Lower bounds based on ETH and SETH

Michat Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Workshop on Exact Algorithms and Lower Bounds, |IT Delhi,
December 13t", 2014

Michat Pilipczuk ETH&SETH

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.

@ Best known algorithms:

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.

@ Best known algorithms:
e Brute-force O(n!).

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.
@ Best known algorithms:

o Brute-force O(n!).
e For a long time O*(2") Held-Karp dynamic programming.

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.
@ Best known algorithms:

o Brute-force O(n!).
e For a long time O*(2") Held-Karp dynamic programming.
o O*(F(n)) = F(n) - poly(jinput]).

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.
@ Best known algorithms:

o Brute-force O(n!).
e For a long time O*(2") Held-Karp dynamic programming.

o O*(F(n)) = f(n) - poly(/input|).
o Today: O*(1.657") of Bjérklund (2010).

Michat Pilipczuk ETH&SETH 2/39

@ Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.
@ Best known algorithms:

o Brute-force O(n!).
e For a long time O*(2") Held-Karp dynamic programming.

o O*(F(n)) = f(n) - poly(/input|).
o Today: O*(1.657") of Bjérklund (2010).

@ How much can you improve the constant 1.6577

Michat Pilipczuk ETH&SETH 2/39

Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.

Best known algorithms:

o Brute-force O(n!).

e For a long time O*(2") Held-Karp dynamic programming.
o O*(F(m) = £(n) - poly(jinput]).

o Today: O*(1.657") of Bjérklund (2010).

How much can you improve the constant 1.6577
Can you do significantly better, e.g. O*(2°(7/lgn) or O*(20(vV"))?

Michat Pilipczuk ETH&SETH 2/39

Under P # NP, HAMILTONIAN CYCLE cannot be solved in
polynomial time.

Best known algorithms:

o Brute-force O(n!).

e For a long time O*(2") Held-Karp dynamic programming.
o O*(F(m) = £(n) - poly(jinput]).

o Today: O*(1.657") of Bjérklund (2010).

How much can you improve the constant 1.6577
Can you do significantly better, e.g. O*(2°(7/legn)y or O*(20(v"))?

Assumption P # NP seems too week to answer these questions.

Michat Pilipczuk ETH&SETH 2/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

@ 3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 VxaV-=x3)A(—x2 Vx3)A(—x1 VX Vxs)

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

@ 3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(1 VxaV-=x3)A(—x2 Vxs)A(—x1 VX Vxs)

e Trivial: O*(2")

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

@ 3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(1 VxaV-=x3)A(—x2 Vxs)A(—x1 VX Vxs)

e Trivial: O*(2")
@ Smarter:

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

@ 3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(1 VxaV-=x3)A(—x2 Vxs)A(—x1 VX Vxs)
e Trivial: O*(2")
e Smarter:

o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

@ 3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

@ 3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(1 VxaV-=x3)A(—x2 Vxs)A(—x1 VX Vxs)

e Trivial: O*(2")
o Smarter:
o Take any clause not satisfied so far, and branch on the evaluations of

the variables: there are at most 7 options for a 3-clause.
o Hence the running time is O*(7"/%) = ©*(1.913").

Michat Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ¢ in 3-CNF with n variables and m clauses,
decide whether ¢ is satisfiable.

3-CNF: ¢ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(1 VxaV-=x3)A(—x2 Vxs)A(—x1 VX Vxs)

Trivial: O*(2")
Smarter:

o Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
o Hence the running time is O*(7"/3) = ©*(1.913").

Current record: 0*(1.308") (Paturi, Pudlak, Saks, Zane; Hertli)

Michat Pilipczuk ETH&SETH 3/39

e Can you do significantly better, i.e. have running time O*(2°(")?

Michat Pilipczuk ETH&SETH 4/39

e Can you do significantly better, i.e. have running time O*(2°(")?

@ If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

Michat Pilipczuk ETH&SETH 4/39

e Can you do significantly better, i.e. have running time O*(2°(")?

@ If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

@ With current knowledge, we are faaaaar from answering positively
any of these two questions.

Michat Pilipczuk ETH&SETH 4/39

Can you do significantly better, i.e. have running time O*(2°(")?

If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

With current knowledge, we are faaaaar from answering positively
any of these two questions.

3-SAT cannot be solved in time O*(2°(").
General CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.

Michat Pilipczuk ETH&SETH 4/39

Actual statements

dq = inf{c : There is an O*(2") algorithm for g-SAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3-SAT cannot be solved in O*(2") time.

Strong Exponential Time Hypothesis, SETH

lim 04 = 1.

q—00

Michat Pilipczuk ETH&SETH

Actual statements

dq = inf{c : There is an O*(2") algorithm for g-SAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3-SAT cannot be solved in O*(2") time.

Strong Exponential Time Hypothesis, SETH

lim 04 = 1.

q—00

@ These statements are stronger than the first attempts.

Michat Pilipczuk ETH&SETH

Actual statements

dq = inf{c : There is an O*(2") algorithm for g-SAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3-SAT cannot be solved in O*(2") time.

Strong Exponential Time Hypothesis, SETH

lim 04 = 1.

q—00

@ These statements are stronger than the first attempts.
o Formulated by Impagliazzo, Paturi and Zane in 2001.

Michat Pilipczuk ETH&SETH

Actual statements

dq = inf{c : There is an O*(2") algorithm for g-SAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3-SAT cannot be solved in O*(2") time.

Strong Exponential Time Hypothesis, SETH

lim 04 = 1.

q—00

@ These statements are stronger than the first attempts.
o Formulated by Impagliazzo, Paturi and Zane in 2001.
@ Usually we allow two-sided error algorithms in the definition.

Michat Pilipczuk ETH&SETH

Actual statements

dq = inf{c : There is an O*(2") algorithm for g-SAT}

Exponential Time Hypothesis, ETH
63 > 0.
There is a ¢ > 0 such that 3-SAT cannot be solved in O*(2") time.

Strong Exponential Time Hypothesis, SETH

lim 04 = 1.

q—00

These statements are stronger than the first attempts.
Formulated by Impagliazzo, Paturi and Zane in 2001.
Usually we allow two-sided error algorithms in the definition.
SETH = ETH (nontrivial)

Michat Pilipczuk ETH&SETH

@ As usual with lower bounds, we would like to transfer them via
reductions.

Michat Pilipczuk ETH&SETH 6/39

@ As usual with lower bounds, we would like to transfer them via
reductions.

@ A reduction 3-SAT— L and a too fast algorithm for L would give a
too fast algorithm for 3-SAT.

Michat Pilipczuk ETH&SETH 6/39

@ As usual with lower bounds, we would like to transfer them via
reductions.

@ A reduction 3-SAT— L and a too fast algorithm for L would give a
too fast algorithm for 3-SAT.

VERTEX COVER

Input: A graph G and an integer k
Question: s there a set X C V/(G) with |X| < k such that every
edge of G has at least one endpoint in X7

Michat Pilipczuk ETH&SETH 6/39

VERTEX COVER reduction

Let us inspect the standard reduction from 3-SAT to VERTEX COVER.)

.\7. \7 v v v .\:/. clauses

o—eo —e o—eo o—eo variables
X1 X1 X2 X2 X3 X3 X4 X4

Michat Pilipczuk ETH&SETH 7/39

VERTEX COVER reduction

Let us inspect the standard reduction from 3-SAT to VERTEX COVER.)

.\:/. v a .?:: v v .\:/. clauses

o—eo —e o—eo o—eo variables
X1 X1 X2 X2 X3 X3 X4 X4

Michat Pilipczuk ETH&SETH 7/39

VERTEX COVER reduction

Let us inspect the standard reduction from 3-SAT to VERTEX COVER.)

.\:/. v 5, 3 v v .\:/. clauses

o— —eo HX4 variables

Michat Pilipczuk ETH&SETH 7/39

VERTEX COVER reduction

Let us inspect the standard reduction from 3-SAT to VERTEX COVER.)

.\:/. v y, 33 v v .\:/. clauses

o— —e o—eo variables
X1 X1 X2 X2 X3 X3 X4 X4

The formula is satisfiable iff the created graph has vertex cover of size
n+2m.

Michat Pilipczuk ETH&SETH 7/39

VERTEX COVER reduction, analysis

@ If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = O(nd).

Michat Pilipczuk ETH&SETH 8/39

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = O(nd).

@ Hence an (9*(2"('\’1/3)) algorithm for VC would give an O*(2°(")
algorithm for 3-SAT, contradicting ETH.

Michat Pilipczuk ETH&SETH 8/39

VERTEX COVER reduction, analysis

o If N =2n+ 3m is the number of vertices of the output graph, then
N = O(n+ m) = O(nd).

@ Hence an (9*(2"('\’1/3)) algorithm for VC would give an O*(2°(")
algorithm for 3-SAT, contradicting ETH.

@ But we know no algorithm with running time O*(2°(")). .

Michat Pilipczuk ETH&SETH 8/39

VERTEX COVER reduction, analysis

If N =2n+4 3m is the number of vertices of the output graph, then
N = O(n+ m) = O(nd).

Hence an (9*(2"("’1/3)) algorithm for VC would give an O*(2°(")
algorithm for 3-SAT, contradicting ETH.

But we know no algorithm with running time O*(2°(V))._.

If we started with an instance of 3-SAT that is sparse, i.e.,
m = O(n), then a 0*(2°M)) lower bound would follow.

Michat Pilipczuk ETH&SETH 8/39

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of
clauses of a g-SAT formula to O(n), for any constant q.

Michat Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of
clauses of a g-SAT formula to O(n), for any constant q.

Sparsification Lemma [IPZ, 2001]

For any g > 3 and ¢ > 0 there is a constant C = C(q, €) such that any
g-CNF formula ¢ can be expressed as ¢ = \/f=1 i, where t < 2°" and
each ; is a g-CNF formula with the same set of variables and at most
C - n clauses. Such disjunction can be computed in time O*(2°").

Michat Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Sparsification Lemma [IPZ, 2001]

For any g > 3 and ¢ > 0 there is a constant C = C(q, €) such that any
g-CNF formula ¢ can be expressed as ¢ = \/f:1 1;, where t < 2°" and
each ; is a g-CNF formula with the same set of variables and at most
C - n clauses. Such disjunction can be computed in time O*(2°").

©, N, m
_—‘— Pae ' S .“~~
———— ”‘ : ~~\ ..~.
«- . v 4 -
wivnuc'n
28”

Michat Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3-SAT in time O*(2¢(r+m)).

Michat Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3-SAT in time O*(2¢(ntm)),

Proof by contradiction:

@ Suppose that for every ¢ > 0 there is an algorithm A, solving
3-SAT in time O*(2¢(r+m)).
Consider any d > 0. We want to solve 3-SAT in time O*(24").

@ Use Sparsification Lemma for ¢ = d/2. Denote C = C(3,¢).
@ Solve each ; by A/, where ¢’ = ﬁ.

The total running time is
d
O*(257) + O (25 - 27 (CHm) — O (2dn),

Michat Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3-SAT in time O*(2¢(n+m)),

Under ETH, there is no O*(2°("*™)) time algorithm for 3-SAT.

Michat Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Unless ETH fails, there is a constant ¢ > 0, such that no algorithm solves
3-SAT in time O*(2¢(n+m)),

Under ETH, there is no O*(2°("+™)) time algorithm for 3-SAT.

Under ETH, there is no O*(2°(N*M)) time algorithm for VERTEX
COVER.

Michat Pilipczuk ETH&SETH 10/39

Corollaries

@ We basically needed only a linear reduction from 3-SAT.

Michat Pilipczuk ETH&SETH 11/39

Corollaries

@ We basically needed only a linear reduction from 3-SAT.
@ Other problems that also admit such reductions:

o FEEDBACK VERTEX SET,

o DOMINATING SET,

o 3-COLORING,

e HAMILTONIAN CYCLE,

e and many others.

Michat Pilipczuk ETH&SETH 11/39

Planar problems

@ Consider PLANAR VERTEX COVER.

Michat Pilipczuk ETH&SETH 12/39

Planar problems

@ Consider PLANAR VERTEX COVER.

@ NP-hardness reduction: take an instance of general VC, and embed
it on the plane replacing every crossing with:

Michat Pilipczuk ETH&SETH 12/39

Planar problems

@ Consider PLANAR VERTEX COVER.

@ NP-hardness reduction: take an instance of general VC, and embed

it on the plane replacing every crossing with:

Vi

V2

/

Va

Fig. 11. Crossover H for Theorem 2.7.

Michat Pilipczuk ETH&SETH

Vi

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

Michat Pilipczuk ETH&SETH 13/39

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

e Hence an 0*(2°(YN)) algorithm for PLVC would give an
O(2°(n+m) algorithm for VC, contradicting ETH.

Michat Pilipczuk ETH&SETH 13/39

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

o Hence an 0*(2°(VM) algorithm for PLVC would give an
O(2°(n+m)) algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in O*(Zo(‘m)):

Michat Pilipczuk ETH&SETH 13/39

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

o Hence an 0*(2°(VM) algorithm for PLVC would give an
O(2°(n+m)) algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in O*(2O(‘m)):
o Divide&Conquer + Lipton-Tarjan planar separator theorem, or

Michat Pilipczuk ETH&SETH 13/39

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

o Hence an 0*(2°(VM) algorithm for PLVC would give an
O(2°(n+m)) algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in O*(2O(‘m)):

o Divide&Conquer + Lipton-Tarjan planar separator theorem, or
o Treewidth DP + planar graph on N vertices has treewidth O(W)

Michat Pilipczuk ETH&SETH 13/39

PLVC: analysis

@ Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)?) vertices.

o Hence an 0*(2°(VM) algorithm for PLVC would give an
O(2°(n+m)) algorithm for VC, contradicting ETH.

e PLVC actually has an algorithm working in O*(2O(‘m)):

o Divide&Conquer + Lipton-Tarjan planar separator theorem, or
o Treewidth DP 4 planar graph on N vertices has treewidth O(v/N).

@ The v/ N term in the exponent is not a coincidence!

Michat Pilipczuk ETH&SETH 13/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.

o FPT running time: f(k) - n®®) = O*(f(k)) for a computable
function f.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.

o FPT running time: f(k) - n®®) = O*(f(k)) for a computable
function f.

o XP running time: f(k) - n&) for computable functions f, g.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.
o FPT running time: f(k) - n®®) = O*(f(k)) for a computable
function f.

XP running time: f(k) - n8(%) for computable functions f, g.

VERTEX COVER is FPT because it admits a simple O*(2)
branching algorithm.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.

o FPT running time: f(k) - n®®) = O*(f(k)) for a computable
function f.

o XP running time: f(k) - n&) for computable functions f,g.

o VERTEX COVER is FPT because it admits a simple O*(2)
branching algorithm.

e CLIQUE is XP because it admits a simple O(k? - n¥) algorithm, but
probably is not FPT.

Michat Pilipczuk ETH&SETH 14/39

Parameterized complexity

@ An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

@ The parameter measures the hardness of the instance.

o FPT running time: f(k) - n®®) = O*(f(k)) for a computable
function f.

o XP running time: f(k) - n&) for computable functions f,g.

o VERTEX COVER is FPT because it admits a simple O*(2)
branching algorithm.

o CLIQUE is XP because it admits a simple O(k? - n¥) algorithm, but
probably is not FPT.

o It is W[1]-hard.

Michat Pilipczuk ETH&SETH 14/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

o 0*(2°(9)) algorithm for VC would be also a O*(2°("*m)) algorithm,
contradiction.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

o 0*(2°(9)) algorithm for VC would be also a O*(2°("*™)) algorithm,
contradiction.

o 0*(2°(VK) algorithm for PLVC would be also a O*(2°(v)
algorithm, contradiction.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

o 0*(2°(9)) algorithm for VC would be also a O*(2°("*™)) algorithm,
contradiction.

o 0*(2°(VR) algorithm for PLVC would be also a O*(2°(v)
algorithm, contradiction.

e Remark: O*(2O(‘/E)) possible using bidimensionality.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

o 0*(2°(9)) algorithm for VC would be also a O*(2°("*™)) algorithm,
contradiction.

o 0*(2°(VR) algorithm for PLVC would be also a O*(2°(v)
algorithm, contradiction.

o Remark: (9*(20(‘/;)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f(n+ m), then L does
not admit an O*(2°(F (%)) algorithm unless ETH fails.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

@ Goal: lower bounds on functions f and g under ETH.

o 0*(2°(9)) algorithm for VC would be also a O*(2°("*™)) algorithm,
contradiction.

o 0*(2°(VR) algorithm for PLVC would be also a O*(2°(v)
algorithm, contradiction.

o Remark: (9*(20(‘/;)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f(n+ m), then L does
not admit an O*(2°(F (%)) algorithm unless ETH fails.

@ The parameter blow-up governs the strength of the lower bound.

Michat Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

e For many parameterized problems (VC, FVS, OCT) the situation
is simple:

Michat Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

e For many parameterized problems (VC, FVS, OCT) the situation
is simple:
o An algorithm with running time O*(c*) exists.

Michat Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

e For many parameterized problems (VC, FVS, OCT) the situation
is simple:
o An algorithm with running time O*(c*) exists.
e The existence of a subexponential parameterized algorithm, with

running time O*(2°)), can be excluded under ETH using known
NP-hardness reductions.

Michat Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

e For many parameterized problems (VC, FVS, OCT) the situation
is simple:
o An algorithm with running time O*(c*) exists.
o The existence of a subexponential parameterized algorithm, with
running time O*(2°)), can be excluded under ETH using known
NP-hardness reductions.

@ Let's look at some more exotic running times.

Michat Pilipczuk ETH&SETH 16/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(20(klgk)) = O* (k)

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:
(a) Iterate through k! possibilities.

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:

(a) Iterate through k! possibilities.

(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.

(c) A treewidth DP has partitions of the bag as the states.

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:
(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.
e We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Michat Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

o Slightly super-exponential = O*(29(klegk)) = O* (k)
@ Appears naturally:
(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.
e We focus on (b), since this is the most typical behavior in
parameterized algorithms.

@ Results by Lokshtanov, Marx, and Saurabh (2011).

Michat Pilipczuk ETH&SETH 17/39

k x k-CLIQUE

Input: A graph H on vertex set [k] X [K]
Question: Is there a k-clique in H that contains exactly one
vertex from each row?

o [k =1{1,2,....k}.

Michat Pilipczuk ETH&SETH 18/39

Michat Pilipczuk ETH&SETH 19/39

On a picture

Michat Pilipczuk ETH&SETH

About k x k-CLIQUE

e Note: the input to the problem is of size O(k*).

Michat Pilipczuk ETH&SETH 20/39

About k x k-CLIQUE

e Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

Michat Pilipczuk ETH&SETH 20/39

About k x k-CLIQUE

e Note: the input to the problem is of size O(k*).
o Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: extracts the idea of having k independent 1-in-k choices.

Michat Pilipczuk ETH&SETH 20/39

About k x k-CLIQUE

Note: the input to the problem is of size O(k*).
Trivial O* (k) algorithm: verify all the choices.
Intuition: extracts the idea of having k independent 1-in-k choices.

Now: k x k-CLIQUE does not admit an O*(2°(k'°€¥)) algorithm
unless ETH fails.

Michat Pilipczuk ETH&SETH 20/39

Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not admit
a 2°V) algorithm.

Michat Pilipczuk ETH&SETH)

Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not admit
a 2°V) algorithm.

@ Take an instance G of 3-COLORING.

Michat Pilipczuk ETH&SETH)

Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not admit
a 2°V) algorithm.

@ Take an instance G of 3—COLORING
@ Divide the vertices into k :=

log, N
groups, each of size &=,

Iog N

Michat Pilipczuk ETH&SETH)

Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not admit
a 2°V) algorithm.

@ Take an instance G of 3—COLORING
@ Divide the vertices into k :=

log, N
groups, each of size &=,

Iog N
@ For each of the groups list all the 3-colorings.

Michat Pilipczuk ETH&SETH 21/39

Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not admit
a 2°V) algorithm.

@ Take an instance G of 3—COLORING
@ Divide the vertices into k :=

log, N
groups, each of size &=,

Iog N
@ For each of the groups list all the 3-colorings.

o Thereis 3°%" = /N < k of them.

Michat Pilipczuk ETH&SETH 21/39

Lower bound for k x k-CLIQUE

e For i € [k] and j € [V/N], vertex (i,]) represents the j-th coloring of
the i-th group.

Michat Pilipczuk ETH&SETH 22/39

Lower bound for k x k-CLIQUE

e For i € [k] and j € [V/N], vertex (i,]) represents the j-th coloring of
the i-th group.

@ For i # i’, put an edge between (i,;) and (i, ") if respective
colorings together form a proper coloring of the union of the groups
i and /.

Michat Pilipczuk ETH&SETH 22/39

Lower bound for k x k-CLIQUE

e For i € [k] and j € [V/N], vertex (i,]) represents the j-th coloring of
the i-th group.

e For i # i’, put an edge between (i,;) and (i, ') if respective
colorings together form a proper coloring of the union of the groups
i and /.

@ Note: colorings that are not proper already on their own groups will
become isolated vertices.

Michat Pilipczuk ETH&SETH 22/39

Lower bound for k x k-CLIQUE

e For i € [k] and j € [V/N], vertex (i,]) represents the j-th coloring of
the i-th group.

e For i # i’, put an edge between (i,;) and (i, ') if respective
colorings together form a proper coloring of the union of the groups
i and /.

@ Note: colorings that are not proper already on their own groups will
become isolated vertices.

e Finally, fill the rows with isolated vertices up to size k.

Michat Pilipczuk ETH&SETH)

On a picture

Michat Pilipczuk ETH&SETH 23/39

On a picture

Michat Pilipczuk ETH&SETH 23/39

On a picture

Michat Pilipczuk ETH&SETH 23/39

On a picture

Michat Pilipczuk ETH&SETH 23/39

Equivalence

@ If there is a coloring, then there is a clique: trivial.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.
@ Suppose there is an edge with endpoints of the same color.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.

@ Suppose there is an edge with endpoints of the same color.

e Within a group: the coloring of this group would yield an isolated
vertex.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.

@ Suppose there is an edge with endpoints of the same color.

e Within a group: the coloring of this group would yield an isolated
vertex.

o Between two groups: the corresponding colorings of the groups
wouldn't be connected by an edge.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.
If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.
e Within a group: the coloring of this group would yield an isolated
vertex.
o Between two groups: the corresponding colorings of the groups
wouldn't be connected by an edge.
Since k = O(N/log N), an O*(2°(kl°gk)) algorithm for

k x k-CLIQUE implies a 2°(GEwlog N) — po(N) algorithm for

3-COLORING.

Michat Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.
e Within a group: the coloring of this group would yield an isolated
vertex.
o Between two groups: the corresponding colorings of the groups
wouldn't be connected by an edge.

Since k = O(N/log N), an O*(2°(kl°gk)) algorithm for

k x k-CLIQUE implies a 2°($'|°g N) — 2°(N) algorithm for
3-COLORING.

@ And we are done.

Michat Pilipczuk ETH&SETH 24/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each x;.

Michat Pilipczuk ETH&SETH 25/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each x;.

o There are algorithms with running time O*(2°(@'°¢?)) and
O*(2O(dlog\2\)).

Michat Pilipczuk ETH&SETH 25/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each Xx;.

o There are algorithms with running time ©*(2°(@'°¢9)) and
O*(2O(dlog\2\)).

o Existence of algorithms with running time O*(2°(#"°€9)) or
O*(2°¢°e[=D) would contradict ETH.

Michat Pilipczuk ETH&SETH 25/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each Xx;.

o There are algorithms with running time ©*(2°(@'°¢9)) and
O*(2O(dlog\2\)).

o Existence of algorithms with running time O*(2°(?"¢9)) or
O*(2°¢°e =) would contradict ETH.

@ Treewidth dynamic programming, e.g. CYCLE PACKING:

Michat Pilipczuk ETH&SETH 25/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each Xx;.

o There are algorithms with running time ©*(2°(@'°¢9)) and
O*(2O(dlog\2\)).

o Existence of algorithms with running time O*(2°(?"¢9)) or
O*(2°¢°e =) would contradict ETH.

@ Treewidth dynamic programming, e.g. CYCLE PACKING:
o O*(2°9(te 1)) algorithm by remembering a matching within the bag.

Michat Pilipczuk ETH&SETH 25/39

Further corollaries

@ CLOSEST STRING: Given equal-length strings xq, xo, . .., X, over &
and an integer d, decide whether there is some y within Hamming
distance < d from each Xx;.

o There are algorithms with running time ©*(2°(@'°¢9)) and
O*(2O(dlog\2\)).

o Existence of algorithms with running time O*(2°(?"¢9)) or
O*(2°¢°e =) would contradict ETH.

@ Treewidth dynamic programming, e.g. CYCLE PACKING:
o O*(2°9(te 1)) algorithm by remembering a matching within the bag.
o O*(2°(t°e 9y would contradict ETH.

Michat Pilipczuk ETH&SETH 25/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CoVvER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

Ce

-

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

e

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

\\.

Michat Pilipczuk ETH&SETH 26/39

EpGE CLIQUE COVER

EDGE CLIQUE CovER (ECC)

Input: Graph G, integer k
Question: Does there exists a collection of k cliques C;, G, ..., Cx in G,
such that E(G) = U, E(G)?

6 cliques, but not optimal

\. puzzle: find a solution with 5 cliques

Michat Pilipczuk ETH&SETH 26/39

Bound for ECC

Theorem (Gramm, Guo, Hiiffner, Niedermeier)

EDGE CLIQUE COVER admits a kernel with at most 2% vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2.

Michat Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hiiffner, Niedermeier)

EDGE CLIQUE COVER admits a kernel with at most 2% vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2.

@ Basically just as follows:
If there are two twins in the graph, remove one of them.

Michat Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hiiffner, Niedermeier)

EDGE CLIQUE COVER admits a kernel with at most 2% vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2.

@ Basically just as follows:
If there are two twins in the graph, remove one of them.

o Kernel plus DP on the subsets of edges = O*(220(k)) algorithm.

Michat Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hiiffner, Niedermeier)

EDGE CLIQUE COVER admits a kernel with at most 2% vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2.

@ Basically just as follows:
If there are two twins in the graph, remove one of them.

o Kernel plus DP on the subsets of edges = O*(22O(k)) algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with
k = O(log(n+ m)). Consequently, there is no O*(22°(k)) time algorithm
for ECC unless ETH fails.

Michat Pilipczuk ETH&SETH 27/39

ETH and W(1]-hardness

o Under W[1] # FPT, CLIQUE cannot be solved in f(k) - n®®) time.

Michat Pilipczuk ETH&SETH)

ETH and W(1]-hardness

o Under W[1] # FPT, CLIQUE cannot be solved in f(k) - n®®) time.

@ Best known algorithm: O*(n0-492k)

Michat Pilipczuk ETH&SETH)

ETH and W(1]-hardness

o Under W[1] # FPT, CLIQUE cannot be solved in f(k) - n®®) time.
@ Best known algorithm: O*(n0-492k)

@ Can we prove that the linear dependence on k is necessary?

Michat Pilipczuk ETH&SETH)

ETH and W(1]-hardness

o Under W[1] # FPT, CLIQUE cannot be solved in f(k) - n®®) time.
@ Best known algorithm: O*(n0-492k)

@ Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°() for any
computable function f.

Michat Pilipczuk ETH&SETH)

ETH and W(1]-hardness

o Under W[1] # FPT, CLIQUE cannot be solved in f(k) - n®®) time.
@ Best known algorithm: O*(n0-492k)

@ Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°() for any
computable function f.

e Corollary: ETH = WJl1] # FPT

Michat Pilipczuk ETH&SETH)

Hardness for CLIQUE

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

n/k

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

n/k SN

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k
n/k RN

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k

1
1
1

¥

\

o000 dDeoo

n/k

\

...Q.....

=
=

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

< 3n/k

1
1
1

¥

\

o000 dDeoo

n/k

\

...Q.....

=
=

Left graph admits 3-coloring iff right graph contains k-clique.

Michat Pilipczuk ETH&SETH 29/39

Hardness for CLIQUE

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:

e Constructed graph has N < k - 3"k vertices.

Michat Pilipczuk ETH&SETH 30/39

Hardness for CLIQUE

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
e Constructed graph has N < k - 3"/ vertices.
@ Lets try k = log n.

Michat Pilipczuk ETH&SETH 30/39

Hardness for CLIQUE

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
e Constructed graph has N < k - 3"/ vertices.
o Lets try k = log n.
e 2k. No(k) =n- (|og n)o(log n) . 3n-o(|og n)/logn _ O*(2o(n)).

Michat Pilipczuk ETH&SETH 30/39

Hardness for CLIQUE

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
e Constructed graph has N < k - 3"/ vertices.
o Lets try k = log n.
o 2k. No(k) =n- (Iog n)o(log n) . 3n-o(|og n)/logn _ O*(zo(n)).

Similarly k = log log n implies no 22° - N°(¥) time algorithm.

Michat Pilipczuk ETH&SETH 30/39

Hardness for CLIQUE

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°) for any
computable function f.

Proof continued:
e Constructed graph has N < k - 3"/ vertices.
o Lets try k = log n.
o 2k. No(k) =n- (Iog n)o(log n) . 3n-o(|og n)/logn _ O*(zo(n)).

Similarly k = log log n implies no 22° - N°(¥) time algorithm.

To exclude all computable f(k), one needs roughly k = f~1(n)
(technical difficulties omitted).

Michat Pilipczuk ETH&SETH 30/39

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.

Michat Pilipczuk ETH&SETH 31/39

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.
@ Recent discovery: For planar problems, a typical behaviour is:

\/E))

o the existence of an O(n°" algorithm, and

e the nonexistence of an f(k) - n°Vk) algorithm under ETH.

Michat Pilipczuk ETH&SETH 31/39

Corollaries

@ By reductions from CLIQUE, one can prove lower bounds on the
running times of XP algorithms.

@ Recent discovery: For planar problems, a typical behaviour is:

\/E))

o the existence of an O(n°" algorithm, and

o the nonexistence of an f(k) - n°Vk) algorithm under ETH.

o Example: PLANAR d-SCATTERED SET — given an edge-weighted
planar graph G, a real d and an integer k, verify whether there are k
points in pairwise distance d from each other.

(Marx, P)

Michat Pilipczuk ETH&SETH 31/39

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Michat Pilipczuk ETH&SETH 32/39

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

@ Under SETH we can precise pinpoint the base of the exponent.

Michat Pilipczuk ETH&SETH 32/39

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

@ Under SETH we can precise pinpoint the base of the exponent.

@ For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Michat Pilipczuk ETH&SETH

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

@ Under SETH we can precise pinpoint the base of the exponent.

@ For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

@ Under SETH, we need to care exactly how the parameter is
transformed.

Michat Pilipczuk ETH&SETH 32/39

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

@ Under SETH we can precise pinpoint the base of the exponent.

@ For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

@ Under SETH, we need to care exactly how the parameter is
transformed.

@ Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Michat Pilipczuk ETH&SETH 32/39

Strong ETH

@ Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

@ Under SETH we can precise pinpoint the base of the exponent.

@ For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

@ Under SETH, we need to care exactly how the parameter is
transformed.

@ Therefore, lower bounds under SETH are much more delicate and
much scarcer.

@ Probably more during Ryan's talk in the morning;
now a quick parameterized perspective.

Michat Pilipczuk ETH&SETH 32/39

SETH and treewidth DPs

@ Many standard problems can be solved in time O*(c*), where ¢
some constant and t is the width of a given tree decomposition of
the graph.

Michat Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

@ Many standard problems can be solved in time O*(c*), where ¢
some constant and t is the width of a given tree decomposition of
the graph.

o VC and IS in O*(2"), DS and OCT in O*(3").

Michat Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

@ Many standard problems can be solved in time O*(c*), where ¢
some constant and t is the width of a given tree decomposition of
the graph.

o VC and IS in O*(2"), DS and OCT in O*(3").
e Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
STEINER TREE, CVC, and FVS in O*(3).

Michat Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

@ Many standard problems can be solved in time O*(c*), where ¢
some constant and t is the width of a given tree decomposition of

the graph.
o VC and IS in O*(2"), DS and OCT in O*(3").
e Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):

STEINER TREE, CVC, and FVS in O*(3f).
@ Space of states is formed by all relevant interactions between the

solution and the bag.

Michat Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

@ Many standard problems can be solved in time O*(c*), where ¢
some constant and t is the width of a given tree decomposition of
the graph.

o VC and IS in O*(2"), DS and OCT in O*(3").
e Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
STEINER TREE, CVC, and FVS in O*(3).

@ Space of states is formed by all relevant interactions between the
solution and the bag.

@ These results are tight.

Michat Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Theorem (LMS+CNPPVRW)

Assume that CNF-SAT cannot be solved in time O*(c") for any ¢ < 2.
Then for every € > 0 the following holds (p/t is the width of a given
path/tree decomposition of the input graph):

o INDEPENDENT SET cannot be solved in time O*((2 — €)P);

e DOMINATING SET cannot be solved in time O*((3 — ¢)P);

e ODD CYCLE TRAVERSAL cannot be solved in time O*((3 — ¢)P);
@ STEINER TREE cannot be solved in time O*((3 — €)P);

e FEEDBACK VERTEX SET cannot be solved in time O*((3 —)P);
(*]

CONNECTED VERTEX COVER cannot be solved in time
O*((3 —¢)P).

Michat Pilipczuk ETH&SETH 34/39

SETH and treewidth DPs

Theorem (Cygan, Kratsch, Nederlof)

HAMILTONIAN PATH can be solved in time O*((2 + v/2)P), but the
existence of an algorithm with running time O*((2 + v/2 — £)P) would
yield an algorithm for CNF-SAT with running time O*(c") for some
c<2.

Michat Pilipczuk ETH&SETH kLykl)

SETH and treewidth DPs

Theorem (Cygan, Kratsch, Nederlof)

HAMILTONIAN PATH can be solved in time O*((2 + v/2)P), but the
existence of an algorithm with running time O*((2 + v/2 — £)P) would
yield an algorithm for CNF-SAT with running time O*(c") for some
c<2.

@ Open: The algorithmic result does not work for treewidth.

Michat Pilipczuk ETH&SETH kLykl)

SETH and covering problems

Input: Universe U, set family F C 2V, integer k
Question: Is there a subfamily G C F with |G| < ks.t. UG = U?

Michat Pilipczuk ETH&SETH 36/39

SETH and covering problems

Input: Universe U, set family F C 2V, integer k
Question: Is there a subfamily G C F with |G| < ks.t. UG = U?

@ Denote n=|U| and m = | F]|.

Michat Pilipczuk ETH&SETH 36/39

SETH and covering problems

Input: Universe U, set family F C 2V, integer k
Question: Is there a subfamily G C F with |G| < ks.t. UG = U?

@ Denote n=|U| and m = | F]|.
@ Brute-force O*(2™) algorithm.

Michat Pilipczuk ETH&SETH 36/39

SETH and covering problems

Input: Universe U, set family F C U integer k
Question: Is there a subfamily G C F with |G| < ks.t. UG = U?

@ Denote n=|U| and m = | F]|.
@ Brute-force O*(2™) algorithm.
@ Covering DP over subsets of U = O*(2") algorithm.

Michat Pilipczuk ETH&SETH 36/39

SETH and covering problems

Input: Universe U, set family F C U integer k
Question: Is there a subfamily G C F with |G| < ks.t. UG = U?

Denote n = |U| and m = |F]|.
Brute-force O*(2™) algorithm.
Covering DP over subsets of U = O*(2") algorithm.

Could any of these be improved?

Michat Pilipczuk ETH&SETH 36/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

Michat Pilipczuk ETH&SETH 37/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

e Under SETH, there is no O*(c™) algorithm for SET COVER for any
¢ < 2 (sort-of-equivalent to SETH).

Michat Pilipczuk ETH&SETH 37/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

e Under SETH, there is no O*(c™) algorithm for SET COVER for any
¢ < 2 (sort-of-equivalent to SETH).

@ Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for SET COVER/n.

Michat Pilipczuk ETH&SETH 37/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

e Under SETH, there is no O*(c™) algorithm for SET COVER for any
¢ < 2 (sort-of-equivalent to SETH).

@ Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for SET COVER/n.

o STEINER TREE, CONNECTED VERTEX COVER,
SET PARTITIONING.

Michat Pilipczuk ETH&SETH 37/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

e Under SETH, there is no O*(c™) algorithm for SET COVER for any
¢ < 2 (sort-of-equivalent to SETH).

@ Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for SET COVER/n.

o STEINER TREE, CONNECTED VERTEX COVER,
SET PARTITIONING.

e Fundamental link between SET COVER/n and SET COVER/m is
still not discovered.

Michat Pilipczuk ETH&SETH 37/39

SETH and covering problems

@ Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlstrom.

e Under SETH, there is no O*(c™) algorithm for SET COVER for any
¢ < 2 (sort-of-equivalent to SETH).

@ Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for SET COVER/n.

o STEINER TREE, CONNECTED VERTEX COVER,
SET PARTITIONING.

e Fundamental link between SET COVER/n and SET COVER/m is
still not discovered.

Set Cover Conjecture

Let Ay be the infinimum of the set of constants ¢ such that g-SET
COVER can be solved in time O*(2°"), where n is the size of the
universe. Then limy_,oc Aq = 1. In particular, there is no algorithm for
the general SET COVER problem that runs in O*((2 —€)") for any ¢ > 0.

Michat Pilipczuk ETH&SETH 37/39

Conclusions

@ ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

Michat Pilipczuk ETH&SETH 38/39

Conclusions

@ ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

@ SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

Michat Pilipczuk ETH&SETH 38/39

Conclusions

@ ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

@ SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

@ ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

Michat Pilipczuk ETH&SETH 38/39

Conclusions

@ ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

@ SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

@ ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

e Optimality program: Finding matching lower and upper bounds on
the parameterized complexity of various problems.

Michat Pilipczuk ETH&SETH 38/39

Commercial break!

This, and many more in the new book
Parameterized algorithms
by Cygan, Fomin, Kowalik,

Lokshtanov, Marx, Pilipczuk, P., and Saurabh.
Out in early 2015.

Michat Pilipczuk ETH&SETH 39/39

