
Advanced Data Structures Jan-Apr 2012

Lecture 16 - March 22, 2012

Lecturer: Sudeshna Kolay Scribe: Ashutosh Rai

1 Overview

In the last lecture we talked about how to support dynamic graphs with respect to operations which
included insertion and deletion of edges and looking for existence of path between two vertices. In
this lecture we will talk about supporting all pair shortest paths along with addition, deletion and
updation of edges in O(n2 log3 n) amortized time on the graphs with non negative real-valued edge
weights.

2 Introduction

We need a dynamic graph algorithm which processes the queries quickly, and performs the update
operations faster than recomputing the solution from scratch. We formulate edge deletion and edge
additions as edge weight updates, setting the weights to +∞ for the edges not in the graph.

2.1 Problem

We wish to maintain a directed graph supporting the following operations-

• update (v, w′) – Update the weights of all edges incident to v according to the edge weight
function w′ : E(G)→ R≥0.

• distance (x, y) – Return the distance from x to y.

• path (x, y) – Report a shortest path from x to y, if there exists one.

2.2 Notations and Definitions

We call an algorithm fully dynamic if it can handle both edge weight increases and edge weight
decreases and partially dynamic if it can handle edge weight increases or edge weight decreases, but
not both. First we will show a partially dynamic algorithm and then extend it to a fully dynamic
one.

Throughout the discussion, we will take n to be the number of vertices in the graph and m to be
number of edges with weight < +∞ in the graph.

Let G = (V,E) be a directed graph with non-negative real edge weights.

1

• πxy = 〈x, . . . , y〉 represents a path from x to y.

• πxv·πvy = 〈x, . . . , x′, v, y′, . . . , v〉 represents the path obtained by concatenating πxv and πvy
at v.

• wuv represents weight of the edge (u, v).

• w(πxy) represents weight of the path πxy.

• l(πxy) represents a subpath πxb of πxy such that πxy = πxb· 〈b, y〉.

• r(πxy) represents a subpath πay of πxy such that πxy = 〈x, a〉·πay.

•
∑

= 〈σ1, σ2, . . . , σk〉 represents a sequence of update operations.

• tσ represents the time at which the update σ occurs.

• vσ represents the vertex affected by update σ.

3 Locally Shortest Paths

We define locally shortest paths as follows-

Definition 1. A path πxy is Locally Shortest in G if either:

• πxy consists of a single vertex or a single edge, or

• every proper subpath of πxy is a shortest path in G.

Now we prove a few properties abut locally shortest paths.

Lemma 2. Let SP and LSP denote the set of shortest paths and locally shortest paths respectively,
then SP ⊆ LSP .

Proof. Statement follows from the fact that every shortest path is also a locally shortest path.

Lemma 3. If shortest paths are unique in G, then for each pair of vertices x and y, the locally
shortest paths connecting x and y in G are internally vertex disjoint.

Proof. Follows from the observation that if they are not disjoint, then we will get more than one
shortest path between (x, v) or (v, y) for some internal vertex v, which is a contradiction to the
assumption.

Lemma 4. If shortest paths are unique in G, then there can be at most mn locally shortest paths
in G.

Proof. It is easy to see that fixing an edge (u, v) and a vertex y, there can be at most one path
starting from (u, v) and ending at vertex y. This follows from the fact that there is at most one
shortest path from v to y, and that, along with the edge (u, v), uniquely determines a locally
shortest path.

2

Lemma 5. Let G be a graph subject to a sequence Σ of vertex updates. If shortest paths are unique
in G, then in the worst case at most O(n2) paths can stop being locally shortest due to an increase
update.

Proof. Let the vertex updated be v. From lemma 3, it is clear that for any pair of vertices (x, y),
v can be an internal vertex of at most one locally shortest path between them. So, the number of
locally shortest paths having v as internal vertex is O(n2). Again, from lemma 4, if we consider
edges incident on v then each of them determines uniquely a locally shortest path along with one
of the remaining vertices in G. So, the number of locally shortest paths starting from/ending at
v is also bounded by O(n2). Hence, the total number of locally shortest paths passing through v
is O(n2). We also observe that path can stop being locally shortest path by an “increase” update
only if v occurs on that path. Hence, in the worst case at most O(n2) paths can stop being locally
shortest due to an increase update.

Theorem 6. Let G be a graph subject to a sequence Σ of increase only vertex update operations
and let m be the maximum number of edges in G throughout the sequence Σ. If shortest paths are
unique in G, then the number of paths that start being locally shortest after each update is

• O(mn) in worst case.

• O(n2) amortized over Ω(m/n) update operations.

Proof. The first statement follows from lemma 4. For proving the second statement, let T be
the total number of paths which were locally shortest paths at some point of time in the update
sequence Σ. Since at any point of time the number of locally shortest paths is at most mn and
during any update the number of paths which can stop being locally shortest paths is O(n2), we
get

T − (m/n ∗ cn2) ≤ mn

T ≤ (c+ 1)mn

Which gives O(n2) newly created paths per operation amortized over Ω(m/n) update operations.
This concludes the proof of the theorem.

4 Partially Dynamic Shortest Paths

In this section, we will describe an algorithm which works on increase-only updates in O(n2 log n)
amortized time per operation. The algorithm can be easily modified to run for decrease-only updates
in the same time complexity per operation. But in decrease-only case, it is not an improvement
from a build-from-scratch algorithm, which takes O(n2) time as discussed in class.

4.1 Data Structures Needed

Now, we will describe the data structures needed for supporting partially dynamic shortest paths.
For each pair of vertices x and y in G, we maintain the weight wxy ≥ 0 of an edge (x, y) (or +∞ if
no such edge exists and the following two data structures-

3

Pxy = {πxy : πxy is a locally shortest path in G}

P ∗xy = {πxy : πxy is a shortest path in G}

We maintain each of the Pxy as priority queue where the key value of an item πxy ∈ Pxy is w(πxy).
If shortest paths are unique, then |P ∗xy| ≤ 1. Each path πxy in Pxy and P ∗xy is stored as two pointers
to l(πxy) and r(πxy) and hence take constant space. Notice that l(πxy) and r(πxy) are shortest
paths as well as locally shortest paths, so they will also appear in the queues Pxy and P ∗xy and are
stored in the same way implicitly.

Also, for each path πxy ∈ Pxy, we maintain w(πxy) and the following lists:

L(πxy) = {πx′y = 〈x′, x〉·πxy : (x′, x) ∈ E and πx′y is a locally shortest path in G}

L∗(πxy) = {πx′y = 〈x′, x〉·πxy : (x′, x) ∈ E and πx′y is a shortest path in G}

R(πxy) = {πxy′ = πxy· 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a locally shortest path in G}

R∗(πxy) = {πxy′ = πxy· 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a shortest path in G}

4.2 Implementation

The distance(x, y) and path(x, y) operations can be implemented by accessing the minimum weight
path in Pxy. The correctness follows from Lemma 2.

The operation update(v, w′) works in two stages, namely cleanup and fixup. The pseudocodes of
these operations can be found in [1]. We will describe both the stages one by one.

4.2.1 cleanup

In this stage, we remove every path πxy containing the vertex v from Pxy, P
∗
xy, L(r(πxy)), L

∗(r(πxy)),
R(l(πxy)) and R∗(l(πxy)). By doing so, we want to remove all paths that would stop being locally
shortest paths if we deleted v from the graph. To achieve this, we first remove the paths of the
form 〈u, v〉 and 〈v, u〉 and then iteratively remove all paths listed in L(πxy) and R(πxy) for each
path πxy which has already been removed in previous iterations.

4.2.2 fixup

This stage adds new locally shortest paths and shortest paths to the data structure. We call a
locally shortest path (or shortest path) new, if it was not locally shortest (or shortest) before the
update or it contains the updated vertex v. The fixup stage works in three phases:

Phase 1. In this phase, we update the edge weights of all the edges of the form (u, v) and (v, u)
according to w′, and add all the edges of the form (u, v) and (v, u) to Puv and Pvu respectively.

Phase 2. Initialize a priority queue H with minimum edge path πxy in Pxy for each pair of vertices
(x, y).

Phase 3. We repeatedly extract paths πxy from H in increasing order of their weights till H = φ.
For a pair (x, y), let the first occurrence of a path be πxy, all the later occurrences of a path between

4

(x, y) are ignored. We see if πxy ∈ P ∗xy. If not, we add it to P ∗xy, L
∗(r(πxy)) and R∗(l(πxy)). Also,

we combine πxy with existing shortest paths to get new locally shortest paths and add them to P ,
L, R and H.

4.3 Analysis

To prove the correctness of update, we assume that P and P ∗ are correct before the operation,
and we show that they are also correct afterwards. We first discuss an invariant maintained by
procedure fixup.

Invariant 1. If shortest paths are unique and edge weights are non-negative, then for each pair of
vertices x and y in G, the first path connecting x and y extracted from H in Phase 3 of fixup is a
shortest path.

Proof. Suppose that the statement of the invariant is not true. Let π̂xy be the first such path
extracted, such that even though it is the first path extracted for some x, y ∈ V (G), it is not the
shortest path between them. Let πxy be the shortest path between x and y, such that w(πxy) <
w(π̂xy). Now, πxy can not be in H, since then it would have been extracted earlier, hence neither
it could have been in Pxy before the second phase, otherwise it would have been put in H in the
second phase. Hence πxy has to be necessarily a new locally shortest path. It can not have only one
edge since all the locally shortest paths consisting of only one edge were added to Pxy in Phase 2.
So, it has at least two edges and either one of l(πxy) or r(πxy) is a new shortest path and was not in
P ∗ at the beginning of fixup. Since all edge weights are positive, w(l(πxy)), w(r(πxy)) < w(π̂xy).
Also, both of them being new shortest paths, they should have been extracted from H and after
combining them with respective vertices, πxy should have been added back to H and hence extracted
before π̂xy, which is a contradiction to the assumption made.

Theorem 7. If the operation is an increase, shortest paths are unique and edge weights are non-
negative, then algorithm update correctly updates Pxy and P ∗xy for each pair of vertices x and y.

Proof. We have argued that cleanup removes every path from the data structures which can turn
out to be not a locally shortest path after the update.

Now, we have to argue that every new locally shortest path is added back to the data structure by
fixup. New locally shortest paths consisting of one edge are added in Phase 1, so we are left with
only new shortest paths πxy with at least two edges. Now, let us look at l(πxy) or r(πxy) which
are shortest paths. If one of them is extracted from H at some iteration of Phase 3, then after
combining with the other, πxy will be added to Pxy. Also, if none of them are extracted, then they
are part of P ∗ and hence do not involve v as a vertex. Since l(πxy) and r(πxy) do not involve v as
a vertex, neither can πxy, and hence it would not have been removed from Pxy.

Theorem 8. In an increase-only sequence of Ω(m/n) operations, if shortest paths are unique and
edge weights are non-negative, our data structure supports each update operation in O(n2 log n)
amortized time, and each distance and path query in constant time.

5

Proof. The statement about distance and path queries is obvious. Each iteration of cleanup re-
moves a path πxy from a constant number of lists. By lemma 5, at most O(n2) paths have to be
removed, each taking O(log n) time each, hence the cleanup stage running in O(n2 log n)

Phase 1 of fixup operation adds at most O(n) edges to constant number of lists, and hence takes
time O(n log n). In Phase 2, at most n2 paths are inserted into H, which takes time O(n2 log n).
Also, in Phase 3, we perform insertions into the priorities queues for the new locally shortest
paths, the number of which is O(n2) amortized over Ω(m/n) update operations. Hence, we spend
O(n2 log n) time in Phase 3 amortized over Ω(m/n) update operations. So, we have proved that
the whole algorithm takes time O(n2 log n) amortized over Ω(m/n) update operations.

5 Resolving Ties

So far we have assumed that all the shortest paths are unique, but that is not generally the case.
There can be more than one shortest path, in which case, when asked for shortest path, the
algorithm can output any one of the paths with minimum weight. But the algorithm used here
relied heavily on shortest paths being unique. In this section, we will show how to deal with this
issue. We start with a few definitions.

Definition 9. For any path π with at least one edge we define the extended weight of π as ew(π) =
〈w(π), ID(π)〉, where w(π) is the real weight of π in the graph and ID(π) is defined as follows-

ID(π) =

{
u+ nv, if π = 〈u, v〉
max{ID(l(π)), ID(r(π))}, otherwise

We also define an ordering among the extended weights as following-

Definition 10. ew(π1) ≤ ew(π2) if and only if either w(π1) < w(π2) or w(π1) = w(π2) and
ID(π1) ≤ ID(π2)

Now, we define a notion of shortest extended weight paths analogous to the notion of shortest
paths-

Definition 11. Let G be a graph with real-valued edge weights and let ew be the extended weight
function of Definition 9. We define Sew as follows:

Sew = {π ∈ G : ∀πxy ⊆ π,∀π′xy ∈ G, ew(πxy) ≤ ew(π′xy)}

The definition ensures the optimal substructure property for Sew. Since we want the shortest
extended weight paths to be unique, we prove the following lemma-

Lemma 12. For each pair of vertices x and y in G, there can be at most one path πxy ∈ Sew
connecting them.

Proof. We prove this by induction on number of edges in the paths. The base case is trivially true,
since in a simple graph, there can be only one edge connecting two vertices, and there is only one
path between them. Now, we assume that the claim holds for paths of length at most k, i.e. there

6

is at most one path of length at most k between any two vertices in Sew. Now, let us assume that
there are two different paths πxy and π′xy of length at most k + 1 in Sew. Since there extended
weights are equal, their ID’s are equal, and hence they must share an edge with that particular
ID. Let the edge be (u, v). Now, because of the optimal substructure property and induction
hypothesis, minimum paths from x to u and from v to y are unique, and must occur as subpaths
of πxy and π′xy. Hence, πxy and π′xy are the same, which is a contradiction to our assumption.

Also, it is clear to see that if πxy ∈ Sew, then πxy is a shortest path in G. We prove the following
lemma which guarantees existence of one shortest path for every pair of vertices in Sew.

Lemma 13. For each pair of connected vertices x and y in G, there is a path πxy ∈ Sew.

Proof. We prove this by constructing a path π∗xy that satisfies definition 11. Let πxy be the minimum
extended weight path. We start with an empty π∗xy and look at the edge with the largest ID on
πxy. Let the edge be (u, v). We add (u, v) to π∗xy and then recursively build π∗xu and π∗vy.

We prove that each path constructed by the above procedure belongs to Sew by induction on the
path length. The base case is trivially true for paths of length 1. Now, let us assume that all the
paths of length k constructed belong to Sew. Now, for the induction step, assume by contradiction
that there is subpath πab ∈ π∗xy that is not of minimum extended weight and is of length at most
k + 1. There are three possibilities-

1. both vertices a and b are in π∗xu

2. both vertices a and b are in π∗vy

3. vertex a is in π∗xu and vertex b is in π∗vy

Cases 1 and 2 are not possible since π∗xu and π∗vy have at most k edges and hence by induction
hypothesis belong to Sew, the so will πab by Definition 11. Now, we look at the third case, and look
at the minimum extended weight path between a and b, say π′ab. But π∗xy contains only the edges
which lie on some shortest path from x to y in G, and hence w(πab) ≤ w(π′ab), but since π′ab has
less extended weight, we conclude that w(πab) = w(π′ab) and ID(π′ab) < ID(πab). So, we construct
a new extended weight shortest path from x to y, avoiding (u, v) which has the same weight but
smaller ID. This path differs from πxy in the sense that for going from a to b (or from b to a), it
uses π′ab instead of πab. This path having less extended weight than πxy is a contradiction to our
assumption. This concludes proof of the lemma.

Lemma 12 and Lemma 13 tell us that Sew contains exactly one representative shortest path between
each pair of vertices. Also, it is easy to see that the algorithm, namely the procedure update can
be made to work with extended weights instead of actual weights and hence the assuming that
shortest paths are unique is reasonable.

Now, to make use of this approach of extended weights to resolve the ties and have unique shortest
paths, we keep an additional field ID for each path π stored in the data structure. Also, while
assigning new weights to edges we assign the ID as (u+nv) and while combining two paths, we just
take the ID to be maximum of the two paths.Now, the priority of a path is the extended weight
(combination of weight and ID instead of the original weights. Also, because of the weights and

7

ID’s of paths being stored with them ,the extended weights can be compared in constant time. We
conclude the analysis of resolving ties by the following theorem.

Theorem 14. If we compare paths according to the extended weight function ew, then P∗ = Sew
after each execution of update.

Proof. Because of the original edge weights being non-negative it is easy to see that extended
weights satisfy monotone property, i.e. ew(l(π)) ≤ ew(π) and ew(r(π)) ≤ ew(π). Also, by Lemma
12 and Lemma 13, there is exactly one path in Sew for each pair of vertices. So, Invariant 1
continues to hold for extended weights, which implies that each path added to P ∗ has minimum
extended weight. Also, p∗ satisfies the optimal substructure property by construction. So, if π is
in P , every subpath of π is also in P . Thus, P∗ = Sew by definition 11.

References

[1] C. Demetrescu, G. F. Italiano, A New Approach To Dynamic All Pair Shortest Paths, Journal
of the ACM, 51(6):968-992, November 2004.

8

