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1 Overview

So far, in the algorithms and data structures we have looked at, we assumed a RAM model where
accessing any location takes a constant amount of time. However, in real computers, usually
there are more than one layer of memory, with varying access costs. In modern computers, the
CPU operates on values in its registers. These values are fetched from the main memory, usually
through several layers of caches. The main memory may not have enough space to store large
files. Therefore, such files are stored on a disk, and when necessary data is transferred from disk to
main memory. The main memory is the fastest but also the smallest. As we go along the layers of
memory while the available space increases the access speed goes down. Moreover, it takes about
as long to fetch a consecutive kilobyte from a disk as it does to fetch a single byte, since most of
the cost is time for the disk to find the right location. Therefore, we transfer a full block of data
at a time from the slower memory layers. We also need to device algorithms and data structures
that exploit the fact that contiguous data can be accessed at one go, arranging the data in the
memory such that those which are usually accessed together are placed in the same blocks, thereby
minimizing the number of blocks that need to be accessed. In this lecture we will look at two
models of computation that take this memory hierarchy into account: the external-memory model
and its refinement, the cache-oblivious model.

2 External-Memory Model (EMM)

The external-memory model or the disk access model was defined by Aggarwal and Vitter [1]. In
this model, a CPU is connected directly to a fast cache of size M , which in turn is connected
to a much larger but slower disk. The block size in both the layers of memory is prespecified to
be B. The cache thus holds M

B blocks, while the disk can hold many more. Algorithms can do
memory transfer operations, ie, read a block from disk to cache, or write a block from cache to disk.
The cost of an algorithm is the number of memory transfer operations required. In this model,
operations executed on the data stored in the cache are considered to be for free. Notice that any
algorithm with a running time of T (N) in the cell probe model can be trivially converted into an
EMM algorithm that requires no more than T (N) memory transfers. Ideally, in EMM, we would

like to achieve T (N)
B running time, but this optimum is often hard to achieve.

2.1 Basic Results in the EMM

1. Scanning : scanning N items costs O(
⌈
N
B

⌉
) memory transfers.

2. Searching : we use B-trees of O(B) branching to do efficient searches. We split the data
into consecutive parts of length N

B . The B endpoints of the parts are stores in the root node
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of the B-tree. The structure is then recursively built. Everytime a node is cached, we find
the useful range to which the searched item could belong and cache the corresponding child
node. Finally we can return an output once the entire current useful range lies in a single
block(node of B-tree). This takes O(logB+1N) time. In fact there is an information theoretic
argument that shows that this is the optimal bound for searching.

3. Sorting : For sorting, instead of a 2-way merge sort, we do a M
B -way merge sort. This has

running time O(NB logM
B

N
B ) memory transfers. This can be shown to be optimal [1].

3 Cache-Oblivious Model (COM)

In EMM, we assume that we known M and B from beforehand. But in reality, this is not a good
assumption. To deal with this the cache-oblivious model was introduces and explored by Frigo et.
al [2, 3].

3.1 Results in the COM

1. Scanning : again scanning takes O(
⌈
N
B

⌉
) memory transfers, no matter what the M and B

are.

2. Searching : This will be done using cache-oblivious B-trees to achieve a running time of
O(logB+1N) amortised [6, 7, 4].

3. Sorting : Aagin sorting N elements can be done cache-obliviously by O(NB logM
B

N
B ) memory

transfers [2, 5].

3.2 Cache-Oblivious B-tree

3.2.1 Static search trees : vEB layout

In the van Emde Boas layout, for simplicity we assume N to be a power of 2 [3]. The more general
case can also be analysed [6]. In the considered case , we first build a complete binary tree on N
vertices. The tree is then broken along half its height. The upper subtree is of height 1

2 log n and

is analogous to the Top structure of the vEB trees. This is linked to
√
N subtrees, each of height√

N . Each of these subtrees is again recursively broken up. When a recursion reaches a size less
than B then we can stop. On the disk, the upper subtree is stored first, followed by a sequential
layout of the lower subtrees.

The straddling level is the recursive level where we first come upon a tree where, on cutting into
half, we get the height of each subtree to be < logB. This also means that the height of each
subtree is > 1

2 logB. Thus, the size of each subtree is between B and
√
B and the number of

elements in this level is between B2 and B.

Claim : Performing a search on a vEB layout requires O(logB+1N) memory transfers.
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Proof : By the recursive structure, for any root to leaf search path we pass through at most logn
1
2
logB

subtrees of the straddling level. Each subtree of this level requires at most 2 memory transfers(as
worked out above). So the entire searchc requires O(4 logB+1N) memory transfers.

3.2.2 Dynamic search trees

Problem Ordered File Maintenance (OFM) : Involves storing N elements in an O(N) array in a
certain ordering. Constant sized gaps are thus allowed between elements. This data structure
supports INSERT between consecutive elements and DELETE. Each such operation may involve
an amortised moving of an array interval of O(log2N) elements. We will use this as a black box.

Given such an N element input , we build a static binary search tree over the OFM of size O(N),
where the key of a node in the complete binary tree is the maximum key of its subtrees. Now we
will look at the time for supporting the following operations:

1. SEARCH : By default we look at the key of the left child to find the potential subtree that
may contain the searched element as a leaf. So this takes O(logB+1N) memory transfers.

2. INSERT : First we use SEARCH to find the predecessor and successor of the searched element
X. Then we insert X in the OFM, which may need to change O(log2N) elements. Finally, we
need to make changes in the binary search tree built over the OFM to maintain the properties
of construction.

3. DELETE : We first SEARCH in the BST; DELETE the searched element from the OFM;
make necessary changes in the BST afterwards.

Claim : If the OFM changes k leaves, then updating the BST requires O( k
B + logB+1N) memory

transfers.

Proof : Consider the straddling level. Here again there are: 1) chunks of size ≤ B; and 2) chunks
of size > B. Type 2 chunks contain O(B2 + 1) type 1 chunks. We want to count the group of type
2 chunks spanning the k leaves that the OFM changes. As long as M ≥ 4B5 , the cost of updating
one type 2 chunk (equal to the cost of scanning it) is O( |type2|B ) memory transfers. Summing across

all the type 2 chunks, these bottom-most updates cost O( k
B ) memory transfers.

Suppose each type 2 chunk has size J . After the above series of updates for the chunks of the
straddling levels, each type 2 chunk has been reduced to one node. Now, the larger subtrees
composed of those type 2 chunks also have size J > B So there are O(J) = O(B) BST nodes
to traverse before the LCA of the k changed elements is reached. Above the LCA, there are
O(logB+1N) elements remaining on the k path to the root, each of which may require a memory
transfer. This gives us a total of O( k

B + logB+1N) memory transfers.

3.2.3 Indirection

We see that for OFMs this k is amortised O(log2N). We can remove the k
B from the memory

tranfer bound by using indirection, similar to constructions for y-fast tries.
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Again we group the elements into O( N
logN groups of size O(logN) elements each. Then we select

the set of minimums from each group and build an OFM for these elements. Then, the vEB-BST
over the OFM will be built over O( N

logN ) leaves. The vEB storage allows us to SEARCH the top
structure in O(logB+1N).

At most one lower group also has to be scanned, at cost O( logNB ). So the total search cost is
O(logB+1N) memory transfers. INSERT and DELETE will require us to change an entire group

at a time, but this costs O( logNB ) = O(logB N) memory transfers, which is okay. Once groups
become too small or too full can be merged or split by destroying or forming new groups. We
need Ω(logN) updates to cause a merge or split. The merge and split costs can be charged to the
updates, and their amortized cost becomes O(1). The minimum element only needs to be updated
when a merge or split occurs. So expensive updates to the vEB structure only occur every O(logN)

updates at cost O(
logB+1 N+ log2 N

B
logN ) = O( logNB ) = O(logB+1N). Thus all operations are supported

in O(logB+1N) time.
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