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Alice VS Bob

F = {{a, b, c},
{a, b, d},
{a, d, e}}

{a, b, c}

{d, e}{b, e}
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Rules of the Game

Board: universe of size n

All Alice’s sets have size p

Bob picks a set B of size q

Alice wins if she has a set disjoint from B
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Short memory of Alice

Alice can not remember all those sets.

Alice hates losing to Bob.

Can she forget a set A from F , and be sure this will not make
the difference between winning and losing?
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Irrelevant sets

A ∈ F is called irrelevant if :

for every set B of size q such that A ∩B = ∅,
then there is a set Â ∈ F such that Â ∩B = ∅.

Alice may forget the irrelevant sets.
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Relevant Sets

F = {A1, A2, A3, · · · , Am}

B1, B2, B3, · · · , Bm
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Bollabás’ Lemma [1966]

Let A1, A2, · · · , Am be sets of size of p and

B1, B2, · · · , Bm be sets of size of q.

∀i, Ai ∩Bi = ∅ ∀i 6= j, Ai ∩Bj 6= ∅

Then m ≤ ?

m ≤
(
n
p

)
,
(
n
q

)
Can m ≤ f(p, q)?
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Proof of Bollabás’ Lemma

x ∈ Bj y ∈ Aj

Let Ei be the event that elements in Ai appears before the
elements in Bi.

Suppose the event Ei happens. Can the event Ej happen
(where j 6= i)? The events Ei and Ej are disjoint.

Pr[Ei] = p!q!
(p+q)! = 1

(p+q
p )

Pr[E1 ∨ E2∨, . . . ,∨Em] = m · 1

(p+q
p )
≤ 1

Hence m ≤
(
p+q
p

)
No dependence on Universe size n
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Bollabás’ Lemma immediately
implies

that Alice only needs to remember at

most
(
p+q
p

)
sets.

9



Representative Sets

Let F = {S1, . . . , St} be a family of p-sized sets. F̂ ⊆ F is a
q-representative family for F (denote by F̂ ⊆q

rep F), if :

For any set Y of size q,

if there is a set X ∈ F such that X ∩ Y = ∅
then there is a set X̂ ∈ F̂ such that X̂ ∩ Y = ∅

Corollary of Bollabás’ Lemma. For every F , there is
q-representative family F̂ for F of size at most

(
p+q
p

)
.
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Computational Problem

Input: A Family F , of sets of size p and an integer q.

Output: F̂ ⊆q
rep F of size

(
p+q
p

)
.
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Computing Representative Sets

Will show: We can compute F̂ ⊆q
rep F of size

(
p+q
p

)
in time

O

(
|F|
(
p + q

p

)ω−1
)

where ω is the matrix multiplication constant ≤ 2.373.

But first – An easy application.
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d-Hitting Set

Input: A Family F = {S1, . . . , Sm}, of sets of size d over a
universe U and an integer k
Question: Does there exists a X ⊆ U of size k such that
∀i, Si ∩X 6= ∅?

I It has an easy dk branching algorithm

I We will show that it has a kernel of size O(kd).

13



d-Hitting Set as a Game

F = {{a, b, c},
{a, b, d},
{a, d, e}}

No, since

{a, b, c}

Is {d, e} is a hitting setIs {b, e} is a hitting set

Yea
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Kernel for d-Hitting Set

Compute a k-representative family F̂ ⊆k
rep F of size

(
k+d
d

)
≤ kd.

(F̂ is k-representative family if there is Y ⊆ U and X ∈ F s.t
|Y | = k and X ∩ Y = ∅, then X̂ ∈ F̂ s.t X̂ ∩ Y = ∅)

Output (F̂ , k).

Proof of Correctness
(F , k) is Yes instance ⇒ (F̂ , k) is Yes instance.

Suppose (F̂ , k) is Yes instance (Y is a hitting
set).
We claim Y is hitting set for F
Suppose not, then there is X ∈ F s.t X ∩ Y = ∅.
This implies X̂ ∈ F̂ s.t X̂ ∩ Y = ∅
contradiction!
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Playing on a matroid
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Matroid
A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ∅ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A,B ∈ I and |A| < |B|, then ∃ e ∈ (B \A) such that
A ∪ {e} ∈ I.

rank(M): is the cardinality of the largest independent set.

Uniform Matroid: A pair M = (E, I) over an n-element
ground set E is called a uniform matroid (denoted by Un,k) if

I = {A ⊆ E : |A| ≤ k}

rank(Un,k)=k.
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Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set
of columns of A. Given A we define the matroid M = (E, I) as
follows.
A set X ⊆ E is independent (that is X ∈ I) if the
corresponding columns are linearly independent over F.

A =


∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

 ∗ are elements of F

The matroids that can be defined by such a construction are
called linear matroids.
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Representable Matroids

A matroid M = (E, I) is representable over a field F if there
exist vectors in F` that correspond to the elements such that
the linearly independent sets of vectors precisely correspond to
independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.



e1 e2 e3 · · · em

1 ∗ ∗ ∗ · · · ∗
2 ∗ ∗ ∗ · · · ∗
3 ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
` ∗ ∗ ∗ · · · ∗


`×m

A matroid M = (E, I) is called representable or linear if it is
representable over some field F.
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Representation of Uniform matroid



e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n
3 1 22 32 · · · n2

...
...

...
...

...
...

k 1 2k−1 3k−1 · · · nk−1


k×n

Determinant of any k × k sub matrix is non zero
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Representative Sets on Matroids

Let M = (E, I) be a matroid.

(for a uniform matroid Un,p+q)

Let S = {S1, . . . , St} be a family of p-sized subsets from I.

Ŝ ⊆ S is a q-representative family for S (denote by Ŝ ⊆q
rep S), if:

For any Y ⊆ E of size q,

if there is a set X ∈ S such that X ∩ Y = ∅ and
then there is a set X̂ ∈ Ŝ such that X̂ ∩ Y = ∅ and
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Playing on Linear Matroid

A
B

C Dp
+

q

p

B ∩ S = ∅
B ∪ S is L.I

S

p
+

q

q

det[ B S ] 6= 0

Note: This game generalizes the first game because Uniform
matroid has a linear Representation.
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Generalized Laplace Expansion

M = [ B S ]

det(M) =
∑

I⊆[p+q]
|I|=p

(−1)a+
∑

Idet(BI) · det(SI)

where a = (p + 1) + . . . + (p + q)


...
bI
...



det(M) =
∑

I⊆[p+q]
|I|=p

(−1)a+
∑

Idet(BI) · det(SI)


...
sI
...



det(M) =
∑

I⊆[p+q]
|I|=p

(−1)a+
∑

Idet(BI) · det(SI)

det(M) = •

vB uS

(
p+q
p

)
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Giant Vector Game

vA vB vC vD
(
p+q
p

)

vB • uS 6= 0

uS

Can Alice forget some vectors from her collection?
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Basis

Let F = {vA, vB, . . . , } be Alice’s collection of vectors.

Suppose vA = vB + vC .
If vA • uS 6= 0, then either vB • uS 6= 0 or vC • uS 6= 0

Alice only needs to keep linearly independent vectors!

At most
(
p+q
p

)
linearly independent vectors, since vectors are(

p+q
p

)
-dimensional.

Basis of F can be computed in time

O

(
|F|
(
p + q

p

)ω−1
)
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Wrap up

Alice has family of p-sized sets

→ family of (p + q)× p matrices

→ family of
(
p+q
p

)
-dimensional vectors

Keep linearly independent vectors

→ Keep the corresponding sets

26



Computing Representative Family
Theorem[Fomin, Lokshtanov, Saurabh (2013)]
Let M = (E, I) be linear matroid of rank p + q. Let F be a
family of p-sized sets in I. Then a q-representative family for F
of size

(
p+q
p

)
can be computed deterministically in time

O

(
|F|
(
p + q

p

)ω−1
)
.

Theorem[Lokshtanov, Misra, P., Saurabh(2014)].
Let M = (E, I) be linear matroid of rank n� p + q. Let F be
a family of p-sized sets in I. Then a q-representative family for
F of size

(
p+q
p

)
can be computed deterministically in time

O

(
|F|
(
p + q

p

)ω−1
nO(1)

)
.
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Application

I Steiner Tree and FVS can be solved in time
O((1 + 2ω−13)twtwO(1)n)

I Representative Sets is used to design polynomial kernels for
OCT, Almost 2-SAT, a variant of Multiway Cut, etc.
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Representative Sets for Matroid Classes

Is it possible to get faster algorithm for representative sets for
special matroids like Uniform matroids, Graphic matroids, etc.

For Uniform matroids, the answer is Yes.

Theorem[Fomin,Lokshtanov,P.,Saurabh(2014)]
Given family F (each set has size p) and 0 < x < 1.
Then F̂ ⊆q

rep F of size at most

x−p(1− x)−q · 2o(p+q)

can be computed in time

O((1− x)−q · 2o(p+q) · |F| · log n)
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Applications

I k-Path can be solved in time O(2.618kn log n)

I Long Directed Cycle can be solved in time 6.75knO(1).

I k-MlD over Z+ can be solved in time 3.8408knO(1).
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Open Probelms

I Can we get faster representative sets computation in
graphic matroid, transversal matroid and gammoid, better
than the computation in linear matroid?

I Can we find Representative sets in uniform matroids in
time linear in the input size?

I Can we find Representative sets in transversal matroids
and gammoids deterministically?
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Thank You.
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