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Source

@ Joint work with:

o Daniel Lokshtanov,
o Marcin Pilipczuk, and
o Saket Saurabh.

@ Presented at FOCS 2014.
@ Check out arxiv.org/abs/1404.0818
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Graph Isomorphism

In the GRAPH ISOMORPHISM problem, given two graphs G; and G, we
are to check if they are isomorphic.
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Graph Isomorphism

In the GRAPH ISOMORPHISM problem, given two graphs G; and G, we
are to check if they are isomorphic.

GRAPH ISOMORPHISM

Input: Graphs G; and G,
Question: Is there a bijection ¢: V(G1) — V(Gy) s.t. uv € E(Gy) iff

P(u)o(v) € E(G2)?
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Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].
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Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.
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Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.
@ Many polynomial-time algorithms for special graph classes:

trees [Kelly’57]

planar graphs [Hopcroft-Wong'74]

interval graphs [Booth-Lueker'79]

permutation graphs [Colbourn’81]

bounded genus graphs [Miller'80], [Filotti-Mayer'80]
bounded degree graphs [Luks'82]

graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount'82]

bounded treewidth graphs [Bodlaender'90]

e graphs excluding a fixed minor [Ponomarenko’91]

e graphs excluding a fixed topological minor [Grohe-Marx'12]

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Graph Isomorphism

@ Belongs NP, not known to be in P, but not NP-complete unless the
PH collapses [Schéning'88].

@ Some believe it’s an intermediate problem.
@ Many polynomial-time algorithms for special graph classes:

trees [Kelly'57]

planar graphs [Hopcroft-Wong'74]

interval graphs [Booth-Lueker'79]

permutation graphs [Colbourn’81]

bounded genus graphs [Miller'80], [Filotti-Mayer'80]
bounded degree graphs [Luks'82]

graphs with bounded eigenvalue multiplicity
[Babai-Grigoryev-Mount'82]

bounded treewidth graphs [Bodlaender'90]

o graphs excluding a fixed minor [Ponomarenko’91]

o graphs excluding a fixed topological minor [Grohe-Marx'12]

@ In almost all the relevant cases above, these are XP algorithms.
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Graph Isomorphism of trees

@ Root Gj in r; and guess its image r>.
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Graph Isomorphism of trees

@ Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?
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Graph Isomorphism of trees

@ Root Gj in r; and guess its image r».
@ Run a bottom-up dynamic programming with the following table:
For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

e Fill T[-,:] in a bottom-up manner. T[r, ry] is the answer.
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Graph Isomorphism of trees

Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T[-,-] in a bottom-up manner. T[r, r2] is the answer.

Computation at one step boils down to a matching problem.
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Graph Isomorphism of trees

Root Gj in r; and guess its image r».

@ Run a bottom-up dynamic programming with the following table:

For u € V(Gi) and v € V(Gy), T[u, v] is the answer to the question:
Is the subtree rooted at u isomorphic to the subtree rooted at v?

Fill T[-,-] in a bottom-up manner. T[r, r2] is the answer.

Computation at one step boils down to a matching problem.
Hard exercise: Do it in linear time.
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Planar Graph Isomorphism

Theorem (Hopcroft-Tarjan'73)

Given a graph G, one can in linear time compute its decomposition into
3-connected components. Moreover, the decomposition is
isomorphism-invariant.

+

Theorem (Whitney)

A 3-connected planar graph has unique planar embedding.

It is easy to compare embedded graphs.
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Bounded treewidth graphs

tree treelike
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Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

v
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Bounded treewidth graphs

A tree decomposition of a graph G is a pair (T, 3) where T is a tree and
B V(T) — 2V(C) satisfying:

@ {t:v e p(t)} is nonempty and connected for every v € V(G);

@ for every uv € E(G) there exists t € V(T) such that u,v € B(t).

Width of the decomposition is max.cv 7y [8(t)| — 1.
Treewidth of G is minimum possible width of tree decomposition of G.

<
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Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).
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Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5.
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Gl in bounded treewidth graphs

Theorem (Bodlaender'90)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time n®®).

Theorem (Our result)

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5.

Theorem (Our result)

There is an algorithm, that given a graph G and integer k, runs in
20(K*log k) . 5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1,2, ..., n such that two isomorphic graphs receive
labelings certifying the isomorphism.
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Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.
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Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

@ Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and

(G2, (T2, B3)).
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Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .
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Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.
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Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.

o We can have some preliminary guessing, like guess one matched pairs
of vertices etc.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Comparing tree decompositions

@ In the planar case, it was easy to compare two graphs decomposed
into 3-connected components.

o Similarly, it is not hard to compare pairs (Gy, (T1, 1)) and
(G2, (T2, B3)).

o Guess matching roots of tree decompositions.

e Do bottom-up dynamic programming, computing isomorphic
subtrees with labeled vertices in the top bags.

o le., for every vi € V(T1), v» € V(T3), and every bijection
7 B1(v1) — B2(v2), compute if G; restricted to the subtree rooted in
vi are isomorphic consistently with .

@ Thus, in some sense, we look for an isomorphic-invariant way to
compute a (near-)optimal tree decomposition.
o We can have some preliminary guessing, like guess one matched pairs
of vertices etc.
e More formally, we can generate f(k)no(l) candidate decompositions,
and compare every pair.
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Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.

e Due to unique decomposition into 3-connected components.
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Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.

o Due to unique decomposition into 3-connected components.

@ Assumption 1: no clique separators.

o A decomposition by clique separators with unique set of bags.
[Tarjan’85]
o In particular, 2-connected.
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Simplifications

@ Recall: in the planar case, we could assume the graph is
3-connected.
o Due to unique decomposition into 3-connected components.

@ Assumption 1: no clique separators.

o A decomposition by clique separators with unique set of bags.
[Tarjan’85]

o In particular, 2-connected.

e Assumption 2: Yuv ¢ E(G), there is a u-v vertex cut of size < k.
e If not true for some uv, add edge uv. (So-called improved graph.)
o Isomorphism-invariant operation if done at once for all such uv.
e Maintains assumption tw(G) < k.
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Assumptions:
@ 2-connected graph G, no clique separators.

o For every uv ¢ E(G), there is a u-v vertex cut of size at most k.

Task:
Compute isomorphism-invariant tree decomposition of G of width ~ k.
(Possibly after some small preliminary guessing.)
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Robertson-Seymour approximation

e E

Task in the recursion:
@ given a graph G and a set S C V(G), |S| < 10k,

@ compute a tree decomposition of G of width O(k) with S in the top
bag.
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Robertson-Seymour approximation

O

|- mde

- @@

Task in the recursion:
@ given a graph G and a set S C V(G), |S| < 10k,
@ compute a tree decomposition of G of width O(k) with S in the top
bag.

Step 1: If S = V(G), return single bag S.
Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.
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Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.
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Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.

There exists Y C V(G), |Y| < k + 1, such that every connected
component of G — Y contains at most |S|/2 vertices of S.
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Robertson-Seymour approximation

optimum

decomposition of G:

Step 3: Assume then |S| = 10k and tw(G) < k.

There exists Y C V(G), |Y| < k + 1, such that every connected
component of G — Y contains at most |S|/2 vertices of S.

@ There is a partition S = 51 W S, with |S1],]5:] < 2|5]/3 s.t. the
minimum S;-S, cut has size at most k + 1.

@ lIterate through all such partitions and let X be the found mincut.

@ Pick X U S as the root bag.

@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
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Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.
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Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

e Find X by checking mincut for every balanced partition S = 5; W S,.
@ Pick XU S as a root bag.
o Size <10k + k + 1.
@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
o [N(C)| <2|S|/3+ |X| < 10k.
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Robertson-Seymour approximation

There exists a partition S = S; W S, with |S1],|S2| < 2|S|/3 such that
there is X C V/(G) with | X| < k + 1 that separates S; from S,.

e Find X by checking mincut for every balanced partition S = 5; W S,.
@ Pick XU S as a root bag.
o Size <10k + k + 1.
@ Recurse on every connected component C of G — (S U X) with
graph G[N[C]] and S := N(C).
o [N(C)| <2|S|/3+ |X| < 10k.
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Robertson-Seymour approximation

Two arbitrary decisions:
o Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.
o Which vertex to choose?
@ Step 3: Pick any separator X that splits S well.
o Which separator to choose?
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Submodularity of cuts

/ N

o Let N(A) and N(B) be two minimum uv separators.
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Submodularity of cuts

o Let N(A) and N(B) be two minimum uv separators.
@ Then N(AN B) and N(AU B) are also minimum uv separators.
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Submodularity of cuts

o Let N(A) and N(B) be two minimum uv separators.

@ Then N(AN B) and N(AU B) are also minimum uv separators.

@ Therefore there is a notion of minimum wuv separator closest to u
and closest to v.

o Unique minimum separators that leaves inclusion-wise minimal and
maximal set of vertices reachable from w.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Solution to Step 2

e Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.
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Solution to Step 2

o Step 2: If |S| < 10k, then add an arbitrary vertex to S and recurse.

@ Suppose |S| < 10k. For every u,v € S, uv ¢ E(G), u# v, let X, ,
be the minimum uv separator closest to u.
Pick root bag

B = 5 U U Xu,v-
u,veS,uv¢E(G),u#v
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Solution to Step 2

B:=SU U Xy v
u,veS,uv¢E(G),u#v

@ Again, recurse on (G[N[C]], N(C)) for C being connected
components of G — B.

o Definition is isomorphism invariant, and |B| = O(k|S|?).
o N(C) can be as big as O(k|S|?).
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Solution to Step 2

B:=SU U Xy v
u,veS,uv¢E(G),u#v

@ Again, recurse on (G[N[C]], N(C)) for C being connected
components of G — B.

o Definition is isomorphism invariant, and |B| = O(k|S|?).
o N(C) can be as big as O(k|S|?).

@ Issue: do we always make progress?

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Solution to Step 2

B:=SuU U Xy
u,veS,uv¢E(G),u#v

e We will always recurse on instances of the form
(G[N[C]], S := N(C)) for some connected C.
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Solution to Step 2

B:=SuU U Xy
u,veS,uv¢E(G),u#v

@ We will always recurse on instances of the form
(G[N[C]], S := N(C)) for some connected C.
@ Hence S = N(C) is always a separator, and thus never a clique.

o We need to hack it at the begining of the recursion, but we can use
preliminary guessing for that, e.g., guess a mapping on one non-edge.
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Solution to Step 3

optimum

decomposition of G:

Step 3: We have |S| > 10k and tw(G) < k.

There exists a partition S = S1 W S, with |S1],|S2| < 2|S|/3 such that
there is X C V(G) with |X| < k + 1 that separates S; from S,.
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Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

@ Pick root bag

B=su |J Xee
P,Q as above
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Solution to Step 3

@ Forevery P,QCS, PNQ =0, |P| =|Q] = k + 2, if there exists a
PQ separator of size at most k + 1, let Xp ¢ be the minimum one
closest to P.

@ Pick root bag

B=su |J Xeoe
P,Q as above

@ Recurse as previously on all (G[N[C]], N(C)) for C being connected
components of G — B.
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Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|>**4).
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Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|***4).

@ But the main question is: how big can be N(C) for C being a
connected component of G — B.
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Solution to Step 3

T 1 7\ \

B:=Ssu |J Xeo
P,Q as before

e We have a bound |B| = O(k|S|***4).

@ But the main question is: how big can be N(C) for C being a
connected component of G — B.

Lemma (The crux)

For every connected component C of G — B we have |[N(C)| < |S].
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Solution to Step 3

Lemma (The crux)

For every connected component C of G — B we have |N(C)| < |S|.

@ We analyze adding sets Xp o to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G — B.
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Solution to Step 3

Lemma (The crux)

For every connected component C of G — B we have |N(C)| < |S|.

@ We analyze adding sets Xp g to B one-by-one, and analyze sizes of
N(C) for intermediate connected components of G — B.

@ Initially, every component of G — S has neighborhood contained in S.
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Solution to Step 3

@ Now consider adding one new pink cut Xp q.
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Solution to Step 3

@ Now consider adding one new pink cut Xp q.

@ A border replacement argument says that the borders of components
do not increase.

o Formally, we use the notion of a separation and submodularity.
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Solution to Step 3

@ Now consider adding one new pink cut Xp q.

@ A border replacement argument says that the borders of components
do not increase.

o Formally, we use the notion of a separation and submodularity.
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Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.
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Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.

Step 3: If |S| > 10k, add a minimum cut of size < k + 1 for every pair
(P, Q) of sets of size k + 2.

o Bag of size O(k|S|?+4).
@ The crux: does not blow up |S] in the subcalls.

@ Thus, |S| = O(k3) all the time and bags size is bounded by
20(k|og k).
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Step 2: If |S| < 10k, add a minimum cut for every nonedge.
e Bag of size O(k3).
@ Blow up to |S| = O(k3) in the subcalls.

Step 3: If |S| > 10k, add a minimum cut of size < k + 1 for every pair
(P, Q) of sets of size k + 2.

o Bag of size O(k|S|?+4).
@ The crux: does not blow up |S] in the subcalls.

@ Thus, |S| = O(k3) all the time and bags size is bounded by
20(k|og k).

For a graph G of treewidth < k, we can obtain an isomorphism-invariant

family of at most n? tree decompositions with bags of size 2°(k1°€k) and

adhesions of size O(k®).
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Graph Isomorphism

For a graph G of treewidth < k, we can obtain an isomorphism-invariant

(k log k)

family of at most n® tree decompositions with bags of size 2© and

adhesions of size O(k3).
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Graph Isomorphism

Theorem

For a graph G of treewidth < k, we can obtain an isomorphism-invariant
family of at most n® tree decompositions with bags of size 20(k1ogk) and
adhesions of size O(k3).

Theorem

| \

We can check if two graphs of treewidth < k are isomorphic in time
22@(k log k) . no(l)
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Graph Isomorphism

Theorem

For a graph G of treewidth < k, we can obtain an isomorphism-invariant
family of at most n® tree decompositions with bags of size 20(k1ogk) and
adhesions of size O(k3).

Theorem

| \

We can check if two graphs of treewidth < k are isomorphic in time
22@(k log k) . no(l)

Now: a quick sketch how to reduce dependency on k to 2k
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Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].
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Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and

adhesions of size O(k%), but the graph is of treewidth < k.
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Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and
adhesions of size O(k?), but the graph is of treewidth < k.

@ Every our bag B can be further decomposed with width < k.

Michat Pilipczuk Graph Isomorphism parameterized by treewidth



Getting single-exponential running time

@ Instead of isomorphism-invariant tree decomposition, we want only
isomorphism-invariant family of candidate bags.
o Formally, we require to capture at least one full decomposition in the
family of bags.
o Later, we can use DP on tuples (bag B, a connected component of
G — B, labeling of B) and compare them.
o Alternatively, can use recent framework of [Otachi-Schweitzer'14].

@ We have tree decomposition with bags of size 29(klogk) and
adhesions of size O(k?), but the graph is of treewidth < k.

@ Every our bag B can be further decomposed with width < k.

e We output every subset of size O(k*) of every bag in our
decompositions, and this is guaranteed to capture some
decomposition of width O(k*).
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Getting single-exponential running time

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of
V(G) of size O(k*) and B contains all bags of some tree decomposition

of G.
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Getting single-exponential running time

Theorem

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of

V(G) of size O(k*) and B contains all bags of some tree decomposition
of G.

Theorem

| A,

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5

v
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Getting single-exponential running time

For a graph G of tregwidth < k, we can output an isomorphism-invariant
family B of size 200’198 K) . n2 " where every element of B is a subset of
V(G) of size O(k*) and B contains all bags of some tree decomposition

of G.

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20(K*logk) . 5

There is an algorithm, that given a graph G and integer k, runs in
20(Klog k) . n5 and either concludes that tw(G) > k, or labels the vertices
with numbers 1,2, ... n such that two isomorphic graphs receive
labelings certifying the isomorphism.
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Conclusions

Isomorphism of two n-vertex graphs of treewidth at most k can be tested
in time 20K 1og k) . 5.
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Conclusions

Isomorphism of two n-vertex graphs of treewidth at most k can be tested

- . 5
in time 20K logk) . 5

Open problems:

@ What about FPT algorithm for graph isomorphism parameterized by
the maximum degree?

o Luks’ algorithm has running time O(n"(®)).

@ What about FPT algorithm for graph isomorphism parameterized by
the size of an excluded minor?

o Ponomarenko’s algorithm has running time O(n("D).
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