
Lower bounds based on ETH and SETH

Micha l Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Workshop on Exact Algorithms and Lower Bounds, IIT Delhi,
December 13th, 2014

Micha l Pilipczuk ETH&SETH 1/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).

For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Motivation

Under P 6= NP, Hamiltonian Cycle cannot be solved in
polynomial time.

Best known algorithms:

Brute-force O(n!).
For a long time O?(2n) Held-Karp dynamic programming.

O?(f (n)) = f (n) · poly(|input|).

Today: O?(1.657n) of Björklund (2010).

How much can you improve the constant 1.657?

Can you do significantly better, e.g. O?(2O(n/ log n)) or O?(2O(
√
n))?

Assumption P 6= NP seems too week to answer these questions.

Micha l Pilipczuk ETH&SETH 2/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.

Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

Case study: 3-SAT

3-SAT: given formula ϕ in 3-CNF with n variables and m clauses,
decide whether ϕ is satisfiable.

3-CNF: ϕ is a conjunction of clauses, where each clause is a
disjunction of at most 3 literals — variables or their negations.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

Trivial: O?(2n)

Smarter:

Take any clause not satisfied so far, and branch on the evaluations of
the variables: there are at most 7 options for a 3-clause.
Hence the running time is O?(7n/3) = O?(1.913n).

Current record: O?(1.308n) (Paturi, Pudlák, Saks, Zane; Hertli)

Micha l Pilipczuk ETH&SETH 3/39

First try

Can you do significantly better, i.e. have running time O?(2o(n))?

If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

With current knowledge, we are faaaaar from answering positively
any of these two questions.

ETH and SETH, first try

3-SAT cannot be solved in time O?(2o(n)).

General CNF-SAT cannot be solved in time O?(cn) for any c < 2.

Micha l Pilipczuk ETH&SETH 4/39

First try

Can you do significantly better, i.e. have running time O?(2o(n))?

If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

With current knowledge, we are faaaaar from answering positively
any of these two questions.

ETH and SETH, first try

3-SAT cannot be solved in time O?(2o(n)).

General CNF-SAT cannot be solved in time O?(cn) for any c < 2.

Micha l Pilipczuk ETH&SETH 4/39

First try

Can you do significantly better, i.e. have running time O?(2o(n))?

If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

With current knowledge, we are faaaaar from answering positively
any of these two questions.

ETH and SETH, first try

3-SAT cannot be solved in time O?(2o(n)).

General CNF-SAT cannot be solved in time O?(cn) for any c < 2.

Micha l Pilipczuk ETH&SETH 4/39

First try

Can you do significantly better, i.e. have running time O?(2o(n))?

If you do not have a bound on the clause length, can you do
anything smarter than brute-force?

With current knowledge, we are faaaaar from answering positively
any of these two questions.

ETH and SETH, first try

3-SAT cannot be solved in time O?(2o(n)).

General CNF-SAT cannot be solved in time O?(cn) for any c < 2.

Micha l Pilipczuk ETH&SETH 4/39

Actual statements

δq = inf{c : There is an O?(2cn) algorithm for q-SAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3-SAT cannot be solved in O?(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than the first attempts.

Formulated by Impagliazzo, Paturi and Zane in 2001.

Usually we allow two-sided error algorithms in the definition.

SETH ⇒ ETH (nontrivial)

Micha l Pilipczuk ETH&SETH 5/39

Actual statements

δq = inf{c : There is an O?(2cn) algorithm for q-SAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3-SAT cannot be solved in O?(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than the first attempts.

Formulated by Impagliazzo, Paturi and Zane in 2001.

Usually we allow two-sided error algorithms in the definition.

SETH ⇒ ETH (nontrivial)

Micha l Pilipczuk ETH&SETH 5/39

Actual statements

δq = inf{c : There is an O?(2cn) algorithm for q-SAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3-SAT cannot be solved in O?(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than the first attempts.

Formulated by Impagliazzo, Paturi and Zane in 2001.

Usually we allow two-sided error algorithms in the definition.

SETH ⇒ ETH (nontrivial)

Micha l Pilipczuk ETH&SETH 5/39

Actual statements

δq = inf{c : There is an O?(2cn) algorithm for q-SAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3-SAT cannot be solved in O?(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than the first attempts.

Formulated by Impagliazzo, Paturi and Zane in 2001.

Usually we allow two-sided error algorithms in the definition.

SETH ⇒ ETH (nontrivial)

Micha l Pilipczuk ETH&SETH 5/39

Actual statements

δq = inf{c : There is an O?(2cn) algorithm for q-SAT}

Exponential Time Hypothesis, ETH

δ3 > 0.

There is a c > 0 such that 3-SAT cannot be solved in O?(2cn) time.

Strong Exponential Time Hypothesis, SETH

lim
q→∞

δq = 1.

These statements are stronger than the first attempts.

Formulated by Impagliazzo, Paturi and Zane in 2001.

Usually we allow two-sided error algorithms in the definition.

SETH ⇒ ETH (nontrivial)

Micha l Pilipczuk ETH&SETH 5/39

Reductions

As usual with lower bounds, we would like to transfer them via
reductions.

A reduction 3-SAT→ L and a too fast algorithm for L would give a
too fast algorithm for 3-SAT.

Vertex Cover

Input: A graph G and an integer k
Question: Is there a set X ⊆ V (G) with |X | ≤ k such that every

edge of G has at least one endpoint in X ?

Micha l Pilipczuk ETH&SETH 6/39

Reductions

As usual with lower bounds, we would like to transfer them via
reductions.

A reduction 3-SAT→ L and a too fast algorithm for L would give a
too fast algorithm for 3-SAT.

Vertex Cover

Input: A graph G and an integer k
Question: Is there a set X ⊆ V (G) with |X | ≤ k such that every

edge of G has at least one endpoint in X ?

Micha l Pilipczuk ETH&SETH 6/39

Reductions

As usual with lower bounds, we would like to transfer them via
reductions.

A reduction 3-SAT→ L and a too fast algorithm for L would give a
too fast algorithm for 3-SAT.

Vertex Cover

Input: A graph G and an integer k
Question: Is there a set X ⊆ V (G) with |X | ≤ k such that every

edge of G has at least one endpoint in X ?

Micha l Pilipczuk ETH&SETH 6/39

Vertex Cover reduction

Let us inspect the standard reduction from 3-SAT to Vertex Cover.

¬x1 x1 ¬x2 x2 ¬x3 x3 ¬x4 x4
variables

clauses

x1

¬x2

x3

The formula is satisfiable iff the created graph has vertex cover of size
n + 2m.

Micha l Pilipczuk ETH&SETH 7/39

Vertex Cover reduction

Let us inspect the standard reduction from 3-SAT to Vertex Cover.

¬x1 x1 ¬x2 x2 ¬x3 x3 ¬x4 x4
variables

clauses
x1

¬x2

x3

The formula is satisfiable iff the created graph has vertex cover of size
n + 2m.

Micha l Pilipczuk ETH&SETH 7/39

Vertex Cover reduction

Let us inspect the standard reduction from 3-SAT to Vertex Cover.

¬x1 x1 ¬x2 x2 ¬x3 x3 ¬x4 x4
variables

clauses
x1

¬x2

x3

The formula is satisfiable iff the created graph has vertex cover of size
n + 2m.

Micha l Pilipczuk ETH&SETH 7/39

Vertex Cover reduction

Let us inspect the standard reduction from 3-SAT to Vertex Cover.

¬x1 x1 ¬x2 x2 ¬x3 x3 ¬x4 x4
variables

clauses
x1

¬x2

x3

The formula is satisfiable iff the created graph has vertex cover of size
n + 2m.

Micha l Pilipczuk ETH&SETH 7/39

Vertex Cover reduction, analysis

If N = 2n + 3m is the number of vertices of the output graph, then
N = O(n + m) = O(n3).

Hence an O?(2o(N1/3)) algorithm for VC would give an O?(2o(n))
algorithm for 3-SAT, contradicting ETH.

But we know no algorithm with running time O?(2o(N))...

If we started with an instance of 3-SAT that is sparse, i.e.,
m = O(n), then a O?(2o(N)) lower bound would follow.

Micha l Pilipczuk ETH&SETH 8/39

Vertex Cover reduction, analysis

If N = 2n + 3m is the number of vertices of the output graph, then
N = O(n + m) = O(n3).

Hence an O?(2o(N1/3)) algorithm for VC would give an O?(2o(n))
algorithm for 3-SAT, contradicting ETH.

But we know no algorithm with running time O?(2o(N))...

If we started with an instance of 3-SAT that is sparse, i.e.,
m = O(n), then a O?(2o(N)) lower bound would follow.

Micha l Pilipczuk ETH&SETH 8/39

Vertex Cover reduction, analysis

If N = 2n + 3m is the number of vertices of the output graph, then
N = O(n + m) = O(n3).

Hence an O?(2o(N1/3)) algorithm for VC would give an O?(2o(n))
algorithm for 3-SAT, contradicting ETH.

But we know no algorithm with running time O?(2o(N))...

If we started with an instance of 3-SAT that is sparse, i.e.,
m = O(n), then a O?(2o(N)) lower bound would follow.

Micha l Pilipczuk ETH&SETH 8/39

Vertex Cover reduction, analysis

If N = 2n + 3m is the number of vertices of the output graph, then
N = O(n + m) = O(n3).

Hence an O?(2o(N1/3)) algorithm for VC would give an O?(2o(n))
algorithm for 3-SAT, contradicting ETH.

But we know no algorithm with running time O?(2o(N))...

If we started with an instance of 3-SAT that is sparse, i.e.,
m = O(n), then a O?(2o(N)) lower bound would follow.

Micha l Pilipczuk ETH&SETH 8/39

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of
clauses of a q-SAT formula to O(n), for any constant q.

Sparsification Lemma [IPZ, 2001]

For any q ≥ 3 and ε > 0 there is a constant C = C (q, ε) such that any
q-CNF formula ϕ can be expressed as ϕ =

∨t
i=1 ψi , where t ≤ 2εn and

each ψi is a q-CNF formula with the same set of variables and at most
C · n clauses. Such disjunction can be computed in time O?(2εn).

ϕ, n, m

.ψi , n,C · n

2εn

Micha l Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Sparsification Lemma informally

There is subexponential time algorithm which reduces the number of
clauses of a q-SAT formula to O(n), for any constant q.

Sparsification Lemma [IPZ, 2001]

For any q ≥ 3 and ε > 0 there is a constant C = C (q, ε) such that any
q-CNF formula ϕ can be expressed as ϕ =

∨t
i=1 ψi , where t ≤ 2εn and

each ψi is a q-CNF formula with the same set of variables and at most
C · n clauses. Such disjunction can be computed in time O?(2εn).

ϕ, n, m

.ψi , n,C · n

2εn

Micha l Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Sparsification Lemma [IPZ, 2001]

For any q ≥ 3 and ε > 0 there is a constant C = C (q, ε) such that any
q-CNF formula ϕ can be expressed as ϕ =

∨t
i=1 ψi , where t ≤ 2εn and

each ψi is a q-CNF formula with the same set of variables and at most
C · n clauses. Such disjunction can be computed in time O?(2εn).

ϕ, n, m

.ψi , n,C · n

2εn

Micha l Pilipczuk ETH&SETH 9/39

Sparsification Lemma

Theorem

Unless ETH fails, there is a constant c > 0, such that no algorithm solves
3-SAT in time O?(2c(n+m)).

Micha l Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Theorem

Unless ETH fails, there is a constant c > 0, such that no algorithm solves
3-SAT in time O?(2c(n+m)).

Proof by contradiction:

Suppose that for every c > 0 there is an algorithm Ac solving
3-SAT in time O?(2c(n+m)).

Consider any d > 0. We want to solve 3-SAT in time O?(2dn).

Use Sparsification Lemma for ε = d/2. Denote C = C (3, ε).

Solve each ψi by Ac′ , where c ′ = d
2(C+1) .

The total running time is

O?(2εn) +O?(2εn · 2
d

2(C+1) ·(C+1)n) = O?(2dn).

Micha l Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Theorem

Unless ETH fails, there is a constant c > 0, such that no algorithm solves
3-SAT in time O?(2c(n+m)).

Corollary

Under ETH, there is no O?(2o(n+m)) time algorithm for 3-SAT.

Micha l Pilipczuk ETH&SETH 10/39

Sparsification Lemma

Theorem

Unless ETH fails, there is a constant c > 0, such that no algorithm solves
3-SAT in time O?(2c(n+m)).

Corollary

Under ETH, there is no O?(2o(n+m)) time algorithm for 3-SAT.

Corollary

Under ETH, there is no O?(2o(N+M)) time algorithm for Vertex
Cover.

Micha l Pilipczuk ETH&SETH 10/39

Corollaries

We basically needed only a linear reduction from 3-SAT.

Other problems that also admit such reductions:

Feedback Vertex Set,
Dominating Set,
3-Coloring,
Hamiltonian Cycle,
and many others.

Micha l Pilipczuk ETH&SETH 11/39

Corollaries

We basically needed only a linear reduction from 3-SAT.

Other problems that also admit such reductions:

Feedback Vertex Set,
Dominating Set,
3-Coloring,
Hamiltonian Cycle,
and many others.

Micha l Pilipczuk ETH&SETH 11/39

Planar problems

Consider Planar Vertex Cover.

NP-hardness reduction: take an instance of general VC, and embed
it on the plane replacing every crossing with:

Micha l Pilipczuk ETH&SETH 12/39

Planar problems

Consider Planar Vertex Cover.

NP-hardness reduction: take an instance of general VC, and embed
it on the plane replacing every crossing with:

Micha l Pilipczuk ETH&SETH 12/39

Planar problems

Consider Planar Vertex Cover.

NP-hardness reduction: take an instance of general VC, and embed
it on the plane replacing every crossing with:

Micha l Pilipczuk ETH&SETH 12/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or
Treewidth DP + planar graph on N vertices has treewidth O(

√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or
Treewidth DP + planar graph on N vertices has treewidth O(

√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or
Treewidth DP + planar graph on N vertices has treewidth O(

√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or

Treewidth DP + planar graph on N vertices has treewidth O(
√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or
Treewidth DP + planar graph on N vertices has treewidth O(

√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

PlVC: analysis

Reduction takes an instance of VC with n vertices and m edges, and
outputs an instance with N = O((n + m)2) vertices.

Hence an O?(2o(
√
N)) algorithm for PlVC would give an

O(2o(n+m)) algorithm for VC, contradicting ETH.

PlVC actually has an algorithm working in O?(2O(
√
N)):

Divide&Conquer + Lipton-Tarjan planar separator theorem, or
Treewidth DP + planar graph on N vertices has treewidth O(

√
N).

The
√

N term in the exponent is not a coincidence!

Micha l Pilipczuk ETH&SETH 13/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

Parameterized complexity

An instance of a parameterized problem comes with a parameter k,
e.g. size of the solution, treewidth, number of variables, etc.

The parameter measures the hardness of the instance.

FPT running time: f (k) · nO(1) = O?(f (k)) for a computable
function f .

XP running time: f (k) · ng(k) for computable functions f , g .

Vertex Cover is FPT because it admits a simple O?(2k)
branching algorithm.

Clique is XP because it admits a simple O(k2 · nk) algorithm, but
probably is not FPT.

It is W[1]-hard.

Micha l Pilipczuk ETH&SETH 14/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√

k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√

k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√

k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√
k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√
k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

Goal: lower bounds on functions f and g under ETH.

O?(2o(k)) algorithm for VC would be also a O?(2o(n+m)) algorithm,
contradiction.

O?(2o(
√
k)) algorithm for PlVC would be also a O?(2o(

√
n))

algorithm, contradiction.

Remark: O?(2O(
√
k)) possible using bidimensionality.

Lower bounds for parameterized problems under ETH

If L admits a reduction from 3-SAT where k = f (n + m), then L does

not admit an O?(2o(f−1(k))) algorithm unless ETH fails.

The parameter blow-up governs the strength of the lower bound.

Micha l Pilipczuk ETH&SETH 15/39

ETH and parameterized complexity

For many parameterized problems (VC, FVS, OCT) the situation
is simple:

An algorithm with running time O?(ck) exists.
The existence of a subexponential parameterized algorithm, with
running time O?(2o(k)), can be excluded under ETH using known
NP-hardness reductions.

Let’s look at some more exotic running times.

Micha l Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

For many parameterized problems (VC, FVS, OCT) the situation
is simple:

An algorithm with running time O?(ck) exists.

The existence of a subexponential parameterized algorithm, with
running time O?(2o(k)), can be excluded under ETH using known
NP-hardness reductions.

Let’s look at some more exotic running times.

Micha l Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

For many parameterized problems (VC, FVS, OCT) the situation
is simple:

An algorithm with running time O?(ck) exists.
The existence of a subexponential parameterized algorithm, with
running time O?(2o(k)), can be excluded under ETH using known
NP-hardness reductions.

Let’s look at some more exotic running times.

Micha l Pilipczuk ETH&SETH 16/39

ETH and parameterized complexity

For many parameterized problems (VC, FVS, OCT) the situation
is simple:

An algorithm with running time O?(ck) exists.
The existence of a subexponential parameterized algorithm, with
running time O?(2o(k)), can be excluded under ETH using known
NP-hardness reductions.

Let’s look at some more exotic running times.

Micha l Pilipczuk ETH&SETH 16/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.

(b) A branching procedure branches O(k) times, each time choosing one
of poly(k) options.

(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.

(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

Slightly super-exponential parameterized time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) Iterate through k! possibilities.
(b) A branching procedure branches O(k) times, each time choosing one

of poly(k) options.
(c) A treewidth DP has partitions of the bag as the states.

We focus on (b), since this is the most typical behavior in
parameterized algorithms.

Results by Lokshtanov, Marx, and Saurabh (2011).

Micha l Pilipczuk ETH&SETH 17/39

k × k-Clique

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.

Micha l Pilipczuk ETH&SETH 18/39

On a picture

Micha l Pilipczuk ETH&SETH 19/39

On a picture

Micha l Pilipczuk ETH&SETH 19/39

About k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: extracts the idea of having k independent 1-in-k choices.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH&SETH 20/39

About k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: extracts the idea of having k independent 1-in-k choices.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH&SETH 20/39

About k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: extracts the idea of having k independent 1-in-k choices.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH&SETH 20/39

About k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: extracts the idea of having k independent 1-in-k choices.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH&SETH 20/39

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not admit
a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2 .

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH&SETH 21/39

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not admit
a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2 .

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH&SETH 21/39

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not admit
a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2 .

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH&SETH 21/39

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not admit
a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2 .

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH&SETH 21/39

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not admit
a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2 .

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH&SETH 21/39

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√

N], vertex (i , j) represents the j-th coloring of
the i-th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the groups
i and i ′.

Note: colorings that are not proper already on their own groups will
become isolated vertices.

Finally, fill the rows with isolated vertices up to size k.

Micha l Pilipczuk ETH&SETH 22/39

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√

N], vertex (i , j) represents the j-th coloring of
the i-th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the groups
i and i ′.

Note: colorings that are not proper already on their own groups will
become isolated vertices.

Finally, fill the rows with isolated vertices up to size k.

Micha l Pilipczuk ETH&SETH 22/39

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√

N], vertex (i , j) represents the j-th coloring of
the i-th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the groups
i and i ′.

Note: colorings that are not proper already on their own groups will
become isolated vertices.

Finally, fill the rows with isolated vertices up to size k.

Micha l Pilipczuk ETH&SETH 22/39

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√

N], vertex (i , j) represents the j-th coloring of
the i-th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the groups
i and i ′.

Note: colorings that are not proper already on their own groups will
become isolated vertices.

Finally, fill the rows with isolated vertices up to size k.

Micha l Pilipczuk ETH&SETH 22/39

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH&SETH 23/39

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH&SETH 23/39

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH&SETH 23/39

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH&SETH 23/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.

Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an isolated
vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ log N), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N ·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH&SETH 24/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).
Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.
O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).

Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.
O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).
Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.
O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).
Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.
O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).
Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.

O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Further corollaries

Closest String: Given equal-length strings x1, x2, . . . , xn over Σ
and an integer d , decide whether there is some y within Hamming
distance ≤ d from each xi .

There are algorithms with running time O?(2O(d log d)) and
O?(2O(d log |Σ|)).
Existence of algorithms with running time O?(2o(d log d)) or
O?(2o(d log |Σ|)) would contradict ETH.

Treewidth dynamic programming, e.g. Cycle Packing:

O?(2O(t log t)) algorithm by remembering a matching within the bag.
O?(2o(t log t)) would contradict ETH.

Micha l Pilipczuk ETH&SETH 25/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Edge Clique Cover

Edge Clique Cover (ECC)

Input: Graph G , integer k
Question: Does there exists a collection of k cliques C1,C2, . . . ,Ck in G ,
such that E (G) =

⋃k
i=1 E (Ci)?

6 cliques, but not optimal

puzzle: find a solution with 5 cliques

Micha l Pilipczuk ETH&SETH 26/39

Bound for ECC

Theorem (Gramm, Guo, Hüffner, Niedermeier)

Edge Clique Cover admits a kernel with at most 2k vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2k .

Basically just as follows:
If there are two twins in the graph, remove one of them.

Kernel plus DP on the subsets of edges ⇒ O?(22O(k)

) algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with

k = O(log(n + m)). Consequently, there is no O?(22o(k)

) time algorithm
for ECC unless ETH fails.

Micha l Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hüffner, Niedermeier)

Edge Clique Cover admits a kernel with at most 2k vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2k .

Basically just as follows:
If there are two twins in the graph, remove one of them.

Kernel plus DP on the subsets of edges ⇒ O?(22O(k)

) algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with

k = O(log(n + m)). Consequently, there is no O?(22o(k)

) time algorithm
for ECC unless ETH fails.

Micha l Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hüffner, Niedermeier)

Edge Clique Cover admits a kernel with at most 2k vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2k .

Basically just as follows:
If there are two twins in the graph, remove one of them.

Kernel plus DP on the subsets of edges ⇒ O?(22O(k)

) algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with

k = O(log(n + m)). Consequently, there is no O?(22o(k)

) time algorithm
for ECC unless ETH fails.

Micha l Pilipczuk ETH&SETH 27/39

Bound for ECC

Theorem (Gramm, Guo, Hüffner, Niedermeier)

Edge Clique Cover admits a kernel with at most 2k vertices. That
is, one can preprocess the instance in polynomial time to ensure that the
number of vertices in at most 2k .

Basically just as follows:
If there are two twins in the graph, remove one of them.

Kernel plus DP on the subsets of edges ⇒ O?(22O(k)

) algorithm.

Theorem (Cygan, Pilipczuk, P)

There is a reduction from 3-SAT to ECC that outputs an instance with

k = O(log(n + m)). Consequently, there is no O?(22o(k)

) time algorithm
for ECC unless ETH fails.

Micha l Pilipczuk ETH&SETH 27/39

ETH and W[1]-hardness

Under W[1] 6= FPT, Clique cannot be solved in f (k) · nO(1) time.

Best known algorithm: O?(n0.492k)

Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ W[1] 6= FPT

Micha l Pilipczuk ETH&SETH 28/39

ETH and W[1]-hardness

Under W[1] 6= FPT, Clique cannot be solved in f (k) · nO(1) time.

Best known algorithm: O?(n0.492k)

Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ W[1] 6= FPT

Micha l Pilipczuk ETH&SETH 28/39

ETH and W[1]-hardness

Under W[1] 6= FPT, Clique cannot be solved in f (k) · nO(1) time.

Best known algorithm: O?(n0.492k)

Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ W[1] 6= FPT

Micha l Pilipczuk ETH&SETH 28/39

ETH and W[1]-hardness

Under W[1] 6= FPT, Clique cannot be solved in f (k) · nO(1) time.

Best known algorithm: O?(n0.492k)

Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ W[1] 6= FPT

Micha l Pilipczuk ETH&SETH 28/39

ETH and W[1]-hardness

Under W[1] 6= FPT, Clique cannot be solved in f (k) · nO(1) time.

Best known algorithm: O?(n0.492k)

Can we prove that the linear dependence on k is necessary?

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Corollary: ETH ⇒ W[1] 6= FPT

Micha l Pilipczuk ETH&SETH 28/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k

k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k

k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

n/k

k k

≤ 3n/k

Left graph admits 3-coloring iff right graph contains k-clique.

Micha l Pilipczuk ETH&SETH 29/39

Hardness for Clique

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

Constructed graph has N ≤ k · 3n/k vertices.

Lets try k = log n.

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = O?(2o(n)).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Micha l Pilipczuk ETH&SETH 30/39

Hardness for Clique

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

Constructed graph has N ≤ k · 3n/k vertices.

Lets try k = log n.

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = O?(2o(n)).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Micha l Pilipczuk ETH&SETH 30/39

Hardness for Clique

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

Constructed graph has N ≤ k · 3n/k vertices.

Lets try k = log n.

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = O?(2o(n)).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Micha l Pilipczuk ETH&SETH 30/39

Hardness for Clique

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

Constructed graph has N ≤ k · 3n/k vertices.

Lets try k = log n.

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = O?(2o(n)).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Micha l Pilipczuk ETH&SETH 30/39

Hardness for Clique

Theorem (Chen, Huang, Kanj, Xia)

Unless ETH fails, Clique cannot be solved in time f (k) · no(k) for any
computable function f .

Proof continued:

Constructed graph has N ≤ k · 3n/k vertices.

Lets try k = log n.

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = O?(2o(n)).

Similarly k = log log n implies no 22k · No(k) time algorithm.

To exclude all computable f (k), one needs roughly k = f −1(n)
(technical difficulties omitted).

Micha l Pilipczuk ETH&SETH 30/39

Corollaries

By reductions from Clique, one can prove lower bounds on the
running times of XP algorithms.

Recent discovery: For planar problems, a typical behaviour is:

the existence of an O(nO(
√

k)) algorithm, and

the nonexistence of an f (k) · no(
√
k) algorithm under ETH.

Example: Planar d-Scattered Set — given an edge-weighted
planar graph G , a real d and an integer k, verify whether there are k
points in pairwise distance d from each other.
(Marx, P)

Micha l Pilipczuk ETH&SETH 31/39

Corollaries

By reductions from Clique, one can prove lower bounds on the
running times of XP algorithms.

Recent discovery: For planar problems, a typical behaviour is:

the existence of an O(nO(
√

k)) algorithm, and

the nonexistence of an f (k) · no(
√
k) algorithm under ETH.

Example: Planar d-Scattered Set — given an edge-weighted
planar graph G , a real d and an integer k, verify whether there are k
points in pairwise distance d from each other.
(Marx, P)

Micha l Pilipczuk ETH&SETH 31/39

Corollaries

By reductions from Clique, one can prove lower bounds on the
running times of XP algorithms.

Recent discovery: For planar problems, a typical behaviour is:

the existence of an O(nO(
√

k)) algorithm, and

the nonexistence of an f (k) · no(
√
k) algorithm under ETH.

Example: Planar d-Scattered Set — given an edge-weighted
planar graph G , a real d and an integer k , verify whether there are k
points in pairwise distance d from each other.
(Marx, P)

Micha l Pilipczuk ETH&SETH 31/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

Strong ETH

Under ETH we can estimate the asymptotics of the behaviour in the
exponent.

Under SETH we can precise pinpoint the base of the exponent.

For lower bounds under ETH, we cared only about the asymptotics
of the parameter blow-up.

Under SETH, we need to care exactly how the parameter is
transformed.

Therefore, lower bounds under SETH are much more delicate and
much scarcer.

Probably more during Ryan’s talk in the morning;
now a quick parameterized perspective.

Micha l Pilipczuk ETH&SETH 32/39

SETH and treewidth DPs

Many standard problems can be solved in time O?(c t), where c
some constant and t is the width of a given tree decomposition of
the graph.

VC and IS in O?(2t), DS and OCT in O?(3t).
Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
Steiner Tree, CVC, and FVS in O?(3t).

Space of states is formed by all relevant interactions between the
solution and the bag.

These results are tight.

Micha l Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Many standard problems can be solved in time O?(c t), where c
some constant and t is the width of a given tree decomposition of
the graph.

VC and IS in O?(2t), DS and OCT in O?(3t).

Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
Steiner Tree, CVC, and FVS in O?(3t).

Space of states is formed by all relevant interactions between the
solution and the bag.

These results are tight.

Micha l Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Many standard problems can be solved in time O?(c t), where c
some constant and t is the width of a given tree decomposition of
the graph.

VC and IS in O?(2t), DS and OCT in O?(3t).
Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
Steiner Tree, CVC, and FVS in O?(3t).

Space of states is formed by all relevant interactions between the
solution and the bag.

These results are tight.

Micha l Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Many standard problems can be solved in time O?(c t), where c
some constant and t is the width of a given tree decomposition of
the graph.

VC and IS in O?(2t), DS and OCT in O?(3t).
Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
Steiner Tree, CVC, and FVS in O?(3t).

Space of states is formed by all relevant interactions between the
solution and the bag.

These results are tight.

Micha l Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Many standard problems can be solved in time O?(c t), where c
some constant and t is the width of a given tree decomposition of
the graph.

VC and IS in O?(2t), DS and OCT in O?(3t).
Cut&Count (Cygan, Nederlof, Pilipczuk, P, van Rooij, Wojtaszczyk):
Steiner Tree, CVC, and FVS in O?(3t).

Space of states is formed by all relevant interactions between the
solution and the bag.

These results are tight.

Micha l Pilipczuk ETH&SETH 33/39

SETH and treewidth DPs

Theorem (LMS+CNPPvRW)

Assume that CNF-SAT cannot be solved in time O?(cn) for any c < 2.
Then for every ε > 0 the following holds (p/t is the width of a given
path/tree decomposition of the input graph):

Independent Set cannot be solved in time O?((2− ε)p);

Dominating Set cannot be solved in time O?((3− ε)p);

Odd Cycle Traversal cannot be solved in time O?((3− ε)p);

Steiner Tree cannot be solved in time O?((3− ε)p);

Feedback Vertex Set cannot be solved in time O?((3− ε)p);

Connected Vertex Cover cannot be solved in time
O?((3− ε)p).

Micha l Pilipczuk ETH&SETH 34/39

SETH and treewidth DPs

Theorem (Cygan, Kratsch, Nederlof)

Hamiltonian Path can be solved in time O?((2 +
√

2)p), but the
existence of an algorithm with running time O?((2 +

√
2− ε)p) would

yield an algorithm for CNF-SAT with running time O?(cn) for some
c < 2.

Open: The algorithmic result does not work for treewidth.

Micha l Pilipczuk ETH&SETH 35/39

SETH and treewidth DPs

Theorem (Cygan, Kratsch, Nederlof)

Hamiltonian Path can be solved in time O?((2 +
√

2)p), but the
existence of an algorithm with running time O?((2 +

√
2− ε)p) would

yield an algorithm for CNF-SAT with running time O?(cn) for some
c < 2.

Open: The algorithmic result does not work for treewidth.

Micha l Pilipczuk ETH&SETH 35/39

SETH and covering problems

Set Cover

Input: Universe U, set family F ⊆ 2U , integer k
Question: Is there a subfamily G ⊆ F with |G| ≤ k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.
Brute-force O?(2m) algorithm.

Covering DP over subsets of U ⇒ O?(2n) algorithm.

Could any of these be improved?

Micha l Pilipczuk ETH&SETH 36/39

SETH and covering problems

Set Cover

Input: Universe U, set family F ⊆ 2U , integer k
Question: Is there a subfamily G ⊆ F with |G| ≤ k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.

Brute-force O?(2m) algorithm.

Covering DP over subsets of U ⇒ O?(2n) algorithm.

Could any of these be improved?

Micha l Pilipczuk ETH&SETH 36/39

SETH and covering problems

Set Cover

Input: Universe U, set family F ⊆ 2U , integer k
Question: Is there a subfamily G ⊆ F with |G| ≤ k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.
Brute-force O?(2m) algorithm.

Covering DP over subsets of U ⇒ O?(2n) algorithm.

Could any of these be improved?

Micha l Pilipczuk ETH&SETH 36/39

SETH and covering problems

Set Cover

Input: Universe U, set family F ⊆ 2U , integer k
Question: Is there a subfamily G ⊆ F with |G| ≤ k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.
Brute-force O?(2m) algorithm.

Covering DP over subsets of U ⇒ O?(2n) algorithm.

Could any of these be improved?

Micha l Pilipczuk ETH&SETH 36/39

SETH and covering problems

Set Cover

Input: Universe U, set family F ⊆ 2U , integer k
Question: Is there a subfamily G ⊆ F with |G| ≤ k s.t.

⋃
G = U?

Denote n = |U| and m = |F|.
Brute-force O?(2m) algorithm.

Covering DP over subsets of U ⇒ O?(2n) algorithm.

Could any of these be improved?

Micha l Pilipczuk ETH&SETH 36/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

SETH and covering problems

Results of Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto,
Paturi, Saurabh, and Wahlström.

Under SETH, there is no O?(cm) algorithm for Set Cover for any
c < 2 (sort-of-equivalent to SETH).

Breaking 2 in the base of the exponent for many covering problems
is equivalent to breaking it for Set Cover/n.

Steiner Tree, Connected Vertex Cover,
Set Partitioning.

Fundamental link between Set Cover/n and Set Cover/m is
still not discovered.

Set Cover Conjecture

Let λq be the infinimum of the set of constants c such that q-Set
Cover can be solved in time O?(2cn), where n is the size of the
universe. Then limq→∞ λq = 1. In particular, there is no algorithm for
the general Set Cover problem that runs in O?((2− ε)n) for any ε > 0.

Micha l Pilipczuk ETH&SETH 37/39

Conclusions

ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

Optimality program: Finding matching lower and upper bounds on
the parameterized complexity of various problems.

Micha l Pilipczuk ETH&SETH 38/39

Conclusions

ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

Optimality program: Finding matching lower and upper bounds on
the parameterized complexity of various problems.

Micha l Pilipczuk ETH&SETH 38/39

Conclusions

ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

Optimality program: Finding matching lower and upper bounds on
the parameterized complexity of various problems.

Micha l Pilipczuk ETH&SETH 38/39

Conclusions

ETH allows us to estimate the asymptotics of the behaviour in the
exponents.

SETH gives a precise bound on the base of the exponent, but is less
plausible and less applicable.

ETH and SETH are robust assumptions, under which for many
problems we can pinpoint the precise influence of a parameter on the
complexity of the problem.

Optimality program: Finding matching lower and upper bounds on
the parameterized complexity of various problems.

Micha l Pilipczuk ETH&SETH 38/39

Commercial break!

This, and many more in the new book

Parameterized algorithms

by Cygan, Fomin, Kowalik,
Lokshtanov, Marx, Pilipczuk, P., and Saurabh.
Out in early 2015.

Micha l Pilipczuk ETH&SETH 39/39

