemma (The crux)

For every connected component C of G − B we have |N(C)| ≤ |S |.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 23/30

Solution to Step 3

B := S ∪
⋃

P,Q as before

XP,Q .

We have a bound |B| = O(k |S |2k+4).

But the main question is: how big can be N(C) for C being a
connected component of G − B.

Lemma (The crux)

For every connected component C of G − B we have |N(C)| ≤ |S |.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 23/30

Solution to Step 3

Lemma (The crux)

For every connected component C of G − B we have |N(C)| ≤ |S |.

We analyze adding sets XP,Q to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G − B.

Initially, every component of G −S has neighborhood contained in S .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 24/30

Solution to Step 3

Lemma (The crux)

For every connected component C of G − B we have |N(C)| ≤ |S |.

We analyze adding sets XP,Q to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G − B.

Initially, every component of G −S has neighborhood contained in S .

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 24/30

Solution to Step 3

C ′ C ′

Now consider adding one new pink cut XP,Q .

A border replacement argument says that the borders of components
do not increase.

Formally, we use the notion of a separation and submodularity.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 25/30

Solution to Step 3

C ′

C ′

Now consider adding one new pink cut XP,Q .

A border replacement argument says that the borders of components
do not increase.

Formally, we use the notion of a separation and submodularity.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 25/30

Solution to Step 3

C ′

C ′

Now consider adding one new pink cut XP,Q .

A border replacement argument says that the borders of components
do not increase.

Formally, we use the notion of a separation and submodularity.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 25/30

Summary

Step 2: If |S | < 10k, add a minimum cut for every nonedge.

Bag of size O(k3).

Blow up to |S | = O(k3) in the subcalls.

Step 3: If |S | ≥ 10k , add a minimum cut of size ≤ k + 1 for every pair
(P,Q) of sets of size k + 2.

Bag of size O(k|S |2k+4).

The crux: does not blow up |S | in the subcalls.

Thus, |S | = O(k3) all the time and bags size is bounded by
2O(k log k).

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 26/30

Summary

Step 2: If |S | < 10k, add a minimum cut for every nonedge.

Bag of size O(k3).

Blow up to |S | = O(k3) in the subcalls.

Step 3: If |S | ≥ 10k , add a minimum cut of size ≤ k + 1 for every pair
(P,Q) of sets of size k + 2.

Bag of size O(k |S |2k+4).

The crux: does not blow up |S | in the subcalls.

Thus, |S | = O(k3) all the time and bags size is bounded by
2O(k log k).

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 26/30

Summary

Step 2: If |S | < 10k, add a minimum cut for every nonedge.

Bag of size O(k3).

Blow up to |S | = O(k3) in the subcalls.

Step 3: If |S | ≥ 10k , add a minimum cut of size ≤ k + 1 for every pair
(P,Q) of sets of size k + 2.

Bag of size O(k |S |2k+4).

The crux: does not blow up |S | in the subcalls.

Thus, |S | = O(k3) all the time and bags size is bounded by
2O(k log k).

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 26/30

Graph Isomorphism

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Theorem

We can check if two graphs of treewidth ≤ k are isomorphic in time

22O(k log k) · nO(1).

Now: a quick sketch how to reduce dependency on k to 2kO(1)

.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 27/30

Graph Isomorphism

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Theorem

We can check if two graphs of treewidth ≤ k are isomorphic in time

22O(k log k) · nO(1).

Now: a quick sketch how to reduce dependency on k to 2kO(1)

.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 27/30

Graph Isomorphism

Theorem

For a graph G of treewidth ≤ k, we can obtain an isomorphism-invariant
family of at most n2 tree decompositions with bags of size 2O(k log k) and
adhesions of size O(k3).

Theorem

We can check if two graphs of treewidth ≤ k are isomorphic in time

22O(k log k) · nO(1).

Now: a quick sketch how to reduce dependency on k to 2kO(1)

.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 27/30

Getting single-exponential running time

Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.

Formally, we require to capture at least one full decomposition in the
family of bags.
Later, we can use DP on tuples (bag B, a connected component of
G − B, labeling of B) and compare them.
Alternatively, can use recent framework of [Otachi-Schweitzer’14].

We have tree decomposition with bags of size 2O(k log k) and
adhesions of size O(k3), but the graph is of treewidth ≤ k.

Every our bag B can be further decomposed with width ≤ k.

We output every subset of size O(k4) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k4).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 28/30

Getting single-exponential running time

Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.

Formally, we require to capture at least one full decomposition in the
family of bags.
Later, we can use DP on tuples (bag B, a connected component of
G − B, labeling of B) and compare them.
Alternatively, can use recent framework of [Otachi-Schweitzer’14].

We have tree decomposition with bags of size 2O(k log k) and
adhesions of size O(k3), but the graph is of treewidth ≤ k.

Every our bag B can be further decomposed with width ≤ k.

We output every subset of size O(k4) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k4).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 28/30

Getting single-exponential running time

Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.

Formally, we require to capture at least one full decomposition in the
family of bags.
Later, we can use DP on tuples (bag B, a connected component of
G − B, labeling of B) and compare them.
Alternatively, can use recent framework of [Otachi-Schweitzer’14].

We have tree decomposition with bags of size 2O(k log k) and
adhesions of size O(k3), but the graph is of treewidth ≤ k.

Every our bag B can be further decomposed with width ≤ k.

We output every subset of size O(k4) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k4).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 28/30

Getting single-exponential running time

Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.

Formally, we require to capture at least one full decomposition in the
family of bags.
Later, we can use DP on tuples (bag B, a connected component of
G − B, labeling of B) and compare them.
Alternatively, can use recent framework of [Otachi-Schweitzer’14].

We have tree decomposition with bags of size 2O(k log k) and
adhesions of size O(k3), but the graph is of treewidth ≤ k.

Every our bag B can be further decomposed with width ≤ k.

We output every subset of size O(k4) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k4).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 28/30

Getting single-exponential running time

Theorem

For a graph G of treewidth ≤ k, we can output an isomorphism-invariant
family B of size 2O(k5 log k) · n2, where every element of B is a subset of
V (G) of size O(k4) and B contains all bags of some tree decomposition
of G.

Theorem

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 29/30

Getting single-exponential running time

Theorem

For a graph G of treewidth ≤ k, we can output an isomorphism-invariant
family B of size 2O(k5 log k) · n2, where every element of B is a subset of
V (G) of size O(k4) and B contains all bags of some tree decomposition
of G.

Theorem

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 29/30

Getting single-exponential running time

Theorem

For a graph G of treewidth ≤ k, we can output an isomorphism-invariant
family B of size 2O(k5 log k) · n2, where every element of B is a subset of
V (G) of size O(k4) and B contains all bags of some tree decomposition
of G.

Theorem

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Theorem

There is an algorithm, that given a graph G and integer k, runs in
2O(k5 log k) · n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1, 2, . . . , n such that two isomorphic graphs receive
labelings certifying the isomorphism.

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 29/30

Conclusions

Theorem

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Open problems:

What about FPT algorithm for graph isomorphism parameterized by
the maximum degree?

Luks’ algorithm has running time O(nf (∆)).

What about FPT algorithm for graph isomorphism parameterized by
the size of an excluded minor?

Ponomarenko’s algorithm has running time O(nf (|H|)).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 30/30

Conclusions

Theorem

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 2O(k5 log k) · n5.

Open problems:

What about FPT algorithm for graph isomorphism parameterized by
the maximum degree?

Luks’ algorithm has running time O(nf (∆)).

What about FPT algorithm for graph isomorphism parameterized by
the size of an excluded minor?

Ponomarenko’s algorithm has running time O(nf (|H|)).

Micha l Pilipczuk Graph Isomorphism parameterized by treewidth 30/30

