Lower bounds based on ETH and SETH

Michał Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Workshop on Exact Algorithms and Lower Bounds, IIT Delhi, December 13th, 2014

(*) *) *) *)

< A >

• Under $P \neq NP$, HAMILTONIAN CYCLE cannot be solved in polynomial time.

3

<ロ> <同> <同> < 回> < 回>

- Under $P \neq NP$, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:

イロン イロン イヨン イヨン

- Under $P \neq NP$, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.

<ロ> <同> <同> < 回> < 回>

- Under $P \neq NP$, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:

 - Brute-force O(n!).
 For a long time O^{*}(2ⁿ) Held-Karp dynamic programming.

э

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Under P \neq NP, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.
 - For a long time $O^*(2^n)$ Held-Karp dynamic programming.
 - $\mathcal{O}^{\star}(f(n)) = f(n) \cdot \operatorname{poly}(|\operatorname{input}|).$

- Under P \neq NP, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.
 - For a long time $O^*(2^n)$ Held-Karp dynamic programming.
 - $\mathcal{O}^{\star}(f(n)) = f(n) \cdot \operatorname{poly}(|\operatorname{input}|).$
 - Today: $\mathcal{O}^{\star}(1.657^n)$ of Björklund (2010).

- Under P \neq NP, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.
 - For a long time $\hat{\mathcal{O}}^{\star}(2^n)$ Held-Karp dynamic programming.
 - $\mathcal{O}^{\star}(f(n)) = f(n) \cdot \operatorname{poly}(|\operatorname{input}|).$
 - Today: $\mathcal{O}^*(1.657^n)$ of Björklund (2010).
- How much can you improve the constant 1.657?

- Under P \neq NP, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.
 - For a long time $O^*(2^n)$ Held-Karp dynamic programming.

• $\mathcal{O}^{\star}(f(n)) = f(n) \cdot \operatorname{poly}(|\operatorname{input}|).$

- Today: $\mathcal{O}^{\star}(1.657^n)$ of Björklund (2010).
- How much can you improve the constant 1.657?
- Can you do *significantly* better, e.g. $\mathcal{O}^{\star}(2^{\mathcal{O}(n/\log n)})$ or $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{n})})$?

- 4 回 2 4 U = 2 4

- Under P \neq NP, HAMILTONIAN CYCLE cannot be solved in polynomial time.
- Best known algorithms:
 - Brute-force $\mathcal{O}(n!)$.
 - For a long time $\hat{\mathcal{O}}^{\star}(2^n)$ Held-Karp dynamic programming.

• $\mathcal{O}^{\star}(f(n)) = f(n) \cdot \operatorname{poly}(|\operatorname{input}|).$

- Today: $O^*(1.657^n)$ of Björklund (2010).
- How much can you improve the constant 1.657?
- Can you do *significantly* better, e.g. $\mathcal{O}^{\star}(2^{\mathcal{O}(n/\log n)})$ or $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{n})})$?
- Assumption $P \neq NP$ seems too week to answer these questions.

• 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.

э

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

イロン 不同 とくほう イヨン

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

• Trivial: $\mathcal{O}^{\star}(2^n)$

伺 ト イヨト イヨト

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- **Trivial**: $O^{*}(2^{n})$
- Smarter:

伺き くまき くまき

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- **Trivial**: $O^{\star}(2^{n})$
- Smarter:
 - Take any clause not satisfied so far, and branch on the evaluations of the variables: there are at most 7 options for a 3-clause.

- 4 同 2 4 回 2 4 U

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- **Trivial**: $O^{\star}(2^{n})$
- Smarter:
 - Take any clause not satisfied so far, and branch on the evaluations of the variables: there are at most 7 options for a 3-clause.
 - Hence the running time is $\mathcal{O}^{\star}(7^{n/3}) = \mathcal{O}^{\star}(1.913^n)$.

(日)

- 3-SAT: given formula φ in 3-CNF with *n* variables and *m* clauses, decide whether φ is satisfiable.
- 3-CNF: φ is a conjunction of clauses, where each clause is a disjunction of at most 3 literals — variables or their negations.

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- **Trivial**: $O^{\star}(2^{n})$
- Smarter:
 - Take any clause not satisfied so far, and branch on the evaluations of the variables: there are at most 7 options for a 3-clause.
 - Hence the running time is $\mathcal{O}^*(7^{n/3}) = \mathcal{O}^*(1.913^n)$.
- Current record: $\mathcal{O}^*(1.308^n)$ (Paturi, Pudlák, Saks, Zane; Hertli)

イロン 不同 とくほう イヨン

• Can you do *significantly* better, i.e. have running time $\mathcal{O}^*(2^{o(n)})$?

2

・ロト ・回ト ・ヨト ・ヨト

- Can you do *significantly* better, i.e. have running time $\mathcal{O}^*(2^{o(n)})$?
- If you do not have a bound on the clause length, can you do anything smarter than brute-force?

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Can you do significantly better, i.e. have running time $\mathcal{O}^{\star}(2^{o(n)})$?
- If you do not have a bound on the clause length, can you do anything smarter than brute-force?
- With current knowledge, we are faaaaar from answering positively any of these two questions.

- Can you do *significantly* better, i.e. have running time $\mathcal{O}^*(2^{o(n)})$?
- If you do not have a bound on the clause length, can you do anything smarter than brute-force?
- With current knowledge, we are faaaaar from answering positively any of these two questions.

ETH and SETH, first try

- 3-SAT cannot be solved in time $\mathcal{O}^{\star}(2^{o(n)})$.
- General CNF-SAT cannot be solved in time $\mathcal{O}^*(c^n)$ for any c < 2.

イロン イボン イヨン イヨン

Exponential Time Hypothesis, ETH

 $\delta_3 > 0.$

There is a c > 0 such that 3-SAT cannot be solved in $\mathcal{O}^{\star}(2^{cn})$ time.

Strong Exponential Time Hypothesis, SETH

$$\lim_{q\to\infty}\delta_q=1.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─

Exponential Time Hypothesis, ETH

 $\delta_3 > 0.$

There is a c > 0 such that 3-SAT cannot be solved in $\mathcal{O}^{\star}(2^{cn})$ time.

Strong Exponential Time Hypothesis, SETH

$$\lim_{q\to\infty}\delta_q=1.$$

• These statements are *stronger* than the first attempts.

Exponential Time Hypothesis, ETH

 $\delta_3 > 0.$

There is a c > 0 such that 3-SAT cannot be solved in $\mathcal{O}^{\star}(2^{cn})$ time.

Strong Exponential Time Hypothesis, SETH

$$\lim_{q\to\infty}\delta_q=1.$$

- These statements are *stronger* than the first attempts.
- Formulated by Impagliazzo, Paturi and Zane in 2001.

イロト 不得 とくほと くほとう ほ

Exponential Time Hypothesis, ETH

 $\delta_3 > 0.$

There is a c > 0 such that 3-SAT cannot be solved in $\mathcal{O}^{\star}(2^{cn})$ time.

Strong Exponential Time Hypothesis, SETH

$$\lim_{q\to\infty}\delta_q=1.$$

- These statements are *stronger* than the first attempts.
- Formulated by Impagliazzo, Paturi and Zane in 2001.
- Usually we allow two-sided error algorithms in the definition.

イロト 不得 トイヨト イヨト 二日

Exponential Time Hypothesis, ETH

 $\delta_3 > 0.$

There is a c > 0 such that 3-SAT cannot be solved in $\mathcal{O}^{\star}(2^{cn})$ time.

Strong Exponential Time Hypothesis, SETH

$$\lim_{q\to\infty}\delta_q=1.$$

- These statements are *stronger* than the first attempts.
- Formulated by Impagliazzo, Paturi and Zane in 2001.
- Usually we allow two-sided error algorithms in the definition.
- SETH \Rightarrow ETH (nontrivial)

イロト 不得 とくほと くほとう ほ

• As usual with lower bounds, we would like to transfer them via reductions.

э

・ロト ・四ト ・ヨト ・ヨト

- As usual with lower bounds, we would like to transfer them via reductions.
- A reduction $3\text{-}SAT \rightarrow L$ and a too fast algorithm for L would give a too fast algorithm for 3-SAT.

- As usual with lower bounds, we would like to transfer them via reductions.
- A reduction $3\text{-}SAT \rightarrow L$ and a too fast algorithm for L would give a too fast algorithm for 3-SAT.

VERTEX COVER

Input:A graph G and an integer kQuestion:Is there a set $X \subseteq V(G)$ with $|X| \leq k$ such that every
edge of G has at least one endpoint in X?

イロン 不同 とくほう イヨン

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

(日) (國) (문) (문) (문)

Let us inspect the standard reduction from 3-SAT to $\operatorname{Vertex}\,\operatorname{Cover}.$

프 () () () (

Let us inspect the standard reduction from 3-SAT to VERTEX COVER.

The formula is satisfiable iff the created graph has vertex cover of size n + 2m.

∃ ► < ∃ ►</p>

• If N = 2n + 3m is the number of vertices of the output graph, then $N = O(n + m) = O(n^3)$.

- If N = 2n + 3m is the number of vertices of the output graph, then $N = O(n + m) = O(n^3)$.
- Hence an $\mathcal{O}^{\star}(2^{o(N^{1/3})})$ algorithm for VC would give an $\mathcal{O}^{\star}(2^{o(n)})$ algorithm for 3-SAT, contradicting ETH.

- If N = 2n + 3m is the number of vertices of the output graph, then $N = O(n + m) = O(n^3)$.
- Hence an $\mathcal{O}^{\star}(2^{o(N^{1/3})})$ algorithm for VC would give an $\mathcal{O}^{\star}(2^{o(n)})$ algorithm for 3-SAT, contradicting ETH.
- But we know no algorithm with running time $\mathcal{O}^{\star}(2^{o(N)})...$

★@> ★ E> ★ E> = E
- If N = 2n + 3m is the number of vertices of the output graph, then $N = O(n + m) = O(n^3)$.
- Hence an $\mathcal{O}^{\star}(2^{o(N^{1/3})})$ algorithm for VC would give an $\mathcal{O}^{\star}(2^{o(n)})$ algorithm for 3-SAT, contradicting ETH.
- But we know no algorithm with running time $\mathcal{O}^{\star}(2^{o(N)})...$
- If we started with an instance of 3-SAT that is *sparse*, i.e., m = O(n), then a O*(2^{o(N)}) lower bound would follow.

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of clauses of a *q*-SAT formula to O(n), for any constant *q*.

- 4 同 6 4 日 6 4 日 6

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of clauses of a *q*-SAT formula to O(n), for any constant *q*.

Sparsification Lemma [IPZ, 2001]

For any $q \ge 3$ and $\varepsilon > 0$ there is a constant $C = C(q, \varepsilon)$ such that any q-CNF formula φ can be expressed as $\varphi = \bigvee_{i=1}^{t} \psi_i$, where $t \le 2^{\varepsilon n}$ and each ψ_i is a q-CNF formula with the same set of variables and at most $C \cdot n$ clauses. Such disjunction can be computed in time $\mathcal{O}^*(2^{\varepsilon n})$.

(4回) (4回) (4回)

Sparsification Lemma [IPZ, 2001]

For any $q \ge 3$ and $\varepsilon > 0$ there is a constant $C = C(q, \varepsilon)$ such that any q-CNF formula φ can be expressed as $\varphi = \bigvee_{i=1}^{t} \psi_i$, where $t \le 2^{\varepsilon n}$ and each ψ_i is a q-CNF formula with the same set of variables and at most $C \cdot n$ clauses. Such disjunction can be computed in time $\mathcal{O}^*(2^{\varepsilon n})$.

A B + A B +

Unless ETH fails, there is a constant c > 0, such that no algorithm solves 3-SAT in time $\mathcal{O}^*(2^{c(n+m)})$.

Unless ETH fails, there is a constant c > 0, such that no algorithm solves 3-SAT in time $\mathcal{O}^*(2^{c(n+m)})$.

Proof by contradiction:

- Suppose that for every c > 0 there is an algorithm \mathcal{A}_c solving 3-SAT in time $\mathcal{O}^*(2^{c(n+m)})$.
- Consider any d > 0. We want to solve 3-SAT in time $\mathcal{O}^*(2^{dn})$.
- Use Sparsification Lemma for $\varepsilon = d/2$. Denote $C = C(3, \varepsilon)$.
- Solve each ψ_i by $\mathcal{A}_{c'}$, where $c' = \frac{d}{2(C+1)}$.
- The total running time is $\mathcal{O}^{\star}(2^{\varepsilon n}) + \mathcal{O}^{\star}(2^{\varepsilon n} \cdot 2^{\frac{d}{2(C+1)} \cdot (C+1)n}) = \mathcal{O}^{\star}(2^{dn}).$

イロト 不得 トイヨト イヨト 二日

Unless ETH fails, there is a constant c > 0, such that no algorithm solves 3-SAT in time $\mathcal{O}^*(2^{c(n+m)})$.

Corollary

Under ETH, there is no $\mathcal{O}^{\star}(2^{o(n+m)})$ time algorithm for 3-SAT.

(ロ) (部) (E) (E) (E)

Unless ETH fails, there is a constant c > 0, such that no algorithm solves 3-SAT in time $\mathcal{O}^*(2^{c(n+m)})$.

Corollary

Under ETH, there is no $\mathcal{O}^{\star}(2^{o(n+m)})$ time algorithm for 3-SAT.

Corollary

Under ETH, there is no $\mathcal{O}^{\star}(2^{o(N+M)})$ time algorithm for VERTEX COVER.

(ロ) (部) (E) (E) (E)

• We basically needed only a *linear reduction* from 3-SAT.

æ

・ロト ・四ト ・ヨト ・ヨト

- We basically needed only a *linear reduction* from 3-SAT.
- Other problems that also admit such reductions:
 - FEEDBACK VERTEX SET,
 - Dominating Set,
 - 3-Coloring,
 - HAMILTONIAN CYCLE,
 - and many others.

э

(日) (同) (三) (三)

Planar problems

• Consider Planar Vertex Cover.

æ

・ロト ・回ト ・ヨト ・ヨト

Planar problems

- Consider Planar Vertex Cover.
- NP-hardness reduction: take an instance of general VC, and embed it on the plane replacing every crossing with:

- 4 同 6 - 4 三 6 - 4 三 6

Planar problems

- Consider PLANAR VERTEX COVER.
- NP-hardness reduction: take an instance of general VC, and embed it on the plane replacing every crossing with:

Fig. 11. Crossover H for Theorem 2.7.

- 4 同 2 4 日 2 4 日 2

• Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.

- ▲ 문 ▶ - ▲ 문 ▶

- Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.
- Hence an $\mathcal{O}^*(2^{o(\sqrt{N})})$ algorithm for PLVC would give an $\mathcal{O}(2^{o(n+m)})$ algorithm for VC, contradicting ETH.

伺 と く ヨ と く ヨ と

- Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.
- Hence an $\mathcal{O}^*(2^{o(\sqrt{N})})$ algorithm for PLVC would give an $\mathcal{O}(2^{o(n+m)})$ algorithm for VC, contradicting ETH.
- PLVC actually **has** an algorithm working in $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{N})})$:

A B + A B +

- Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.
- Hence an $\mathcal{O}^*(2^{o(\sqrt{N})})$ algorithm for PLVC would give an $\mathcal{O}(2^{o(n+m)})$ algorithm for VC, contradicting ETH.
- PLVC actually **has** an algorithm working in $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{N})})$:
 - Divide&Conquer + Lipton-Tarjan planar separator theorem, or

・ 同 ト ・ ヨ ト ・ ヨ ト

- Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.
- Hence an $\mathcal{O}^{\star}(2^{o(\sqrt{N})})$ algorithm for PLVC would give an $\mathcal{O}(2^{o(n+m)})$ algorithm for VC, contradicting ETH.
- PLVC actually **has** an algorithm working in $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{N})})$:
 - Divide&Conquer + Lipton-Tarjan planar separator theorem, or
 - Treewidth DP + planar graph on N vertices has treewidth $O(\sqrt{N})$.

- 4 同 2 4 回 2 4 U

- Reduction takes an instance of VC with *n* vertices and *m* edges, and outputs an instance with $N = O((n + m)^2)$ vertices.
- Hence an $\mathcal{O}^*(2^{o(\sqrt{N})})$ algorithm for PLVC would give an $\mathcal{O}(2^{o(n+m)})$ algorithm for VC, contradicting ETH.
- PLVC actually **has** an algorithm working in $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{N})})$:
 - Divide&Conquer + Lipton-Tarjan planar separator theorem, or
 - Treewidth DP + planar graph on N vertices has treewidth $O(\sqrt{N})$.
- The \sqrt{N} term in the exponent is not a coincidence!

• An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.

A B M A B M

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.

A B M A B M

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.
- **FPT running time**: f(k) ⋅ n^{O(1)} = O^{*}(f(k)) for a computable function f.

通 と く ヨ と く ヨ と

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.
- FPT running time: f(k) ⋅ n^{O(1)} = O^{*}(f(k)) for a computable function f.
- **XP** running time: $f(k) \cdot n^{g(k)}$ for computable functions f, g.

・ 同 ト ・ ヨ ト ・ ヨ ト

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.
- FPT running time: f(k) ⋅ n^{O(1)} = O^{*}(f(k)) for a computable function f.
- **XP** running time: $f(k) \cdot n^{g(k)}$ for computable functions f, g.
- VERTEX COVER is FPT because it admits a simple $\mathcal{O}^*(2^k)$ branching algorithm.

イロン 不同 とくほう イヨン

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.
- FPT running time: f(k) ⋅ n^{O(1)} = O^{*}(f(k)) for a computable function f.
- **XP** running time: $f(k) \cdot n^{g(k)}$ for computable functions f, g.
- VERTEX COVER is FPT because it admits a simple $\mathcal{O}^*(2^k)$ branching algorithm.
- CLIQUE is XP because it admits a simple $\mathcal{O}(k^2 \cdot n^k)$ algorithm, but probably is not FPT.

イロト 不得 トイヨト イヨト 二日

- An instance of a parameterized problem comes with a *parameter k*, e.g. size of the solution, treewidth, number of variables, etc.
- The parameter measures the hardness of the instance.
- FPT running time: f(k) ⋅ n^{O(1)} = O^{*}(f(k)) for a computable function f.
- **XP** running time: $f(k) \cdot n^{g(k)}$ for computable functions f, g.
- VERTEX COVER is FPT because it admits a simple $\mathcal{O}^*(2^k)$ branching algorithm.
- CLIQUE is XP because it admits a simple O(k² · n^k) algorithm, but probably is not FPT.

• It is W[1]-hard.

(ロ) (部) (E) (E) (E)

• **Goal**: lower bounds on functions *f* and *g* under ETH.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- **Goal**: lower bounds on functions *f* and *g* under ETH.
- \$\mathcal{O}^{\star}(2^{o(k)})\$ algorithm for VC would be also a \$\mathcal{O}^{\star}(2^{o(n+m)})\$ algorithm, contradiction.

(1日) (日) (日)

- **Goal**: lower bounds on functions *f* and *g* under ETH.
- \$\mathcal{O}^{\star}(2^{o(k)})\$ algorithm for VC would be also a \$\mathcal{O}^{\star}(2^{o(n+m)})\$ algorithm, contradiction.
- $\mathcal{O}^*(2^{o(\sqrt{k})})$ algorithm for PLVC would be also a $\mathcal{O}^*(2^{o(\sqrt{n})})$ algorithm, contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

- **Goal**: lower bounds on functions *f* and *g* under ETH.
- \$\mathcal{O}^{\star}(2^{o(k)})\$ algorithm for VC would be also a \$\mathcal{O}^{\star}(2^{o(n+m)})\$ algorithm, contradiction.
- $\mathcal{O}^*(2^{o(\sqrt{k})})$ algorithm for PLVC would be also a $\mathcal{O}^*(2^{o(\sqrt{n})})$ algorithm, contradiction.
 - **Remark**: $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ possible using *bidimensionality*.

- **Goal**: lower bounds on functions *f* and *g* under ETH.
- \$\mathcal{O}^{\star}(2^{o(k)})\$ algorithm for VC would be also a \$\mathcal{O}^{\star}(2^{o(n+m)})\$ algorithm, contradiction.
- $\mathcal{O}^*(2^{o(\sqrt{k})})$ algorithm for PLVC would be also a $\mathcal{O}^*(2^{o(\sqrt{n})})$ algorithm, contradiction.
 - **Remark**: $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ possible using *bidimensionality*.

Lower bounds for parameterized problems under ETH

If *L* admits a reduction from 3-SAT where k = f(n + m), then *L* does not admit an $\mathcal{O}^*(2^{o(f^{-1}(k))})$ algorithm unless ETH fails.

- **Goal**: lower bounds on functions *f* and *g* under ETH.
- \$\mathcal{O}^{\star}(2^{o(k)})\$ algorithm for VC would be also a \$\mathcal{O}^{\star}(2^{o(n+m)})\$ algorithm, contradiction.
- $\mathcal{O}^*(2^{o(\sqrt{k})})$ algorithm for PLVC would be also a $\mathcal{O}^*(2^{o(\sqrt{n})})$ algorithm, contradiction.
 - **Remark**: $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ possible using *bidimensionality*.

Lower bounds for parameterized problems under ETH

If *L* admits a reduction from 3-SAT where k = f(n + m), then *L* does not admit an $\mathcal{O}^*(2^{o(f^{-1}(k))})$ algorithm unless ETH fails.

• The parameter blow-up governs the strength of the lower bound.

• For many parameterized problems (VC, FVS, OCT) the situation is simple:

(4回) (1回) (日))

- $\bullet\,$ For many parameterized problems (VC, FVS, OCT) the situation is simple:
 - An algorithm with running time $\mathcal{O}^{\star}(c^k)$ exists.

(1日) (日) (日)

- For many parameterized problems (VC, FVS, OCT) the situation is simple:
 - An algorithm with running time $\mathcal{O}^*(c^k)$ exists.
 - The existence of a subexponential parameterized algorithm, with running time $\mathcal{O}^*(2^{o(k)})$, can be excluded under ETH using known NP-hardness reductions.

- For many parameterized problems (VC, FVS, OCT) the situation is simple:
 - An algorithm with running time $\mathcal{O}^*(c^k)$ exists.
 - The existence of a subexponential parameterized algorithm, with running time $\mathcal{O}^*(2^{o(k)})$, can be excluded under ETH using known NP-hardness reductions.
- Let's look at some more exotic running times.

- 4 同 6 - 4 三 6 - 4 三 6
• Slightly super-exponential = $\mathcal{O}^*(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^*(k^{\mathcal{O}(k)})$

・四・・モ・・モ・

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) Iterate through k! possibilities.

くぼう くほう くほう

- Slightly super-exponential = $\mathcal{O}^*(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^*(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) Iterate through k! possibilities.
 - (b) A branching procedure branches O(k) times, each time choosing one of poly(k) options.

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) Iterate through k! possibilities.
 - (b) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (c) A treewidth DP has partitions of the bag as the states.

(1日) (日) (日)

- Slightly super-exponential = $\mathcal{O}^*(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^*(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) Iterate through k! possibilities.
 - (b) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (c) A treewidth DP has partitions of the bag as the states.
- We focus on (b), since this is the most typical behavior in parameterized algorithms.

・ロト ・回ト ・ヨト ・ヨト

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) Iterate through k! possibilities.
 - (b) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (c) A treewidth DP has partitions of the bag as the states.
- We focus on (b), since this is the most typical behavior in parameterized algorithms.
- Results by Lokshtanov, Marx, and Saurabh (2011).

・ロト ・回ト ・ヨト ・ヨト

$k \times k$ -CLIQUE

Input:A graph H on vertex set $[k] \times [k]$ Question:Is there a k-clique in H that contains exactly one
vertex from each row?

• $[k] = \{1, 2, \dots, k\}.$

(ロ) (部) (E) (E) (E)

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

2

▲口> ▲圖> ▲屋> ▲屋>

(ロ) (同) (E) (E) (E)

• **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.

3

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.

伺 と く ヨ と く ヨ と

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.
- Intuition: extracts the idea of having k independent 1-in-k choices.

伺 と く ヨ と く ヨ と

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.
- Intuition: extracts the idea of having k independent 1-in-k choices.
- Now: $k \times k$ -CLIQUE does not admit an $\mathcal{O}^{\star}(2^{o(k \log k)})$ algorithm unless ETH fails.

・ロト ・回ト ・ヨト ・ヨト

• Starting point: 3-COLORING on an N-vertex graph does not admit a $2^{o(N)}$ algorithm.

э

・ 同 ト ・ ヨ ト ・ ヨ ト

- Starting point: 3-COLORING on an *N*-vertex graph does not admit a $2^{o(N)}$ algorithm.
- Take an instance *G* of 3-COLORING.

- Starting point: 3-COLORING on an *N*-vertex graph does not admit a $2^{o(N)}$ algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_3 N}$ groups, each of size $\frac{\log_3 N}{2}$.

・同・ ・ヨ・ ・ヨ・ ・ヨ

- Starting point: 3-COLORING on an *N*-vertex graph does not admit a $2^{o(N)}$ algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_3 N}$ groups, each of size $\frac{\log_3 N}{2}$.
- For each of the groups list all the 3-colorings.

白 と く ヨ と く ヨ と …

- **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_3 N}$ groups, each of size $\frac{\log_3 N}{2}$.
- For each of the groups list all the 3-colorings.
 - There is $3^{\frac{\log_3 N}{2}} = \sqrt{N} \le k$ of them.

< 回 > < 注 > < 注 > … 注

 For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.

イロン イボン イヨン イヨン

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.
- Note: colorings that are not proper already on their own groups will become isolated vertices.

イロン イボン イヨン イヨン

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.
- Note: colorings that are not proper already on their own groups will become isolated vertices.
- Finally, fill the rows with isolated vertices up to size k.

・ロン ・回と ・ヨン ・ ヨン

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	٠	•	•	٠

• If there is a coloring, then there is a clique: trivial.

э

・ロト ・回ト ・ヨト ・ヨト

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.

<ロ> <同> <同> < 回> < 回>

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.

(4回) (4回) (日)

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.

- 4 回 ト - 4 回 ト

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.

- 4 同 6 - 4 三 6 - 4 三 6

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.
- Since $k = \mathcal{O}(N/\log N)$, an $\mathcal{O}^{\star}(2^{o(k \log k)})$ algorithm for $k \times k$ -CLIQUE implies a $2^{o(\frac{N}{\log N} \cdot \log N)} = 2^{o(N)}$ algorithm for 3-COLORING.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.
- Since $k = \mathcal{O}(N/\log N)$, an $\mathcal{O}^{\star}(2^{o(k \log k)})$ algorithm for $k \times k$ -CLIQUE implies a $2^{o(\frac{N}{\log N} \cdot \log N)} = 2^{o(N)}$ algorithm for 3-COLORING.
- And we are done.

(人間) システン イラン

• CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .

(日) (同) (三) (三)

- CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .
 - There are algorithms with running time $\mathcal{O}^*(2^{\mathcal{O}(d \log d)})$ and $\mathcal{O}^*(2^{\mathcal{O}(d \log |\Sigma|)})$.

イロン イボン イヨン イヨン
- CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .
 - There are algorithms with running time $\mathcal{O}^*(2^{\mathcal{O}(d \log d)})$ and $\mathcal{O}^*(2^{\mathcal{O}(d \log |\Sigma|)})$.
 - Existence of algorithms with running time $\mathcal{O}^{\star}(2^{o(d \log d)})$ or $\mathcal{O}^{\star}(2^{o(d \log |\Sigma|)})$ would contradict ETH.

- CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .
 - There are algorithms with running time $\mathcal{O}^*(2^{\mathcal{O}(d \log d)})$ and $\mathcal{O}^*(2^{\mathcal{O}(d \log |\Sigma|)})$.
 - Existence of algorithms with running time $\mathcal{O}^*(2^{o(d \log d)})$ or $\mathcal{O}^*(2^{o(d \log |\Sigma|)})$ would contradict ETH.
- Treewidth dynamic programming, e.g. CYCLE PACKING:

・ロン ・回と ・ヨン ・ ヨン

- CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .
 - There are algorithms with running time $\mathcal{O}^*(2^{\mathcal{O}(d \log d)})$ and $\mathcal{O}^*(2^{\mathcal{O}(d \log |\Sigma|)})$.
 - Existence of algorithms with running time $\mathcal{O}^*(2^{o(d \log d)})$ or $\mathcal{O}^*(2^{o(d \log |\Sigma|)})$ would contradict ETH.
- Treewidth dynamic programming, e.g. CYCLE PACKING:
 - $\mathcal{O}^{\star}(2^{\mathcal{O}(t \log t)})$ algorithm by remembering a matching within the bag.

- CLOSEST STRING: Given equal-length strings x_1, x_2, \ldots, x_n over Σ and an integer d, decide whether there is some y within Hamming distance $\leq d$ from each x_i .
 - There are algorithms with running time $\mathcal{O}^*(2^{\mathcal{O}(d \log d)})$ and $\mathcal{O}^*(2^{\mathcal{O}(d \log |\Sigma|)})$.
 - Existence of algorithms with running time $\mathcal{O}^{\star}(2^{o(d \log d)})$ or $\mathcal{O}^{\star}(2^{o(d \log |\Sigma|)})$ would contradict ETH.
- Treewidth dynamic programming, e.g. CYCLE PACKING:
 - $\mathcal{O}^{\star}(2^{\mathcal{O}(t \log t)})$ algorithm by remembering a matching within the bag.
 - $\mathcal{O}^{\star}(2^{o(t \log t)})$ would contradict ETH.

イロト 不得 トイヨト イヨト 二日

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques $C_1, C_2, ..., C_k$ in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

() <) <)
 () <)
 () <)
</p>

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques C_1, C_2, \ldots, C_k in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

() <) <)
 () <)
 () <)
</p>

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques $C_1, C_2, ..., C_k$ in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

() <) <)
 () <)
 () <)
</p>

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques $C_1, C_2, ..., C_k$ in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

A B + A B +

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques C_1, C_2, \ldots, C_k in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

A B + A B +

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques C_1, C_2, \ldots, C_k in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

A B + A B +

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques $C_1, C_2, ..., C_k$ in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

(*) *) *) *)

EDGE CLIQUE COVER (ECC)

Input: Graph G, integer k **Question:** Does there exists a collection of k cliques $C_1, C_2, ..., C_k$ in G, such that $E(G) = \bigcup_{i=1}^k E(C_i)$?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

EDGE CLIQUE COVER admits a kernel with at most 2^k vertices. That is, one can preprocess the instance in polynomial time to ensure that the number of vertices in at most 2^k .

EDGE CLIQUE COVER admits a kernel with at most 2^k vertices. That is, one can preprocess the instance in polynomial time to ensure that the number of vertices in at most 2^k .

• Basically just as follows: If there are two twins in the graph, remove one of them.

(4回) (4回) (4回)

EDGE CLIQUE COVER admits a kernel with at most 2^k vertices. That is, one can preprocess the instance in polynomial time to ensure that the number of vertices in at most 2^k .

- Basically just as follows: If there are two twins in the graph, remove one of them.
- Kernel plus DP on the subsets of edges $\Rightarrow \mathcal{O}^{\star}(2^{2^{\mathcal{O}(k)}})$ algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト

EDGE CLIQUE COVER admits a kernel with at most 2^k vertices. That is, one can preprocess the instance in polynomial time to ensure that the number of vertices in at most 2^k .

- Basically just as follows: If there are two twins in the graph, remove one of them.
- Kernel plus DP on the subsets of edges $\Rightarrow \mathcal{O}^{\star}(2^{2^{\mathcal{O}(k)}})$ algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with $k = O(\log(n + m))$. Consequently, there is no $O^{\star}(2^{2^{o(k)}})$ time algorithm for ECC unless ETH fails.

イロト 不得 トイヨト イヨト 二日

• Under W[1] \neq FPT, CLIQUE cannot be solved in $f(k) \cdot n^{\mathcal{O}(1)}$ time.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Under $W[1] \neq FPT$, CLIQUE cannot be solved in $f(k) \cdot n^{\mathcal{O}(1)}$ time.
- Best known algorithm: $\mathcal{O}^{\star}(n^{0.492k})$

3

・ロト ・回ト ・ヨト ・ヨト

- Under $W[1] \neq FPT$, CLIQUE cannot be solved in $f(k) \cdot n^{\mathcal{O}(1)}$ time.
- Best known algorithm: $\mathcal{O}^{\star}(n^{0.492k})$
- Can we prove that the linear dependence on k is necessary?

・ロト ・回ト ・ヨト ・ヨト

- Under $W[1] \neq FPT$, CLIQUE cannot be solved in $f(k) \cdot n^{\mathcal{O}(1)}$ time.
- Best known algorithm: $\mathcal{O}^{\star}(n^{0.492k})$
- Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

- Under $W[1] \neq FPT$, CLIQUE cannot be solved in $f(k) \cdot n^{\mathcal{O}(1)}$ time.
- Best known algorithm: $\mathcal{O}^{\star}(n^{0.492k})$
- Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

• Corollary: $\mathsf{ETH} \Rightarrow W[1] \neq \mathrm{FPT}$

(ロ) (四) (注) (注) (注) (

æ

<ロ> <同> <同> < 回> < 回>

æ

- 4 回 2 - 4 三 2 - 4 三 2

æ

- 4 回 > - 4 回 > - 4 回 >

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

Left graph admits 3-coloring iff right graph contains k-clique.

A B M A B M

A >

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

Proof continued:

• Constructed graph has $N \leq k \cdot 3^{n/k}$ vertices.

同下 イヨト イヨト
Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

Proof continued:

- Constructed graph has $N \leq k \cdot 3^{n/k}$ vertices.
- Lets try $k = \log n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

Proof continued:

- Constructed graph has $N \leq k \cdot 3^{n/k}$ vertices.
- Lets try $k = \log n$.
- $2^k \cdot N^{o(k)} = n \cdot (\log n)^{o(\log n)} \cdot 3^{n \cdot o(\log n) / \log n} = \mathcal{O}^*(2^{o(n)}).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

Proof continued:

- Constructed graph has $N \leq k \cdot 3^{n/k}$ vertices.
- Lets try $k = \log n$.
- $2^k \cdot N^{o(k)} = n \cdot (\log n)^{o(\log n)} \cdot 3^{n \cdot o(\log n) / \log n} = \mathcal{O}^*(2^{o(n)}).$
- Similarly $k = \log \log n$ implies no $2^{2^k} \cdot N^{o(k)}$ time algorithm.

→ @→ < ≥→ < ≥→ < ≥</p>

Unless ETH fails, CLIQUE cannot be solved in time $f(k) \cdot n^{o(k)}$ for any computable function f.

Proof continued:

- Constructed graph has $N \leq k \cdot 3^{n/k}$ vertices.
- Lets try $k = \log n$.
- $2^k \cdot N^{o(k)} = n \cdot (\log n)^{o(\log n)} \cdot 3^{n \cdot o(\log n) / \log n} = \mathcal{O}^*(2^{o(n)}).$
- Similarly $k = \log \log n$ implies no $2^{2^k} \cdot N^{o(k)}$ time algorithm.
- To exclude all computable f(k), one needs roughly k = f⁻¹(n) (technical difficulties omitted).

イロト 不得 トイヨト イヨト 二日

 $\bullet~$ By reductions from $\rm CLIQUE,$ one can prove lower bounds on the running times of XP algorithms.

3

・ロト ・回ト ・ヨト ・ヨト

- By reductions from CLIQUE, one can prove lower bounds on the running times of XP algorithms.
- Recent discovery: For planar problems, a typical behaviour is:
 - the existence of an $\mathcal{O}(n^{\mathcal{O}(\sqrt{k})})$ algorithm, and
 - the nonexistence of an $f(k) \cdot n^{o(\sqrt{k})}$ algorithm under ETH.

イロン 不同 とくほう イヨン

- By reductions from CLIQUE, one can prove lower bounds on the running times of XP algorithms.
- Recent discovery: For planar problems, a typical behaviour is:
 - the existence of an $\mathcal{O}(n^{\mathcal{O}(\sqrt{k})})$ algorithm, and
 - the nonexistence of an $f(k) \cdot n^{o(\sqrt{k})}$ algorithm under ETH.
- **Example**: PLANAR *d*-SCATTERED SET given an edge-weighted planar graph *G*, a real *d* and an integer *k*, verify whether there are *k* points in pairwise distance *d* from each other. (Marx, P)

• Under ETH we can estimate the asymptotics of the behaviour in the exponent.

э

・ロト ・四ト ・ヨト ・ヨト

- Under ETH we can estimate the asymptotics of the behaviour in the exponent.
- Under SETH we can precise pinpoint the base of the exponent.

э

イロン イロン イヨン イヨン

- Under ETH we can estimate the asymptotics of the behaviour in the exponent.
- Under SETH we can precise pinpoint the base of the exponent.
- For lower bounds under ETH, we cared only about the *asymptotics* of the parameter blow-up.

(人間) システン イラン

- Under ETH we can estimate the asymptotics of the behaviour in the exponent.
- Under SETH we can precise pinpoint the base of the exponent.
- For lower bounds under ETH, we cared only about the *asymptotics* of the parameter blow-up.
- Under SETH, we need to care *exactly* how the parameter is transformed.

- 4 回 > - 4 回 > - 4 回 >

- Under ETH we can estimate the asymptotics of the behaviour in the exponent.
- Under SETH we can precise pinpoint the base of the exponent.
- For lower bounds under ETH, we cared only about the *asymptotics* of the parameter blow-up.
- Under SETH, we need to care *exactly* how the parameter is transformed.
- Therefore, lower bounds under SETH are much more delicate and much scarcer.

- 4 回 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4

- Under ETH we can estimate the asymptotics of the behaviour in the exponent.
- Under SETH we can precise pinpoint the base of the exponent.
- For lower bounds under ETH, we cared only about the *asymptotics* of the parameter blow-up.
- Under SETH, we need to care *exactly* how the parameter is transformed.
- Therefore, lower bounds under SETH are much more delicate and much scarcer.
- Probably more during Ryan's talk in the morning; now a quick parameterized perspective.

・ロン ・四 と ・ ヨ と ・ ヨ と …

• Many standard problems can be solved in time $\mathcal{O}^*(c^t)$, where c some constant and t is the width of a given tree decomposition of the graph.

- Many standard problems can be solved in time $\mathcal{O}^*(c^t)$, where c some constant and t is the width of a given tree decomposition of the graph.
 - VC and IS in $\mathcal{O}^*(2^t)$, DS and OCT in $\mathcal{O}^*(3^t)$.

< 回 > < 三 > < 三 > -

- Many standard problems can be solved in time $\mathcal{O}^*(c^t)$, where c some constant and t is the width of a given tree decomposition of the graph.
 - VC and IS in $\mathcal{O}^*(2^t)$, DS and OCT in $\mathcal{O}^*(3^t)$.
 - Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk): STEINER TREE, CVC, and FVS in $\mathcal{O}^*(3^t)$.

(*) *) *) *)

- Many standard problems can be solved in time $\mathcal{O}^*(c^t)$, where c some constant and t is the width of a given tree decomposition of the graph.
 - VC and IS in $\mathcal{O}^*(2^t)$, DS and OCT in $\mathcal{O}^*(3^t)$.
 - Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk): STEINER TREE, CVC, and FVS in $\mathcal{O}^*(3^t)$.
- Space of states is formed by all relevant interactions between the solution and the bag.

- 4 同 6 - 4 三 6 - 4 三 6

- Many standard problems can be solved in time $\mathcal{O}^*(c^t)$, where c some constant and t is the width of a given tree decomposition of the graph.
 - VC and IS in $\mathcal{O}^*(2^t)$, DS and OCT in $\mathcal{O}^*(3^t)$.
 - Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk): STEINER TREE, CVC, and FVS in $\mathcal{O}^*(3^t)$.
- Space of states is formed by all relevant interactions between the solution and the bag.
- These results are tight.

- 4 同 6 - 4 三 6 - 4 三 6

Theorem (LMS+CNPPvRW)

Assume that CNF-SAT cannot be solved in time $\mathcal{O}^{\star}(c^n)$ for any c < 2. Then for every $\varepsilon > 0$ the following holds $(p/t \text{ is the width of a given path/tree decomposition of the input graph):$

- INDEPENDENT SET cannot be solved in time O^{*}((2 − ε)^p);
- DOMINATING SET cannot be solved in time O^{*}((3 − ε)^p);
- ODD CYCLE TRAVERSAL cannot be solved in time $\mathcal{O}^*((3-\varepsilon)^p)$;
- STEINER TREE cannot be solved in time O^{*}((3 − ε)^p);
- FEEDBACK VERTEX SET cannot be solved in time $\mathcal{O}^{\star}((3-\varepsilon)^p)$;
- CONNECTED VERTEX COVER cannot be solved in time $\mathcal{O}^*((3-\varepsilon)^p)$.

イロト 不得 トイヨト イヨト 二日

Theorem (Cygan, Kratsch, Nederlof)

HAMILTONIAN PATH can be solved in time $\mathcal{O}^*((2 + \sqrt{2})^p)$, but the existence of an algorithm with running time $\mathcal{O}^*((2 + \sqrt{2} - \varepsilon)^p)$ would yield an algorithm for CNF-SAT with running time $\mathcal{O}^*(c^n)$ for some c < 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Cygan, Kratsch, Nederlof)

HAMILTONIAN PATH can be solved in time $\mathcal{O}^*((2 + \sqrt{2})^p)$, but the existence of an algorithm with running time $\mathcal{O}^*((2 + \sqrt{2} - \varepsilon)^p)$ would yield an algorithm for CNF-SAT with running time $\mathcal{O}^*(c^n)$ for some c < 2.

• Open: The algorithmic result does not work for treewidth.

・ 同 ト ・ ヨ ト ・ ヨ ト

Input:	Universe U , set family $\mathcal{F} \subseteq 2^U$, integer k
Question:	Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$ with $ \mathcal{G} \leq k$ s.t. $\bigcup \mathcal{G} = U$?

э

- 4 聞 と 4 注 と 4 注 と

Input:	Universe U , set family $\mathcal{F} \subseteq 2^U$, integer k
Question:	Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$ with $ \mathcal{G} \leq k$ s.t. $\bigcup \mathcal{G} = U$?

• Denote n = |U| and $m = |\mathcal{F}|$.

3

・ロン ・回と ・ヨン ・ ヨン

Input:	Universe U, set family $\mathcal{F} \subseteq 2^U$, integer k
Question:	Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$ with $ \mathcal{G} \leq k$ s.t. $\bigcup \mathcal{G} = U$?

- Denote n = |U| and $m = |\mathcal{F}|$.
- Brute-force $\mathcal{O}^{\star}(2^m)$ algorithm.

3

Input:	Universe U , set family $\mathcal{F} \subseteq 2^U$, integer k
Question:	Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$ with $ \mathcal{G} \leq k$ s.t. $\bigcup \mathcal{G} = U$?

- Denote n = |U| and $m = |\mathcal{F}|$.
- Brute-force $\mathcal{O}^{\star}(2^m)$ algorithm.
- Covering DP over subsets of $U \Rightarrow \mathcal{O}^{\star}(2^n)$ algorithm.

3

(日)

Input:	Universe U , set family $\mathcal{F} \subseteq 2^U$, integer k
Question:	Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$ with $ \mathcal{G} \leq k$ s.t. $\bigcup \mathcal{G} = U$?

- Denote n = |U| and $m = |\mathcal{F}|$.
- Brute-force $\mathcal{O}^{\star}(2^m)$ algorithm.
- Covering DP over subsets of $U \Rightarrow \mathcal{O}^{\star}(2^n)$ algorithm.
- Could any of these be improved?

伺 と く ヨ と く ヨ と …

• Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.

- 4 同 6 4 日 6 4 日 6

- Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.
- Under SETH, there is no $\mathcal{O}^*(c^m)$ algorithm for SET COVER for any c < 2 (sort-of-equivalent to SETH).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.
- Under SETH, there is no $\mathcal{O}^*(c^m)$ algorithm for SET COVER for any c < 2 (sort-of-equivalent to SETH).
- Breaking 2 in the base of the exponent for many covering problems is *equivalent* to breaking it for SET COVER/n.

- Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.
- Under SETH, there is no $\mathcal{O}^*(c^m)$ algorithm for SET COVER for any c < 2 (sort-of-equivalent to SETH).
- Breaking 2 in the base of the exponent for many covering problems is *equivalent* to breaking it for SET COVER/*n*.
 - STEINER TREE, CONNECTED VERTEX COVER, SET PARTITIONING.

(日)

- Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.
- Under SETH, there is no $\mathcal{O}^*(c^m)$ algorithm for SET COVER for any c < 2 (sort-of-equivalent to SETH).
- Breaking 2 in the base of the exponent for many covering problems is *equivalent* to breaking it for SET COVER/*n*.
 - STEINER TREE, CONNECTED VERTEX COVER, SET PARTITIONING.
- Fundamental link between SET COVER/n and SET COVER/m is still not discovered.

イロン イボン イヨン イヨン

- Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström.
- Under SETH, there is no $\mathcal{O}^*(c^m)$ algorithm for SET COVER for any c < 2 (sort-of-equivalent to SETH).
- Breaking 2 in the base of the exponent for many covering problems is *equivalent* to breaking it for SET COVER/*n*.
 - STEINER TREE, CONNECTED VERTEX COVER, SET PARTITIONING.
- Fundamental link between SET COVER/n and SET COVER/m is still not discovered.

Set Cover Conjecture

Let λ_q be the infinimum of the set of constants c such that q-SET COVER can be solved in time $\mathcal{O}^*(2^{cn})$, where n is the size of the universe. Then $\lim_{q\to\infty} \lambda_q = 1$. In particular, there is no algorithm for the general SET COVER problem that runs in $\mathcal{O}^*((2-\varepsilon)^n)$ for any $\varepsilon > 0$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

• ETH allows us to estimate the asymptotics of the behaviour in the exponents.

э

・ロト ・回ト ・ヨト ・ヨト

- ETH allows us to estimate the asymptotics of the behaviour in the exponents.
- SETH gives a precise bound on the base of the exponent, but is less plausible and less applicable.

э

- ETH allows us to estimate the asymptotics of the behaviour in the exponents.
- SETH gives a precise bound on the base of the exponent, but is less plausible and less applicable.
- ETH and SETH are robust assumptions, under which for many problems we can pinpoint the precise influence of a parameter on the complexity of the problem.

- ETH allows us to estimate the asymptotics of the behaviour in the exponents.
- SETH gives a precise bound on the base of the exponent, but is less plausible and less applicable.
- ETH and SETH are robust assumptions, under which for many problems we can pinpoint the precise influence of a parameter on the complexity of the problem.
- **Optimality program**: Finding matching lower and upper bounds on the parameterized complexity of various problems.
This, and many more in the new book

Parameterized algorithms

by Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, P., and Saurabh. Out in early 2015.

(B)