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1 Overview

In this lecture we will look at a data structure for dynamic graphs, that will efficiently support
desired operations like deleting or adding edges.

2 Main Section

When we say dynamic graphs we want to maintain a forest of vertex disjoint rooted trees at all
times. Since each tree is rooted, we can define the depth of each node in the current forest. In each
tree every node except the root has a unique parent and all edges are directed towards the root.
Let the number of vertices in the graph be n.

On such graphs we want to efficiently support operations like the following;:

1. findRoot(x ), which finds the root of the tree to which the argument = of the function belongs

2. link(x,y), which, when z is the root of a tree and = and y belong to distinct trees, adds the
directed edge (z,y)

3. cut(z), which deletes the edge (x,parent(x)) from the tree to which z currently belongs

4. makeTree(x) makes a tree out of the singleton node z.

Note that given a singleton z, makeTree(x) takes constant time. We will maintain an array of
nodes of the graph, with each node pointing to its copy in the forest. This enables us to access a
node x in constant time.

2.1 First attempt

Suppose for each node x in the array we also store the parent(x). Then both link(x,y) and cut(x)
operations take constant time:

1. link(z,y) assumes that x is a root. So it will simply reset the parent(x) to y.

2. cut(x) will reset parent(x) to x itself.

However, findRoot(xz) could take as much as O(n) time.



2.1.1 Link-cut Trees

Link-cut trees were first introduced by Sleator and Tarjan [1] [2]. This data structure supports the
above operations in O(logn) amortised time.

Like tango trees (Lecture 4), link-cut trees also decompose each tree of the forest into a collection of
vertex disjoint paths, called preferred paths. Each of these preferred paths are stored as auxiliary
trees.

Definition : The i** child of node z is a preferred child of x if the latest access in the subtree
rooted at x is in the subtree rooted at the i** child. If there was no access in the subtree of x or
the access was z itself then we set the preferred child of z to NIL. The edge between z and its
preferred child is called a preferred edge.

Definition : A preferred path from a node z is the path traced out by the preferred children at
each node.

Thus, we can decompose each tree of the forest by constructing preferred paths from the nodes in
increasing height order. The auxiliary trees in which we represent the preferred paths are splay
trees, where the key for each node is its depth in the rooted tree it belongs to.

Definition : A pathParent of a preferred path is the parent of the node of lowest depth in the
preferred path.

The pathParent of a preferred path is stored in the root of the corresponding auxilliary tree. If a
root is contained in the preferred path the pathParent is NIL.

Now we look at a function access() which is going to be the building block for all the desired
operations. Notice that once the node z is accessed then the path from x to root becomes the
preferred path. If x was already contained in the preferred path containing the root then the part
of the path below z has to be cut out. Otherwise the preferred path from the root has to be changed
to the path from root to x.

access(x ):

Splay at x,ie  becomes root. All nodes with higher depth is in the right subtree, with
lower depth in the left subtree

Remove preferred child of x:

pathParent(right(z)) = =

parent(right(x)) = right(z)

right(z) = NIL

while (z is not a root) :
Splay at pathParent (z).
pathParent(right(pathParent(z))) = pathParent(z)
parent(right(pathParent(z))) = right(pathParent(z))
right(pathParent(x)) = x.

parent(x) = pathParent(x)
pathParent(z) = NIL

Finally we can splay at x so that it is the root at the end of access.



In terms of access the rest of the operations can be defined:

1. findRoot(x):

access(x ); This brings x to the same auxilliary splay tree as its root.
find leftmost leaf of the auxilliary splay tree. This is the root.
Splay at the root.

2. cut(x): We need to disconnect x from its parent. The preferred path from x could be
decomposed as singleton x and the preferred path below x, with z as its pathParent.

access(x ); in the end z is the root with an empty right subtree
The left subtree of  has to be disconnected:
pathParent(left(x)) = pathParent(x) parent(left(x)) = left(z)
pathParent(z) = NIL

parent(x) = x

3. link(x,y):

access(x ); As x was a root access makes it a singleton node
access(y); In the end y is the root with an empty right subtree
right(y) = x

parent(z) =y

pathParent(z) = NIL

2.1.2 Analysis for O(log>n) amortised time

In all the operations we have to find the time taken for access(). Other than that all other operations
take O(logn) time. Total time by access() is the time taken by each splaying times the number of
splays required in the while loop. The time taken for a splay is O(logn) amortised. The number
of splays required is the number of times a node changes to a preferred child, or the edge to its
parent changed into a preferred edge.

Definition : A node z is heavy if size(x) > L size(parent(z)) in the forest representation.
Definition : An edge (z,y) is heavy if = is a heavy child of y. Otherwise the edge is light.

The number of light edges in a path from the root has to be at most logn, as at each light edge we
reduce the subtree by more than half. So the number of light edges that become preferred edges is
bounded by logn.

The number of heavy edges that become preferred edges is at most the sum of the number of heavy
edges that become unpreferred and the total number of edges in the tree of the forest. This is
because in the end all the edges of the tree in the forest could become heavy and preferred. Also
if a heavy edge becomes preferred twice then it has to be unpreferred in between. So the total
number of heavy edges that became preferred is bounded by mlogn+ (n — 1), where m is the total
number of accesses. Hence, the amortised number of heavy edges changing to preferred edges per
access is O(logn).



From the above the amortised time of O(log? n) per operation follows.

2.1.3 Analysis for O(logn) amortised time

Now we pay more attention to the cost of splaying when a node changes to a preferred child.
Cost of splaying at x < 3(log size(y) — log size(z)) + 1 Here y is the root of the auxilliary tree where
x belongs. Let z be the pathParent(y).

Then size(x) < size(y) < size(z). (Lecture 3)

Now we add the equations for the cost of splaying at each node that changes into a preferred child
till we reach r, the root in the forest representation. This is a telescoping sum. Let p be the number
of nodes changed to preferred child.

Total cost of splaying for an access < 3(log size(r) — log size(x)) + O(p)
size(r) < logn.

Therefore, the total cost of splaying per access works out to be O(logn).
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