
Advanced Data Structures Jan-Apr 2012

Lecture 9 — 16 Feb, 2012

Lecturer: Venkatesh Raman Scribe: Sudeshna Kolay

1 Overview

In the last few lectures, we have looked at FKS Hashing and Cuckoo Hashing and various
operations that the two data structures support. However, if we want to find the predecessor or
the succesor of some number x, there is no efficient way of finding it by either of the above hashing
methods.

In this lecture, we look at data structures that efficiently support operators pred() and succ() along
with the usual membership, insertion and deletion operators.

2 The problem

Firstly, we fix the universe U of queries to [u], for some u ∈ N . Let S ⊆ U . S need not be
predetermined. We want to use the following functions:

1. membership(x): To check if x ∈ S.

2. insert(x): To insert x in the set S.

3. delete(x): To delete x from S.

4. pred(x) = max {y ∈ S|y ≤ x}
5. succ(x) = min {y ∈ S|y ≥ x}

Notice that if S was a static set then we could store the predecessor and successor of each x ∈ S
explicitly, so that look-up time for these operations would be O(1). However, if |S| = m, this would
require extra storage space of O(m log m) bits.

2.1 First attempt using binary trees

Consider the universe as a bit vector in {0, 1}u, where the positions corresponding to elements in
S are set to 1 and all other positions are set to 0. Then we build a complete binary tree on this
vector (Figure 1). The size of the binary tree is bounded by O(u) and therefore the height of the
tree is bounded by O(log u). Each internal node of the tree are set to the OR of its children.

1. membership(x) requires O(1) time - We can simply check in the bit vector.

2. insert(x) or delete(x) takes O(log u) time - First, in the bit vector we have to flip the bit at
the position corresponding to x. Then we have to reset the values of the internal nodes in
the x-to-root path.

1

0 1 0 0 1 0 1 0

1 0 1 1

1 1 1

1 1

1

U

Figure 1: Binary tree built over the bit representation of subset S in universe U

3. pred(x) or succ(x) takes O(log u) time - For pred(x) we move towards the root. If an internal
node is set to 1 but the child that is not on the x-to-root path is set to 0 then we continue
towards the root. If the non-path child is set to 1, then from the child we move along the
rightmost path where all internal nodes are set to 1. The leaf where this path ends is the
predecessor of x. We do something similar for succ(x). In the worst case, we could be
traversing the longest path in the binary tree, the length of which is bounded by O(log u).

If S is much smaller than U , then this data structure may not be efficient as we cannot bound the
running time of any of the operations in terms of the size of S.

We could use a
√

u-ary tree of height 2, constructed in the same way as the binary tree. This
makes the membership() and insert() operations constant time. We have to do a little more work
for delete(), since resetting the values of each internal nodes on the leaf-to-root path, therefore the
entire operation, may take as much as O(

√
u) time. For pred() or succ(), searching for a suitable

child at an internal node can also take as much as O(
√

u) time.

2.1.1 van Emde Boas Trees [1]

Here, we look at a data structure that supports all the desired operations in O(log log u) time.
Instead of representing S and U as a bit vector, we think of U as the set of all binary bit vectors
of length log u. Again, we can break up a bit vector x into the most significant (log u)/2 bits (or
high(x)) and the least significant (log u)/2 bits (or low(x)). The universe Top of all high(x), where
x ∈ U , is of size

√
u. For each vector v in Top, we can concatenate

√
u low vectors to get a vector

in U for each concatenation.

Using this idea we build a recursive structure (Figure 2). At each node, we store a set of high
vectors of a universe. At each high vector, we recursively store all low vectors associated with the
high vectors in a subset of the universe. At the node we store the minimum and maximum vectors
of the subset. Also, at each high node, we store the minimum and maximum of the subset of
vectors formed by concatenating the high vector with each of the low vectors of the universe stored
in the recursive structure below it. In case no low vectors are associated with a high node, then it
points to NULL, and the minimum and maximum are set to NIL. The low of the minimum vector

2

0 1 0 0 1 1 0 0

high low

(a)

high(2)

min max TOP

min,
max

min,
max

min,
max

high(1)

High(1) High(2)

(b)

high(l)

High(l)

Figure 2: (a)high and low of a vector; (b)van Emde Boas trees

is not stored again in the recursively structure below. This ensures that we can access a minimum
element in constant time.

For example, the root of this tree is the set of all high vectors of S ∈ U . For each high vector, we
recursively store the set of low vectors such that the concatenation of the high vector with each
low vector gives a vector in S. At the root, we store the minimum and maximum vector in S. For
a high vector h, let Sh = {v ∈ S|high(v) = h}. For each high vector h, we store the minimum and
maximum vectors in Sh. Given a structure T , we describe how to do the desired operations. We
denote by High(x) the recursive structure pointed at by high(x).

• membership(T , x) :
if x < T.minimum

then return NO;
if high.minimum = x

then return YES;
if high.minimum = NIL

then return NO;
else return membership(High(x), low(x))

• insert(T ,x) :
if x < T.minimum

then swap(x, minimum);
if high(x).minimum = NIL

then high(x) = x; return
if x < high(x).minimum

then swap(x, high.minimum)
insert(High(x),low(x))

• pred(T ,x) :
if T.minimum = x return NIL;
if High(x).minimum > x

then return pred(T ,high(x)).maximum

3

else return pred(High(x),low(x));

• succ(x) : Same as pred(x) after replacing pred by succ, minimum by maximum and “<” by “>”.

• delete(T ,x):
if T.minimum > x then return
if high(x).minimum = x and High(x) = NULL
then high(x).minimum = NIL; return
if high(x).minimum = x

then { y = succ(T ,x);
delete(High(x),low(y))
minimum = y;}

else delete(High(x),low(x));

Each operation makes one recursive call. So the time complexity of each operation can be calculated
as follows :

T (u) ≤ T (
√

u) + O(1)

.

Replacing u by 2t and writing the recursion in terms of t, this recursion solves to T (t) ≤ log t.
Therefore,

T (u) ≤ log log u

.

The space complexity, however, has the following recursion :

T (u) ≤ (
√

u + 1)T (
√

u) + O(
√

u)

This solves to O(u) cells.

2.2 y-Fast Tries [2]

y-Fast tries bring down the space to O(|S|) for a S ∈ U , while still performing all the required
operations in O(log log u) time. Let |S| = n.

To begin with, we describe a simpler structure that takes more space, but maintains the time
complexity of each operation. Again, we consider the elements as log u length binary vectors. For
each vector in S and each i ∈ [log u], we define Si = {v : |v| = i, ∃x ∈ S, x(i) = v}, where x(i)
represents the vector restricted to the most significant i positions .

For each Si we build a hash table Hi, using cuckoo hashing. We maintain a prefix tree for S. At
each node of the prefix tree we stor the minimum and maximum vectors in the subtree rooted at
the node. We also maintain a doubly linked list for the leaves of the prefix tree. Refer to Figure 3
for the representation of the structure.

Total number of prefixes in S is O(n log u). So, total space for the structure is also O(n log u).
• membership(x):

4

if Hlog u(x) is empty
then return NO
else return YES

0
0 1

10 1100

001 101 111

0010 1010 1011 1110

H(1)

H(2)

H(logu)

Binary Prefix Tree

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(a)

0
0 1

10 1100

001 101 111

H(1)

H(2)

H(logu)

Binary Prefix Tree

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

(min,
max)

r1,min,
max

r2,min,
max

r3,min,
max

r4,min,
max

RB Trees

(b)

Figure 3: (a) A binary prefix tree; A hash table is maintained for the set of nodes at every level;
The leaves (elements of S) are doubly linked. (b) A y-Fast trie where the leaves are representatives;
groups are attached as RB trees to representatives.

5

As |Hlog u| < log u, we can check for membership in log log u time by binary search in the
table.

• insert(x) or delete(x): Same as inserting or deleting in each of the hash tables. For each hash
table, deletion is O(1) and insertion is O(1) expected amortised. So total expected amortised
time is O(log u).

• succ(x) or pred(x): We do a nested binary search to find the longest common subsequence
with x. In the inner binary search we search for x(i) in hash table Hi, while in the outer binary
search we search for the longest common subsequence with x. On finding x(i) in Hi we go
to the corresponding node in the prefix tree and look at the minimum and maximum of that
node. If minimum(maximum) = x, then the predecessor(successor) has a shorter common se-
quence. So we search in the shorter prefix hash tables. Otherwise, the predecessor(successor)
has a longer common subsequence with x, and we search in the hash tables for the longer
subsequences. Once we get the longest common subsequence at node v, then x,if present,
should lie in the right(left) subtree of v then v → left.maximum (v → right.minimum) is
the predecessor(successor) of x. Once we find predecessor or successor, we can find the other
by using the doubly linked list. The size of each hash table is O(log log u) and so is the height
of the prefix tree. So these operations takes O(log log u) time.

In order to improve the space complexity we break up the set S into n/ log u groups according to
the ordering of U , each group being of size log u. Then we pick a representative from each of these
groups and form the hash tables and prefix tree on these representatives. Lastly, we build RB trees
out of the rest of the elements for every group and attach these trees to the leaves of the prefix tree
by pointers. We store the minimum and maximum vectors of each group at the respective leaves.
Total space for the whole data structure becomes O(n).

• membership(x): We find the representative of x by comparing x with the minimum and
maximum stored at the leaves. Then we search for x in the RB tree pointed at by the
representative. Finding the representative takes O(log u. log n) time while searching in the
RB tree takes O(log log u) time. So the total time is bounded by O(log log u).

• pred(x) or succ(x): Again we find the representative for the group that should contain x. In
the degenerate cases where x lies between the minimum(maximum) of one representative and
maximum(minimum) of the previous(next) representative then the predecessor(successor) of
x is the maximum(minimum) of the previous(next) representative. Otherwise, on finding the
representative, we search in the corresponding RB tree for the pred(x) or succ(x). Again
finding the representative and then searching in the RB tree takes O(log log u) in total.

• delete(x): We find x and if it is there then delete it. If x is the minimum, maximum or the
representative of a group we find the succ(x), pred(x) and any leaf vector of the RB tree and
update respective pointers for minimum, maximum or representative. If, on deletion of x,
the group becomes empty then we spend O(log u) deleting nodes on the x-to-root path that
are not used by any other representative. Note that this operation is done only after all log u
elements of a group is deleted. Therefore the amortised time for a deletion is O(log log u).

• insert(x): We find the group where x should belong and till the group becomes of size more
than (2 log u) we simply insert x in the RB tree for that group. If the size of the RB tree
exceeds (2 log u) then we split the group into 2 halves according to the ordering in U . Each

6

part has at most log u + 1 nodes. we keep the old representative for one of the parts and
fix a new representative for the other part. Now we need to insert the new representative
in the log u hash tables. Insertion into each hash table is O(1) expected amortised. So the
total time for introducing the new representative and the reshuffling is O(log u). But again
this only happens in every log u insertions to a group and so the amortised expected insertion
time is O(log log u).

Hence, y-Fast tries take linear space and log-logarithmic (amortised expected in some cases) time
per operation.

References

[1] Peter van Emde Boas: Preserving order in a forest in less than logarithmic time, Proceedings
of the 16th Annual Symposium on Foundations of Computer Science 10: 75-84, 1975.

[2] Dan E. Willard: Log-logarithmic worst-case range queries are possible in space (N), Informa-
tion Processing Letters (Elsevier) 17 (2): 81-84, 1983.

7

