
Advanced Data Structures Jan-Apr 2012

Lecture 5-6 February 2-3, 2012

Lecturer: Venkatesh Raman Scribe: Anil Shukla and Sankardeep Chakraborty

1 Overview

For the past few lectures we have been studying self organizing binary search trees. In these two
lectures we will study a novel connection between binary search trees(BSTs) and points satisfying
a simple property from [1]. Using this correspondence, we will restate many results and conjectures
relating to BSTs and dynamic optimality.

2 Introduction

For all our analysis and discussions, cost model will be The BST model.

The BST model: For concreteness, we choose the following model for BSTs, among many choices
that are constant-factor equivalent. A search is conducted with a pointer starting at the root, which
is free to move about the tree and perform rotations; however, the pointer must at some point in
the operation visit the item being searched. The cost of a search is simply the total number of
distinct nodes in the tree that have been visited by the pointer during the operation. The letters n
and m always refer to the size of a BST, and the total number of search operations performed on
it, respectively. For simplicity, we denote the ordered values in the BST by the integers 1, 2, . . . , n.
The letters n and m always refer to the size of a BST, and the total number of search operations
performed on it, respectively.

We measure the total cost of executing a sequence of searches S= {s1, s2, ...sm}, where each search
si is chosen from among the fixed set of n keys in the BST. Let OPT(S) denote the minimal cost
for executing the access sequence S in the BST model, or equivalently, the cost of the best offline
BST algorithm which knows S a priori. This value is well-defined and its decision version is in NP
(by exhibiting a sequence of rotations and pointer moves).

OPEN PROBLEM 1. Can we compute or approximate OPT(S) in polynomial time?

For static BSTs (no rotations allowed), the question was addressed by a well-known dynamic-
programming algorithm of Knuth[2].

OPEN PROBLEM 2. Is there an online BST algorithm whose total cost is O(OPT(S)) for all
S?

The best known guarantee is the O(lg lgn) competitive ratio achieved recently by Tango trees[3].
This is also the best proven approximation factor achieved for the offline problem.

1

2.1 A geometric view

We present an exact correspondence between the BST model of computation and the following
clean question about points in the plane.

Call a set P of points arborally satisfied if, for any two points a, b ∈ P not on a common horizontal
or vertical line, there is at least one point from P\{a, b} in the axis aligned rectangle defined
by a and b; see Figure 1. We plot an access sequence S in the natural two-dimensional way:
P = {(s1, 1), (s2, 2), ..., (sm,m)}. We show that finding the best BST execution for S is equivalent
to finding the minimum cardinality superset P ′ ⊇ P that is arborally satisfied.

3 Trees and Arborally Satisfied Points Sets

We begin with a precise definition of the BST model of computation and its costs:

Definition 1. Given a BST T1, a subtree τ of T1 containing the root, and a tree τ ′ on the same
nodes as τ , we say T1 can be reconfigured by an operation τ → τ ′ to another BST T2 if T2 is
identical to T1 except for τ being replaced by τ ′. The cost of the reconfiguration is |τ | = |τ ′|.

Definition 2. Given a search sequence S = {s1, s2, . . . , sm}, we say a BST algorithm executes S
by an execution E = {T0, τ1 → τ ′1, . . . , τm → τ ′m} if all reconfigurations are valid, and si ∈ τi for all
i. For i = 1, 2, . . . ,m, define Ti to be Ti−1 with the reconfiguration τi → τ ′i . The cost of execution
E is

∑m
i=1 |τi|.

This model is constant-factor equivalent to other BST models.

Observation 1. In an arborally satisfied point set P , for any a, b ∈ P not orthogonally collinear,
there is at least one point from P\{a, b} on the sides of �ab incident to a, and at least one point
on the sides incident to b. (The two points need not be distinct.)

2

Proof. Consider any two points a, b ∈ P that are not orthogonally collinear. Because �ab is
satisfied, it contains some other point c ∈ P . If c is not on either of the sides of �ab incident to a,
then we can recurse into �ac until we find such a point. Similarly, if c is not on either of the sides
of �ab incident to b, then we can recurse into �cb until we find such a point.

We now plot an execution of the BST algorithm in an intuitive way: at time i (row i), we plot
all nodes touched in τi. The BST model has been chosen to ignore just the right amount of detail
(e.g., precise rotations and pointer movements) to make this geometric view easy.

Definition 3. The geometric view of a BST execution E is the point set P (E) = {(x, y)|x ∈ τy}.

Lemma 1. The point set P (E) for any BST execution E is arborally satisfied.

Proof. Assume for contradiction that we can find a ∈ τi and b ∈ τj , with i < j and a 6= b, and yet
no other nodes in [a, b] were touched in the closed time interval [i, j]. Let c be the lowest common
ancestor of a and b in tree Ti. We distinguish two cases:

• c 6= a Then c must be touched at time i to get to a(c ∈ τi) and c must have a key value
between a exclusive and b inclusive. Contradiction.

• c = a Then, at time i, a is an ancestor of b. By assumption that �ab is unsatisfied, b is not
touched from time i inclusive to j exclusive. Thus a will remain on the access path of b, i.e.,
a must be an ancestor of b in Tj , and will be touched then (a ∈ τj). Contradiction.

3.1 Offline Equivalence

In this section we will show that we can reconstruct the execution sequence of any geometric view
that satisfies the necessary condition of being arborally satisfied.

Lemma 2. For any arborally satisfied point set X, there exists a BST execution E with P (E) = X.
We call E the arboral view of X, and write P−1(X) = E.

Proof. We describe an algorithm for the reverse transformation of P−1(·). Define the next access
time N(x, i) of x at time i to be the minimum y coordinate of any point in X on the ray from
(x, y) to (x,∞). If there is no such point, N(x, i) = ∞. Let Ti be the treap defined on all points
(x,N(x, i)).

We know that a treap is a binary tree where each node has a pair of values (k, p), where k is the key
value satisfying binary search tree properties and p represents the priorities which satisfies heap
property.

Let τi be the points in X with y = i. By the treap property of Ti, these must form a connected
subtree of Ti that includes the root (because i is the minimum possible access time N(?, i)). Now,
form Ti+1 by re-arranging the nodes in τi to form a treap based on the next access time (x,N(x, i+
1)). All we need to show is that Ti+1 is a treap on (x,N(x, i + 1)). The BST property trivially

3

holds by construction, so we look at the heap property. It suffices to show that the heap property
holds between every parent/child pair (q, r) in Ti. If both were in τi, the heap property follows by
construction, and if both were outside τi, the heap property holds because neither their next access
times nor their parent/child relationship changed from i to i+ 1. We are left with the case q ∈ τi
and r /∈ τi. See Figure 2.

For contradiction, suppose Ti+1 was not a treap. Then N(q, i + 1) > N(r, i + 1) = N(r, i). Hence
vertical side incident on (q, i) in �qr will be empty (since q will be accessed at time strictly greater
that i+ 1). Now we will show that horizontal side incident on (q, i) in �qr is also empty. Suppose
not, then there exists a point (c, i) in this line, which implies that r is not a child of q in Ti+1, a
contradiction (since the value of c is in between q and r, c can not be accessed in Ti+1 with out
accessing r). Contradiction.

Let the geometric view of an access sequence S be the set of points P (S)= {(s1, 1), (s2, 2), . . . , (sm,m)}.
Lemmas 1 and 2 have shown that the arboral statement E executes S is equivalent to the geometric
statement P (S) ⊂ P (E) Letting minASS(S) be the size of the smallest arborally satisfied super-
set of P (S), we have OPT(S) = minASS(P (S)). Thus, Open Problem 1 is equivalent to designing
algorithms for finding the minimum arborally satisfied superset.

Above, we gave a combinatorial equivalence of tree executions and arborally satisfied sets, effectively
characterizing offline BST algorithms. In their paper they have also presented the correspondence
between online BST algorithm and standard geometric representation. We will state the following
lemma without proof.

Lemma 3. For any online ASS algorithm A, there exists an online BST algorithm A′ such that,
on any access sequence, the cost of A′is bounded by a constant times the cost of A.

3.2 Greedy Future, a candidate for dynamic optimality

Lucas[4] presented an offline BST algorithm, GREEDYFUTURE, which is as follows:

4

Algorithm 1. The GREEDYFUTURE algorithm follows two principles: (1) only touch the nodes
on the search path, and (2) to re-arrange the search path, move the next item to be accessed as high
as possible, and recurse.

More formally, let τi be the search path for si in Ti. If the next search in the access sequence is in
τi, make that node the root and recurse on both sides. If the next search is in a subtree hanging
from the path τi, re-arrange the predecessor and successor from τi as the root and the right child of
the root; then recurse on the parts of the tree that have yet to be specified.

Lucas conjectured that her algorithm gives a constant-factor approximation for OPT(S). More than
a decade later, Munro[6] proposed the same algorithm independently. He conjectured that the cost
of GREEDYFUTURE is OPT(S) + O(m). (This conjecture about additive optimality is made in
our precise BST model, because other models differ by constant factors). The simple example of
Figure 3 demonstrates a cost of OPT(S)+m/2.

Conjecture 1: On any access sequence S, GREEDYFUTURE has cost O(OPT(S)). More strongly,
it has cost OPT(S) + O(m).

Looking at GREEDYFUTURE in our geometric view hides the ugly details of re-arranging the path,
and transforms the algorithm into the following natural greedy algorithm for the ASS problem:

5

Algorithm 2. Sweep the point set with a horizontal line by increasing y coordinate. At time i,
GREEDYASS places the minimal number of points at y = i to make the point set up to y ≤ i
arborally satisfied. This minimal set of points is uniquely defined: for any unsatisfied rectangle
formed with (si, i) in one corner, add the other corner at y = i.

The key observation is that GREEDYASS is an online ASS algorithm, because its decisions depend
only on the past (points at lower y coordinates). This means that the only important part of
the algorithm is the greedy decision to only touch the search path (equivalently, to add the min-
imum number of points on the sweep line). Then, by Lemma 3, the online GREEDYASS can be
turned back into an online BST algorithm with equal cost (up to a constant factor) as the original
GREEDYFUTURE!

4 Lower Bounds

This section discusses lower bounds for BST algorithms in our geometric view. Equivalently, these
are lower bounds on the size of the minimum satisfied superset, which an approximation algorithm
can try to match. The main results are (1) a class of lower bounds that includes all known lower
bounds ideas, in particular Wilber???s bounds(we will not prove this); and (2) a greedy algorithm,
SIGNEDGREEDY, that gives the best lower bound in this class, up to a factor of two.

To simplify proofs, this section assumes that the access sequence S is a permutation, i.e., m = n
and each item is searched exactly once. Geometrically, this restriction says that the point set X =
P (S) is in ???general position??? from an orthogonal perspective (no two points are orthogonally
collinear).

4.1 Independent Rectangle Bounds

We call two rectangles �ab and �cd independent (in X) if the rectangles are not arborally satisfied
and no corner of either rectangle is strictly inside the other rectangle; see Figure 4.

Now we will state the most important claim of this paper which we will prove later.

Claim 1. If a point set X contains an independent set I of rectangles, then minASS(X) ≥
|I|/2 + |X|. In particular, if X = P (S) for an access sequence S, then OPT (S)≥ |I|/2 + |S|.

6

Let maxIRB denote the maximum independent rectangle bound that can be formed on the point
set X.

4.2 Approximating maxIRB

Observe from figure 4 that any rectangle can be defined by points at their ‘southeast’ and ‘northwest’
corners or ‘southwest’ and ‘northeast’ corners. Based on that we say that a rectangle �ab defined by
two points a, b is a �-rectangle (�-rectangle) if the slope of the line ab is positive (negative). Below,
all statements and definitions using �-rectangles have symmetric statements for �-rectangles, which
we do not explicitly state.

A point set is �-satisfied if every pair of points (a, b) that form a �-rectangle �ab is arborally
satisfied; see Figure 1. In other words, �-rectangles need not be satisfied for �-satisfaction. Let
minASS�(X) be the size of the minimum �-satisfied superset of X. We propose the following
greedy strategy for computing minASS�(X), which is nothing more than GREEDYASS that
ignores �-rectangles:

Algorithm 3 Sweep the point set X with a horizontal line by increasing y coordinate. When
considering point p on the sweep line, for each unsatisfied �-rectangle formed by x and a point
below the sweep line, add the rectangle???s northwest corner on the sweep line to make it satisfied.
Let add�(X) be the final set of added points (excluding X).

We do not focus in computing minASS�(·) instead we focus on the following connection to inde-
pendent rectangle bounds:

Lemma 4. For any X, there exists an independent set of �-rectangles IRB�(X) with |IRB�(X)| =
|add�(X)|.

Proof. Follows from the Algorithm 3 (Whenever Algorithm adds a point it satisfies only one
unique unsatisfied �-rectangle).

Now we will state a Lemma which we will prove later.

Lemma 5. Given an independent set I of �-rectangles in a point set X, any �-satisfied superset
Y of X must have cardinality at least |I|+ |X|.

Since minASS(X) is also �-satisfied superset of X. Therefore from Lemma 5, IRB�(X) + |X| ≤
minASS(X), and from Lemma 4 we have, add�(X)+|X| ≤ minASS(X). Similarly add�(X)+|X|
is also the lower bound for minASS(X). Now since minASS(X) is equivalent to OPT (S) where S=
P (X). It follows that these are the lower bounds of OPT (S) as well. We define SIGNEDGREEDY
by the obvious strategy: run both versions of Algorithm 3 and outputmax{|add�(X)|, |add�(X)|}+
|X|. Thus we obtain the following fact:

SIGNEDGREEDY ≤ OPT (S) ≤ GREEDYASS

We are now going to show that the lower bound output by SIGNEDGREEDY is at least 1
4maxIRB(X)+

1
2 |X|, making it within a constant factor of the best independent rectangle bound. Now we will
define the following notion of �-satisfied set:

Definition 4. A superset Z of X is �-satisfied with respect to X if there exist subsets Z� and Z�
of Z such that Z� ∪X is �-satisfied and Z� ∪X is �-satisfied. Let minASS�(X) be the size of

7

the smallest �-satisfied set Z with respect to X.

Note that Z� and Z� need not be disjoint; in fact, to minimize |Z| the two parts might overlap
significantly. On the other hand, any �-satisfied superset can be combined with any �-satisfied
superset to give a �-satisfied superset, so,

minASS�(X) ≤ minASS�(X) +minASS�(X) (1)

Furthermore, any arborally satisfied set Y is also �-satisfied (with Z� = Z� = Y), so,

minASS�(X) ≤ minASS(X) (2)

Thus to prove Claim 1 it is sufficient to prove the following:

Theorem 1. If X contains an independent set I of rectangles, then minASS�(X) ≥ |I|/2 + |X|.

We will prove this theorem later.

Now we will show that output of SIGNEDGREEDY is actually a constant factor approximation of
maxIRB.

1

2
max{WilberI(X),WilberII(X)}+ |X|

≤ 1

2
maxIRB(X) + |X| [IRB bound is atleast Wilber’s bounds (proof skipped)]

≤ minASS�(X) [by Theorem 1]

≤ minASS�(X) +minASS�(X) [by equation 1]

≤ |add�(X)|+ |add�(X) + 2|x| [by defintion of minASS�]

= |IRB�(X)|+ |IRB�(X)|+ 2|X| [by Lemma 4]

≤ 2maxIRB(X) + 2|X| [by definition of maxIRB]

≤ 2maxIRB(X) + 4|X| [2 ≤ 4]

≤ 4minASS�(X) [by Theorem 1]

≤ 4minASS(X) [by equation 2]

Now observe that from the above deduction we have,

1

2
maxIRB(X)+|X| ≤ SIGNEDGREEDY+|X| ≤ |add�(X)|+|add�(X)|+2|x| ≤ 2maxIRB(X)+4|X|

or,
1

2
maxIRB(X) ≤ SIGNEDGREEDY ≤ 2maxIRB(X) + 4|X|

which is what we want to prove.

5 Proof of Theorem 1

Now we will prove some lemma which will help us to prove Theorem 1.

8

Lemma 6. Suppose we are given a �-satisfied point set Y with integer x coordinates, a �-rectangle
�ab with a, b ∈ Y , and a vertical line l at a non-integer x coordinate strictly between a.x and b.x.
Then we can find two points p, q ∈ Y in the rectangle �ab such that p.y = q.y, p is left of l, q is
right of l, and there are no points in Y on the horizontal segment connecting p to q.

Proof. Let p ∈ Y be the topmost rightmost point in �ab to the left of l. (Such a point exists
because a is a candidate.) Let q ∈ Y be the bottommost leftmost point in �ab to the right of l
and at or above p. (Such a point exists because b is a candidate.) By construction, p is left of l, q
is right of l, and there are no points in �ab strictly between p and q in x coordinate. It remains
to show that p.y = q.y. If p.y 6= q.y, then by construction p.y < q.y, making �pq an unsatisfied
�-rectangle, contradicting that Y is �-satisfied.

By symmetry, Lemma 6 also holds for �-rectangles in �-satisfied sets.

Lemma 7. Given an independent set I of rectangles in a set X such that each point has a distinct
integer x coordinate, there exists a rectangle �ab ∈ I and a vertical line l at a non-integer x
coordinate strictly between a.x and b.x such that, inside �ab, l does not intersect the interior of
any rectangle from I\{�ab}.

Proof. We claim that �ab can be chosen to be any rectangle in I that does not intersect any
wider rectangles in I, for example, the widest rectangle in I. Assume by symmetry that �ab is a
�-rectangle, and that a.x < b.x. Any rectangle that intersects �ab in their interiors cannot have a
corner interior to �ab, by independence, so such a rectangle must either intersect both the left and
right edges of �ab or intersect both the top and bottom edges of �ab (or both). But, because �ab
is (locally) maximally wide, only the latter case is possible. Thus all rectangles interior-overlapping
�ab do so in its entire y extent from bottom edge to top edge.

Now we decompose rectangles interior-overlapping �ab into three types: (1) those that have a as
a corner, (2) those that have b as a corner, and (3) those that have neither a nor b as a corner. All
type-1 rectangles must be strictly left of all type-2 rectangles (in horizontal projection): if two were
to overlap in their interiors, the corner of the type-1 rectangle on the bottom edge of �ab other
than a itself would be interior to the type-2 rectangle, violating independence, and by distinctness
of x coordinates, they cannot overlap on their boundaries either. If a type-3 rectangle intersects a
type-1 or type-2 rectangle, then the former rectangle must be narrower than the latter and cross
its top and bottom sides: otherwise, by independence, the type-3 rectangle would pierce the left
and right sides and then have to be wider than �ab, a contradiction. See Figure 5.

9

Thus we can decompose the horizontal span of �ab into a range starting at a containing type-1
rectangles and any overlapping type-3 rectangles, then a range of type-3 rectangles that intersect
neither type-1 nor type-2 rectangles, followed by a range ending at b containing type-2 rectangles.
(Any of these ranges may actually contain no rectangles.) By distinctness of x coordinates, there
must be a positive-size gap between any adjacent pair of these ranges, and we can choose the line
l to be in one of these gaps.

Proof of Lemma 5. We apply Lemma 7 to find a rectangle �ab in I and a vertical line l piercing
�ab with the property that no other rectangle in I intersects l interior to �ab. Then we apply
Lemma 6 to find two points p, q horizontally adjacent in Y and on opposite sides of l in �ab. We
mark this pair (p, q) with rectangle �ab. Then we remove �ab from I and repeat the process, until
we have marked a pair of horizontally adjacent points in Y for every rectangle in I.

Whenever we remove a rectangle �ab from I, if p and q are not on the top or bottom sides of
�ab, then p and q do not simultaneously belong to any other rectangle in I, so they will never be
marked again. On the other hand, if p and q are on the top (bottom) side of �ab, then p and q are
neither interior nor on the top (bottom) side of any other rectangle in I. Furthermore, because all
rectangles in I are �-rectangles and coordinates in X are distinct, the top side of no rectangle in I
coincides even partially with the bottom side of a rectangle in I. Thus, (1) each pair of horizontally
adjacent points in Y can be marked at most once and (2) by distinctness of y coordinates in X, at
most one point in a pair of horizontally adjacent points in Y can belong to X.

Suppose pair (p, q) was marked for I1 ∈ I and pair (q, r) for I2 ∈ I. Clearly p, q, r are collinear in
y-axis. Also p, q ∈ I1 and q, r ∈ I2, therefore q must belong to Y \X (otherwise I1 and I2 are not
simultaneously independent). Also both p and r simultaneously does not belong to X (distinctness
of x-coordinate). Thus one of them is from Y \X, Without loss of generality, let p ∈ Y \X. Then
pick p as representative for I1 and q for I2. By the similar argument we can pick a unique point
(taken from Y \X) from each independent rectangle.

Therefore the number of points in Y \X is at least the number of rectangles in I, proving the lemma.

Proof of Theorem 1. Let Z be any �-satisfied set with respect to X, where Z� ∪ X is �-
satisfied and Z� ∪X is �-satisfied. Let I� denote the �-rectangles in the independent set I, and
similarly let I� denote the �-rectangles in I. By two applications of Lemma 5, we know that,

10

|Z� ∪ X| ≥ |I�| ∪ |X| and |Z� ∪ X| ≥ |I�| ∪ |X|. Since, |I| ≤ |I�| + |I�|, and without loss of

generality |I�| ≥ |I�|. So, |I�| ≤ |I|2 . Thus, |Z| ≥ |Z� ∪X| ≥ |I�|+ |X| ≥ |I|2 + |X|.

References

[1] Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane and Mihai Pǎtraşcu, The geometry
of binary search trees, In Proceedings of the 20th ACM-SIAM Symposium on Discrete Al
gorithms (SODA) 2009 28:496–505, 2009.

[2] Donald E. Knuth, Optimum binary search trees. Acta Informatica 1: 14-25, 1971.

[3] E. D. Demaine, D. Harmon, J. Iacono and M. Pǎtraşcu, Dynamic optimality−almost. SIAM
J. Comput. 37(1): 240-251 (2007).

[4] J. M. Lucas, Canonical forms for competitive binary search tree algorithms. Tech. Rep. DCS-
TR-250, Rutgers University, (1988).

[5] R. E. Wilber, Lower bounds for accessing binary search trees with rotations. SIAM J. Comput.,
18(1):56–67, (1989).

[6] J. I. Munro, On the competitiveness of linear search. ESA, :338–345, (2000).

11

