
Advanced Data Structures Jan-Apr 2012

Lecture 7 - February 9, 2012

Lecturer: Venkatesh Raman Scribe: Ashutosh Rai

1 Overview

In the last lecture we talked about a geometric view of Binary Search Trees and saw how the
algorithmic problem of coming up with efficient Binary Search Trees corresponds to a combinatorial
problem.

In this lecture, we will try to look at Hashing techniques which will help us in supporting dictionary
operations in O(1) time.

2 Hash Functions

We know that balanced binary search trees can support dictionary operations in O(log n) time, and
we can’t do much better if we use the comparability model. But if we have some extra information
about the input, for example, if we know beforehand the range (the universe) from which the data
is coming, then can we do better? It seems that we can. For example, if we know that the universe
is U = {0, 1, 2, 3, ..., u− 1}, then we can have an array A of size u and then we can support each of
the dictionary operations in O(1) time by mapping each element i to A[i].

But the problem with this approach is that it takes space linear in the size of the universe, even
is the number of elements stored at any stage is very small. For addressing this, we define hash
functions.

2.1 Collisions

Let the universe U be {0, 1, 2, 3, ..., u − 1}, and let T be {0, 1, 2, 3, ..., t − 1}. We’ll call T a table.
Now, a hash function h is a function from U to T . Let S ⊆ U be the set of elements present at any
time in T . Let |S| = n.

Clearly, if t < n, for any hash function h, there exist x, y ∈ S such that h(x) = h(y). We call
this a collision. In case of collisions, we maintain a linked list for each location in T . Now, it is
easy to see that for every hash function h, there exists S ⊆ U such that the number of collisions is
min(n, u/t), which will result in bad worst case cost. To solve this, we make use of randomness.

2.2 Randomized hash Functions

Here, we choose a function h uniformly at random from set of all functions from U to T . We use
the function h to map the set S to T and perform the dictionary operations with it. In case of

1

collisions, we use the concept of linked lists as mentioned earlier. We are interested in the expected
size of the linked list, since that is what determines the cost. Now, Let x ∈ S. Clearly, the size of
the linked list at h(x) is |h−1(h(x))|. So, the expected length of the linked list at h(x)

E[|h−1(h(x))|] = 1 +
∑

y∈S,y 6=x

[h(y) = h(x)]

Now, we know that choosing a function uniformly at random from U to T is equivalent to choosing
uniformly at random an element of T for each element of U . Hence, for each y, such that y 6= x,
the probability that h(y) = i is 1/t. In particular, the probability that h(y) = h(x) is also 1/t. So,
we get

E[|h−1(h(x))|] = 1 +
∑

y∈S,y 6=x

1/t

= 1 + n/t

Now, if we choose t to be O(n), then we see that the expected size of the linked list for each location
in T becomes O(1), and hence the dictionary operations can be performed in O(1) expected time.

2.3 Randomness as resource

Pure randomness is hard to obtain so one should try to decrease the number of random bits
used. Now, for selecting a random function from U to T , the size of the set is tu and hence the
number of random bits needed is (u log t). But we observe that we didn’t make use of the complete
independence. Instead we looked at two elements from S and said that the probability that they
are going to be mapped to the same location in T is small. So, we make use of this fact, and define
2-Universal Hash Families as follows-

Definition 1 (2-Universal hash Family). A family F of functions from U to T is 2-Universal
if, for a uniformly chosen h from F

∀x, y ∈ U, x 6= y ⇒ Prob[h(x) = h(y)] ≤ 1/t

Clearly, such family exists (the set of all functions being such a family), but we are interested in
families which are small. One such family is-

F = {ha,b : a, b ∈ Zp, a 6= 0, p ≥ |U |} where ha,b(x) = ((ax + b) mod p) mod t

It is easy to verify that the above family is 2-Universal. Now, we look at the size of the hash family.
We see that a hash function is uniquely determined by a pair (a, b) such that a, b < p. Clearly, size
of the hash family is p2, so we need 2 log p (which is O(log u)) random bits to select a function from
this hash family, which is a significant reduction from O(u log t).

2

2.4 Use of small Hash Families in derandomization

The Max-Cut problem is known to be NP-complete, but approximation algorithms have been
known with constant factor approximation. One such randomized algorithm just partitions the
vertex set randomly into two parts (by assigning each of the vertices 0 or 1 u.a.r. and then putting
all vertices with same assignment in one set). So, for this algorithm-
Pr[A particular edge (i, j) goes across] = 1/2

So, by linearity of expectations, expected number of edges going across the cut
E[Number of edges going across] = m/2 ≤ OPT/2

So we achieve an expected constant factor approximation algorithm. We again observe that we just
need pairwise independence, so a 2-Universal family from V to {0, 1} does the job. Now, since the
expected number of edges going across is m/2, there must exist a function in F which achieves it.
So, for derandomizing, we apply each of the functions in F one by one and take the one with the
maximum cut size. We know that such a family exists with size O(|V |2), hence the given random-
ized algorithm can be derandomized in time O(|V |2) and the constant factor approximation can be
achieved deterministically.

3 FKS Algorithm

We’ve seen that the randomized hash functions can be used for getting expected constant time
to perform dictionary operations. But in some cases, we like to have worst case constant time to
perform such operations.

Let U be the universe, and let S ⊆ U , |S| = n be the set from which the dictionary operations are
going to get performed. FKS algorithm performs membership in O(1) worst case time and uses
O(n) space. It does so by giving a function h (depending on S) from U to T where |T | = O(n),
such that h is injecive on S.

To prove that, we first prove the following lemma-

Lemma 2. Let h is chosen uniformly at random from F which is a 2-Universal family. Then,
expected number of collisions of h on S is at most n(n− 1)/2t.

Proof. Clearly, E[No. of collisions of h onS] = E[|{(x, y) : x, y ∈S, x 6= y, h(x) = h(y)}|]

≤
(
n

2

)
/t

= n(n− 1)/2t

Corollary 3. If t = n2, there exists a function h ∈ F such that h is injective on S.

Proof. In that case, clearly, the expected number of collisions is < 1 so there must exist a function
which is injective.

3

Corollary 4. If t = n, there exists a function h ∈ F such that∑
0≤i<n

b2i ≤ 2n− 1

where bi = h−1(i) ∩ S

Proof. From the lemma, the expected number of collisions is this case is at most (n− 1)/2. Also,
we observe that if there is a bucket (linked list) of size bi, then

(
bi
2

)
collisions are happening there.

Hence, the expected number of collisions,

E[#collisions] =
∑

0≤i<n

(
bi
2

)
Hence, we get, ∑

0≤i<n

(
bi
2

)
≤ (n− 1)/2

∑
0≤i<n

b2i − bi ≤ n− 1

∑
0≤i<n

b2i ≤ 2n− 1

Hence, the function which has (n − 1)/2 (the expected number) or less collisions achieves the
above.

Now, let h′ be the function obtained by applying Corollary 4 on S, and hi’s be functions in F
which are injective from Bi = (h′)−1(i) ∩ S to {0, 2, ..., |Bi|2 − 1} given by Corollary 3. We define
the desired function h as-

h(x) =
∑
0≤l<i

b2l + hi(x)

where i = h′(x).

It is easy to see that h is injective since each of the hi’s is injective.

To implement it, we take a table T and store h′ at index 0, h0 at index 1, h1 at index 2 and so on
till hn−1, then we store the values of

∑
0≤j<i b

2
j ’s on the next n entries (0 ≤ i < n). Lastly, we keep

b2i spaces for the elements in (h′)−1(i) for each 0 ≤ i < n. (Diagram required)

For testing membership of x ∈ S, we first evaluate h′(x). Let h′(x) = i. Then we go to the
entry corresponding to hi and evaluate hi(x). After this, we just add up the places we need to
skip (summation of bi’s, which is already stored) and then we add the value of hi(x) to get to the
desired place. Asuuming that the hash function evaluation takes O(1) time, the whole process can
be done in O(1) time (after we have done the preprocessing, ie, we have arrived at the right set of

4

hash functions).

To analyze the space complexity, we see that for storing hi’s and summation of bi’s we need 2n
cells. Then we need

∑
0≤i<n b

2
i cells to store the data, which is at most 2n− 1 by corollary 4. Also,

we need a cell to store h′. Hence, the total number of cells needed is at most 2n+ 2n− 1 + 1 or 4n
which is O(n). This concludes the description of the FKS algorithm, modulo the time required for
preprocessing, which will be discussed in next lecture.

4 Space Reduction for FKS

We know that h′ and all the hi’s come from a 2-Universal Hash Family, and as said earlier, such
a family of size O(un) exists, which is given by a prime p = O(u). So, each of the functions take
2 log u bits and storing (n+ 1) functions take O(n log u) bits. Also, we see that each of the b2i ≤ n2,
so storing n such bi’s take O(n log n) bits. Also, the numbers in the table take (log u) bits each.
So, the total space requirement for the table is O(n log u + n log n).

4.1 Universe Reduction

In general, the universe can be huge, so we don’t want a large dependence on u. For that, we define
the following-

Definition 5. Let S = {x1, x2, ..., xn}

N =
∏
i 6=j

(xi − xj)

Clearly, N < u(n2) or N < un
2
.

Claim 6. There exists a prime p such that p ≤ logN and p does not divide N .

The claim can be proved using number theoretic thechniques. Let p be such a prime. We define
S′ = {x1 mod p, x2 mod p, ..., xn mod p}. We see that all the elements in S′ are distinct, since p
does not divide any of xi − xj) where xi, xj ∈ S.

Now, we use the mapping f(x) = (x mod p) and get U ′ = f(U). Clearly, p = O(n2 log u)
and x < p, ∀x ∈ U ′. We take U ′ as the new universe and perform FKS. For storing f , we
just store the prime, which takes (log n + log log u) bits. So, we get the space requirements as
O(n log(n2 log u) + n log n + log n + log log u) which is O(n log n + n log log u) bits.

We try to reduce the universe even further, by applying another hash function, say h0 which maps
U ′ to {0, 1, 2, ..., n2} with no collisions on S (guaranteed by Corollary 3). Again, such a function
will take (2 log |U ′|) bits which is O(log n + log log u) bits. Then we perform the FKS algorithm
taking the universe to be U ′′ = h0(S

′) such that |U ′′| = n2. Now, we need to store the prime p (for
function f) whic takes space (log n+ log log u), the function h0 which takes O(log n+ log log u) and

5

h′, hi’s which take space O(n log n). So, all the information about hash functions can be stored
in space O(n log n + log log u), and the table having indices and the actual elements also takes
O(n log n) space. So, the total space needed is O(log log u + n log n).

4.2 Lower Bounds and Further Work

Schmidt and Siegel [2] proved that any hash function supporting O(1) worst case membership
operation must take (n + log log u) bits. In the same paper, they also give hash functions which
take O(n + log log u) space and hence are tight to within a constant factor of the lower bound.

References

[1] M. Fredman, J. Komlós, E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access
Time, Journal of the ACM, 31(3):538-544, 1984.

6

