
Advanced Data Structures Jan-Apr 2012

Lecture 10 — February 17, 2012

Lecturer: Venkatesh Raman Scribe: Shion Samadder Chaudhury

1 Overview

In the last lecture we looked at datastructures that efficiently support the actions predecessor,
successor along with the usual membership, insertion and deletion actions.

In this lecture we discuss Fusion trees. Our goal is to perform the above mentioned actions in
time better than O(log n). Given a static set S ⊆ (0, 1, 2, ..., 2w − 1), fusion trees can answer
predecessor/successor queries in O(logw n). Fusion Tree originates in a paper by Fredman and
Willard [1].

2 Main Idea

2.1 Model

In our model, the memory is composed of words each of length w = logu bits where u is the size of
our universe U. Each item we store must fit in a word. The manipulation of a word in this model
takes O(1) time for operations like addition, subtraction, multiplication, division, AND, OR, XOR,
left/right shift and comparison.

2.2 Description of Fusion tree

A Fusion tree is a B-tree with a branching factor of k = θ(w1/5). Let h be the height of the B-tree.
Then

h = logw1/5n =
1

5
logwn = θ(logwn)

To get an O(logw n) solution to the problem we have to find a way to determine where a query fits
among the B keys of a node in O(1) time.

3 Nodes of the Fusion Tree

Let us suppose that the keys in a node are x0 < x1 < ... < xk−1 where k = θ(B) with each of
them a w-bit string. We view each of them as a root-to-leaf path in a binary tree whose edges are
labeled 0 or 1. When we get 0 we move to the right and we move to the left when we get 1. This
is basically a trie.

A node in this trie is called a branching node if it has a non-empty left and right subtree. There
are k − 1 such nodes.

1



We mark the horizontal levels in the trie containing the branching nodes. A level in the trie
corresponds to a bit position in a w-bit string. Let b1 < b2 < ... < br the bit positions corresponding
to the levels in the trie. These bit positions are called the important bits of the node. There are at
most k − 1 = O(w1/5) important bits.

3.1 Sketch

As we mentioned before, we have to find a way to determine where a query fits among the keys of
a node in O(1) time. We do this by looking only at the important bits of the keys.

Perfect Sketch of a word is the r-bit binary string obtained by extracting the important bits from
it. ie,

sketch(

w−1∑
i=0

2ixi) =

r∑
i=1

2ixbi

Since r ≤ k − 1 = O(w1/5) we can concatenate the sketches of the k keys of a node to get a bit
string of length O(w2/5), which will fit in one word.

But perfect sketch is hard to compute under the operations of our integer word RAM model.

So we compute an approximate sketch of size O(w4/5) in constant time. Using this we can fit the
sketches of O(w1/5) keys into a word. This approximate sketch contains the same bits as the perfect
sketch in the same order but are separated by extra 0’s in between.

We want sketch(
∑w−1

i=0 2ixi) =
∑r

i=1 2cixbi where c1 < c2 < ... < cr < O(w4/5) are computed from
the bi’s.

We compute this as follows: Let x =
∑w−1

i=0 2ixi.

1. We extract only the bi bits to get
∑r

i=1 2bixbi .

2. Find m1 < m2 < ... < mr < r3 so that bi +mj are distinct modulo r3.

3. Add correct multiples of r3 to mi’s to get m′i so that the condition : w ≤ m′1 + b1 < m′2 + b2 <
... < m′r + br < w +O(r4) holds.

4. Take ci = m′i + bi − w.

So we multiply
∑r

i=1 2bixbi by m =
∑r

i=1 2m
′
i to get

∑r
j=1

∑r
i=1 2m

′
j+bixbi . The powers of 2 in this

expression are distinct. Hence if we mask to consider only bits of the form m′i + bi, we are left with∑r
i=1 2m

′
i+bixbi . Finally, dump the low-order word to get the required.

The validity of the above computation is confirmed by the following theorem :

Theorem : Given the bi’s as above, then

a. there exist constants m1 < m2 < ... < mr < r3 such that bi +mj are distinct modulo r3.

b. suitable multiples of r3 can be added to mi’s to get m′i so that the condition : w ≤ m′1 + b1 <
m′2 + b2 < ... < m′r + br < w +O(r4) holds.

Proof: (part a) (By induction) When r = 1, we have only one term and the condition is trivially
satisfied. Let us assume that we have m1 < ... < mt such that bi +mj are distinct modulo r3. We
observe that mt+1 must be different from the terms (mi + bj − bk) modulo r3 for all i, j, k. So mt+1

2



must be different from t.r2 ≤ (r − 1)r2 terms. But (r − 1)r2 is less than the size of the address
space. Hence there must be at least one term which is feasible.

Proof of part b is clear.

4 Predecessor and Successor

On a query q, we compute sketch(q) and compare it with every key simultaneously in parallel. We
do this in the following way :

1. Pack the sketches of the keys together with a 1 bit on the left side of each, that is,

1sketch(x1)1sketch(x2)1...1sketch(xk)

.

2. Given sketch(q), we compute

0sketch(q)0sketch(q)0...0sketch(q)

- (repeated k times) - this is just sketch(q)(1 + 2r + 22r + ...+ 2kr).

3. The difference of these two words has a 0 in the r(i − 1)th place from the left if sketch(q) ≥
sketch(xi) and a 1 otherwise. This takes 1 operation.

(Note) Sketch preserves order of the keys we built it on. sketch(x1) < sketch(x2) < ... <
sketch(xk) - so if sketch(xj) < sketch(q) < sketch(xj + 1), bits 0, r, ..., r(j − 1) from the left are
0 and bits rj, ..., r(k − 1) are 1. We would like to have the value of j, the index of q’s ”sketch
predecessor.” Once we mask out the ”junk” bits with a single AND, rj is the most significant bit
of the comparison word. The MSB is easily computable in AC0. So j is easy to compute.

4. xj and xj + 1 are not necessarily related to the predecessor or successor of q, as sketch does
not preserve order on all words - only those that branch off from one another at the branching
positions we selected (i.e., the keys). However, they give some information about the predecessor
or successor of q.

5. Let us suppose that q diverges from its predecessor lower than the point of divergence with the
successor. Then, one of xj or xj + 1 must have a common prefix with q of the same length as the
common prefix between q and its predecessor. This is because the common prefix remains identical
through sketch, and the sketch predecessor can only deviate from the real predecessor below where
q deviates from the real predecessor. We can find the length of the common prefix in O(1) by
taking bitwise XOR and finding the MSB.

6. Again, let us assume that the predecessor deviates below. If C is the common prefix, the
predecessor is of the form C0A, and q has the form C1B for some A and B. We now construct
the word q′ = C011...1 and, as above and calculate xi such that sketch(xi) < sketch(q0) <
sketch(xi + 1) in O(1). This element is qs predecessor among the keys of the node.

7. The sketch predecessor of q′ is qs predecessor : Since C is the longest common prefix between
q and any xi, we know that no xi begins with the string C1. Hence, the predecessor of q must
begin with C0, and it must also be the predecessor of q′ = C011...1. Now, the predecessor of q′ is

3



the same as its sketch predecessor: this follows because all important bits in q′ after C are 1, and
thus q′ remains the maximum in the subtree beginning with C, even after sketching. Thus, the
maximum element xi beginning with C is actually the predecessor of q.

8. Now proceed with the fusion tree query by recursing down the corresponding branch.

5 References

[1] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences, 47:424-436, 1993.

[2] A. Anderson, P. B. Miltersen, M. Thorup. Fusion trees can be implemented with AC0 instruc-
tions only. Theor. Comp. Sc., 215(1-2):337-344, 1999

4


