Advanced Data Structures Jan-Apr 2012

Lecture 28 May 4, 2012
Lecturer: Anil Shukla Scribe: Anil Shukla

1 Overview

The problem of maintaining a forest where edge insertions and deletions are allowed is called the
dynamic trees problem. Efficient solution to this problem have numerous applications, particularly
in dynamic graphs. Several data structures which supports dynamic trees problem in logarithmic
time have been proposed. In these lecture we will see two such data structures, the first is ST-tress
proposed by Sleator and Tarjan in [1] [2] and the second one is top trees, proposed by Alstrup et
al. in [4]. This lecture will be based on Renato F. Werneck’s PhD dissertation [3].

2 Introduction

2.1 Dynamic Trees Problem

We are given n vertex forest of rooted tress with costs on edges. We are allowed to modify the
structure of the forest by two basic operations: (1) link(v,w, c), which adds an edge between a root
v and a vertex w in a different tree (component) with cost ¢; (2) cut(v), which removes the edge
between v and its parent. We are interested in a data structure to maintain a forest supporting in
O(logn) time queries and updates related to vertices and edges indiviually, and to entire trees or
paths. We call this the dynamic trees problem.

3 Sleator and Tarjan’s ST Trees [1] [2]

The first data structures to support dynamic tree operations in O(logn) time were Sleator and
Tarjan’s ST trees [1] [2]. Primarily ST-trees are used to represent rooted trees with all edges
directed towards the root. ST-trees proposed in [2] associates a cost with each vertex in the forest
and handle the costs by the following operations:

e findcost(v): returns the cost of vertex v.
e findmin(v): returns the minimum-cost vertex on the path from v to the root of its tree.

e addcost(v,x): adds z to each vertex on the path from v to the root of its tree.

Apart from the usual update operation link(v,w,c) and cut(v), it also supports the following
operations:

e findroot(v): returns the root of the tree containing v.

e parent(v): returns the parent of v.

3.1 Representation

ST-trees are based on path-decomposition technique. Each rooted trees in the forest is represented
as follows. The tree is first partitioned into vertex-disjoint paths. Edges within a path are called
solid edge (and so is the path). The remaining edges (that are not in any partition) are called dashed
edges. Dashed edges links solid paths. Each solid path is represented as a solid subtree, which is a
binary search tree in which the bottom most vertex of the original solid path is represented as the
leftmost vertex. Finally, the solid subtrees are “glued” together (defined below), creating a shadow
(or virtual) tree.

Shadow (virtual) tree: Consider a solid path P. Let v be the topmost vertex of P and let p(v)
be its parent which belongs to some other solid path Q). Let 7, be the root of the solid subtree
representing P then in shadow tree we have a dotted edge between r, and p(v). We call r), as the
middle child of p(v). See figure 1. There are no pointers from a node to its middle children.

Figure 1: Example of an ST-tree (adapted from [3]). On the left,
the original rooted tree with root "a’, partitioned into solid paths;
on the right, a shadow tree representing the tree on its left. In
shadow tree, middle children are connected to their parents by
dotted lines. Costs are not shown in the figure.

In [2], Sleator and Tarjan proposed a simple implementation of ST-trees, where each solid paths
are represented as splay trees. It ensures that each access to the splay tree will take logarithmic
amortized time. Infact they showed much stronger property that each access to an ST-tree, which
invovles splaying on a series of splay trees, will also take O(log n) amortized time. ST-trees supports
path-related queries (for example, findmin(v)) very efficiently.

Limitations of ST-trees: An important feature of an ST-trees is that a node does not need
to access its middle children. Hence it suffices to have pointers from each middle children to its

parent. This simplifies the data structure, as there may be ©(n) middle children for any node.
However this restriction limits the scope of ST-trees. In particular, several application require
information to be aggregated over the entire tree. In these cases, one does need access from a node
to its middle children. Hence ST-trees does not support operation which depends on the entire
tree. Such operations are called as sub-tree related operations (for example, adding a value to all
vertices in the original tree).

One way to support sub-tree related operations using ST-trees is by storing information in each
node about all its children. This will take time proportional to the degree of that vertex, which
may be very expensive, unless we can guarentee that all vertices in the original forest have bounded
degree. Clearly this assumption is not true in general. The usual solution to this problem is to use
ternarization.

Ternarization: Whenever the input forest has a high degree (> 3) vertex, this operation replaces
it by a chain of degree-three vertices. A common technique is to replace each vertex with degree
d > 3 by a path with d — 2 vertices: each vertex in this path are connected to exactly one of the
original neighbour except the first and the last vertices which are each connected to two of the
original neighbours. See figure 2.

oo

I

Figure 2: Example of ternarization (adapted from [3]). Each
vertex v of degree greater than 3 are replaced by a chain of
degree 3 vertices.

The drawback of using ternarization is that we must have to remember which vertices and edges
are from the original tree and which are added as the special elements by this procedure.

We now consider a new data structure, Top tree, proposed by Alstrup et al. [4] which supports
both path-related queries and sub-tree related queries efficiently. We will also see that top tree
interfaces (small set of operations defined by the users) are also the easiest to use.

4 Top Trees [3] [4]

We have seen that ST-trees are based on path decomposition technique, i.e, the original tree is
partitioned into disjoint paths, and each is represented as a binary tree. On the other hand top
trees are based on Tree contraction technique. Instead of representing the tree itself, they represent
a contraction (defined below) of the tree, which progressively transforms the original tree into
smaller trees that summarizes the original information about the tree.

Top trees represent a collection of free trees (i.e., trees that are unrooted and undirected). Also
top trees assume that there is a circular order of edges around every vertex of the original tree. See
figure 3.

Figure 3: A free tree (adapted from [3]). Around each vertex
edges are arranged in counterclockwise order.

Contraction of a tree (forest) is based on two operations: The rake and compress operation.

Rake operation: A degree-one vertex v with neighbour z is raked if the edge (v,z) and its
successor (w, z) around z are replaced by a single edge, with end points w and x. We can also say
this as: (1) the edge (v, z) is raked onto (w,z). (2) edge (v,z) is raked around z. (3) edge (w,x)
receives (v,z) and (4) edge (w,x) is the target of a rake. Rake operations eliminates vertices of
degree one.

Compress operation: A degree two vertex v is compressed if the two edges incident to it, (u,v)
and (v, w), are replaced by a single edge (u,w). We also say that either edge is compressed at v.
Clearly this operations removes degree-two vertices. See figure 4.

)%
)'/O\(‘ compress(v)

i w u W

rake(v)

——

Figure 4: Top trees: Basic operations (adapted from [3]).
(Above) compress removes degree two vertex v by
replacing edge (u,v) and (v,w) by a single edge (u,w).
(Below) rake removes degree one vertex by replacing
edge (v,X) and (w,x) by a single edge (x,w).

Cluster: Consider each edge of the original tree as a cluster (called it base cluster). When two
clusters are combined by either rake or compress, the result will be a new cluster, the parent cluster.

Observe that every cluster (base as well as the new one after rake or compress) have exactly two
end points, and can therefore be consider as an edge of the contracted tree.

A top tree is a binary tree that embodies a contraction of a free tree into a single cluster via a
sequence of rake and compress operations. Each Leaf of the top tree is a base cluster representing
an original edge, and each internal node of the top tree is either a rake or a compress cluster. A
node in the top tree aggregates information pertaining to all descendants; in particular, the entire
original tree is represented at the root of the top tree. It is clear that if the top tree is representing a
free forest in this way, then the number of roots of the top tree is equal to the number of non-trivial
trees in the original forest. A tree with a single vertex is represented by an empty top tree.

To support O(logn) update and query time we are after the sequence of rake and compress oper-
ations that produces balanced top trees. Since when an edge is deleted or inserted in the original
forest the leaf (base cluster) of the top tree is affected and we need to propagate the changes to
the root of the top tree. One such sequence can be obtained as follows: work in rounds, and in
each round perform a maximal set of independent moves (rake and compress), that is, each cluster
participates in at most one move and no valid moves is left undone. Figure 5 shows a contraction
of the free tree shown in figure 3 into a single cluster that obeys the above rules. Figure 5 also
shows the corresponding top tree.

—]

a8

:

/7 s
& T
5
f.z "ﬂ?--__
/r 4 T
&

b
E__——’T— it
= i —\n
. h
o
B eyl ‘f<
T
.f_:’\' n
€ C b ’ j ‘ el
e “”—7@
e J n i L

Figure 5: (Left) a contraction of a free tree (figure 3) to be
read bottom-up. (On right) the corresponding top tree.
(adapted from [3]). Circles represents rake nodes in the top
tree; square represents base, dummy or compressed nodes,
depending on whether the number of children is zero, one or
two.

|
\
|

\

The example top tree in figure 5 has four types of nodes. A Base node, shown as a square with
no children, A dummy node, shown as square with one child, represents an edge that was not
involved in any move in the previous round, A compress node, shown as a square with two children,
represents the compress of its two children (in top tree they can appear in any order). Finally, a
rake node, shown as a square with two children, represents the rake of its left child onto the right

child. However dummy nodes in principle could be eliminated.

A cluster always has two end points. Therefore a cluster which in I*" level (from bottom, i.e, leaves
are at level zero) in the top tree, can be thought off as an edge in the {'h round of contraction of
the free tree. It can be naturally mapped to both a path and a subtree of the original free tree.
The path is the one between its end points; the subtree is the one induced by all base clusters that
descend from it. Call the vertices that belong to the subtree of a cluster C' but are not the end
points of C' as internal vertices of C.

4.1 Operations Supported by Top Trees
The following are the three external operations that top tree suppports, which user can call directly:

o C <« link(e): adds an edge e = (v, w) to the forest and returns the base cluster representing
the new edge e. If v and w are in the same component of the forest then the function does
not add e and just returns a NULL.

e cut(C): removes the edge represented by base cluster C' from the forest.

o C «+ expose(v,w): takes one or two vertices as input and ensures that they are the endpoints
of the root cluster of their trees. If v and w are in the same component then the function
returns its root cluster; otherwise it returns a NULL.

The 3"¢ operation is important because users are not allowed to traverse freely on top tree, they
have only a direct access to its root. This simplifies implementation of various applications. Because
of operation 3 this strategy is as powerfull as any other. For example assume that vertices v and
w are in the same component and a user is interested in the path between v and w. Then she first
call expose(v,w) and look at the cluster returned. This function modifies the top tree in such a
way that v and w becomes the end points of the cluster representing their tree (this can be ensured
just by gauranteeing that vertex v and w do not disappear by any rake and compress operation
during the tree contraction process) and retured this cluster. Suppose user is interested only in the
tree containing vertex v. Then she first call expose(v,-) and look at the cluster returned, because
again this function guaranteed that vertex v is one of the end points of the cluster representing its
tree and it had retuned this cluster (the other end point of the cluster returned is any arbitrary
vertex of the tree containig v).

To execute these operations, the clusters in the affected top trees must be rearranged. The exact
information to be updated depends on the application the top tree is solving. It is the user who
defines what information each cluster should have and how they should be updated. Therefore
Alstrup et al. in [4] proposes four internal operations whose implementation detail user must have
to define.

Internal Operation: These are the operations whose implementation details are to be defined
by the users based on the application they want the top tree to solve. External operations uses
internal operations. 4 internal operations defined in [4] is as follows:

1. C < create(e): makes a base cluster representing edge e;

2. C + join(A, B): performs a rake or compress of two adjacent clusters;

3. (A, B) < split(C): disassembles a rake or compress cluster and returns its children;

4. destroy(C): eliminates a base cluster.

For simplicity we will assume that dummy nodes are not present (otherwise we must have to
generalize join and split to allow cluster with single child which is duable). In [3] it has been shown
that all these operations can be implemented in worst case O(logn) time. Assuming this we will
now show how powerful and simple a top tree is in solving both path-related and sub-tree related
queries in O(logn). However we will present the applications that uses only the first two internal
operations.

Application 1: Maintain sum of the costs of all edges in a tree.

Store a single variable in each cluster. The create operation initializes this value as the cost of the
corresponding edge. join operation store the sum of the values of the children in the new cluster.
In the similar manner we can maintain the minimum or maximum edge cost of the entire tree just
by changing join operation accordingly. Both destroy and split do nothing.

Application 2: Find the Length of a Given Path in the Tree.

We store a single value in each cluster, corresponding to the length of paths between its two end
points. The create operation initializes this value as the length of the corresponding edge. When
the two cluster A = (u,v) and B = (v,w) are compressed then join operation stores the sum of
their values in the parent cluster. If cluster A = (u,v) is raked around v onto cluster B = (v, w),
join copies the value stored in B to the parent cluster. Clearly these update rules ensures that
the root of the top tree will contains the length of the path between its two end points. Thus to
compute the length of the path between two arbitrary vertices v and w, users needs to first call
expose(v,w) and just reads the value of the cluster returned from expose(v,w).

Application 3: Maintaining Diameter (i.e, the largest distance between two vertices
in the tree).

Clearly this application needs information about paths and subtrees at the same time. Alstrup et
al. [4] were the first to show that the diameter of a tree can be updated after a link or a cut in
O(logn) time using top trees. For maintaining diameter of the tree, we maintain in each cluster
C = (v, w) the following values:

e diam(C): diameter of the sub-tree represented by the cluster C;
e length(C): length of the path between v and w;
e max,(C): maximum distance from v to a vertex in the sub-tree represented by C;

e max,(C): maximum distance from w to a vertex in the sub-tree represented bt C.
As we had already seen in application 2 how to maintain length(C), we will concentrate on the
other three values. create(e) operation just creates a cluster C' = (v,w) and initializes all its 4

values with the length of the edge (v, w). When two adjacent clusters A and B with a common
vertex v are combined into a cluster C, join operation sets,

diam(C) = maz{diam(A), diam(B), max,(A) + max,(B)}
Let w be the end point of cluster C' that belongs to B but not A. join update max,,(C) as follows:
mazy(C) = max{mazx,(B),length(B) + maz,(A)}

If C' is a compressed cluster, it must have an end point u that belongs to A but not B then the
value max, (C) must also be updated similarly. If the move was rake, v be the other end point of
C which is updated as: max,(C) = maz{maz,(A), max,(B)}.

5 Contraction-Based Top Trees

Renato F. Werneck in his PhD dissertation [3] presented a very simple implementation of the top
tree interface that supports link, cut and expose in logarithmic time in the worst case. In this
section we will see an overview of his result.

Height of the Top Tree is Bounded by O(logn):

In [3] top tree is implemented using tree contraction technique which works in round. In each round
the set of moves (that is, rake and compress) performed in independent and maximal: each cluster
can participate in atmost one move, and no legal move is left undone. We will first proof that this
contraction rule results in a top tree with height at most O(logn).

Lemma 1 If a contraction procedure is guarenteed to eliminate a fraction o > 0 of all nodes in
each round, then the number of rounds in the contraction is at most log; /(;_q) .

Proof. Let after h rounds there are only two vertices (i.e., an edge) left. Then we have,
n(l—a)* <2

Since we started with n vertices and a fraction of at most (1 — «) remains after each round. By
taking binary logarithm on both sides we have,

log(n(1 —a)®) <log?2
logn + hlog(l —a) <1
By rearranging the terms we have,
I < 1—logn
~ log(l —)
_ logn —log2
 log(1 - a)

_ log(n/2)
log(1 —)

<logy/q1-aym

The following 2 lemma proves that more than half of the vertices in any tree have degree one or
two which is relevant for the contraction algorithm.

Lemma 2 Let n; be the number of vertices with degree ¢ on a free tree T with n vertices. If T" has
oo

at least two vertices, then Z n;(i —2) = —2 holds.
i=1

Proof. From sum of degree theorem we have,

e}

Zini =2(n—-1)

=1

since total number of edges is (n — 1) and in; is the total degree of all vertices of degree i. We know

o0
that n = Z n;, thus we have,

=1) 00
=1 =1

Thus we have,

> nii —2) = -2
=1

Lemma 3 In any free tree T', more than half of the vertices have degree one or two.

Proof. In the summation of Lemma 2, each degree-one vertex has a negative contribution of one
unit, degree two vertices has no contributions at all, and degree greater than three vertices has a
positive contributions. Since the result of the summation is a negative, the Lemma follows.

As every degree one vertex is a rake candidate and degree two vertex is a compress candidate
Lemma 3 is relevant to the algorithm. Now without proof we are stating a Lemma from [3] which
states that a constant number of vertices disappear after each round.

Lemma 4 [3] If n > 3, at least 1/6 of the vertices disappear from one round to the next.

Together, Lemma 1 and 4 ensures that the height of the top tree constructed from the tree contrac-
tion procedure that works in maximal independent rounds is at most logg 5 n, which is less than
3.8021og n.

Finally we are interested in the update problem: given a contraction C of a forest F', compute a
contraction C” of F” that differs from F in exactly one edge (which has been added or deleted, due
to link and cut repectively) with atmost O(logn) modifications. In expose(v,w), F' differs from
F in zero edges. We will handle this case separately at last.

Let us call C' the original contraction and C’ the new contraction. Solving the update problem
requires “repairing” the original contraction by undoing some of the existing moves and performing
new ones. The repairing rules are very simple: start from the bottom level and for each level just
replicate the original moves that can be replicated, then perform the new moves until the over all
moves in this round becomes maximal.

The first step of the algorithm, i.e., replicating original moves is done implicitly and can be done
constant time. Only the second step, i.e., performing new moves is done explicitly. In [3] it had
been shown that (1) the number of new clusters per level is constant after a link or cut (true for
expose as well) and (2) the new clusters can be processed in constant time. Assuming the two
claims we have:

Update algorithm to construct C’ from C' after a link or cut operation takes O(logn) time: As
the number of level (rounds) in top tree in O(logn) and at each level we have to deal with constant
number of new moves that can be processed in constant time. Thus the total running time of
the update algorithm is O(logn). Similarly [3] shows that exzpose can be implemented in O(logn)
time. Since exposing a vertex is to ensure that it does not disappear in the contraction. During
the update algorithm one just marked the exposed vertex (or two vertices in case of expose(v,w))
and ensure that it can not disappear in the contraction.

References

[1] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, Journal of Computer and
System Sciences, 26(3): 362-391, (1983).

[2] D.D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, Journal of the ACM, 32(3):
652-686, (1985).

[3] Renato F. Werneck, Design and Analysis of Data Structures for Dynamic Trees, PhD Disser-
tation, Princeton University, June, (2006).

[4] S. Alstrup, J. Holm, M. Thorup, and K. de Lichtenberg, Maintaining information in fully
dynamic trees with top trees ACM Transactions on Algorithms, 1(2): 243-264, (2005).

10

