
Advanced Data Structures Jan-Apr 2012

Lecture 11 February 24 2012

Lecturer: Abhishek Dang Scribe: Anudhyan Boral and Arjun Arul

1 The Predecessor Problem

We are given a universe U of size 2m and subset S ⊂ U , |S| = n. For x ∈ U , define the following
functions:

Definition 1. predS(x) = max{y ∈ S|y ≤ x}.

Definition 2. rankS(x) = |{y ∈ S|y ≤ x}|.

Definition 3.
⊕

rankS(x) = |{y ∈ S|y ≤ x}| mod 2.

Now given S, we wish to answer queries on S. The preprocessing algorithm should store information
about S in an appropriate way so that given any x ∈ U , we can find fS(x) efficiently, where f could
be one of the above functions.

Definition 4. A randomized (s, w, t)ε storage scheme for fS(x) consists of

• a deterministic storage algorithm which takes as input S ⊂ U and outputs a data structure T
with s cells, each cell w bits long.

• a randomized query algorithm which, on input x ∈ U , probes at most t cells in T , and outputs
fS(x) correctly with probability at least (1− ε).

All these functions depend on S; henceforth we drop the subscript S in predS , rankS and
⊕

rankS
for convenience. Some departured from last time: we use m for the bit size of an element in the
universe. We do not assume that the cell-word-size is m but allow an independent parameter w.

We have seen an (O(n),O(m),O(1)) deterministic scheme for the dictionary problem using FKS
hashing. We also saw an (O(mn),O(m),O(logm)) deterministic scheme for the predecessor prob-
lem, using X-tries and the dictionary solution. We also stated without proof that there is an

(O(mn),O(m),min
[
O(logm

log logm),O(
√

logn
log logn)

]
) deterministic scheme for the predecessor problem.

In this lecture we will show that the upper bound is almost tight.

Theorem 5. For s ∈ poly(n), w ∈ poly(m), if there is an (s, w, t)ε randomized scheme for the

predecessor problem, then t ∈ Ω
[

logm
log logm ,

√
logn

log logn

]
.

We will actually prove the theorem for the
⊕

rank function. Then we will make use of the following
observation:

1

Observation 6. If there is an (s, w, t)ε scheme for pred(x), then there is an (s + O(n), w +
O(m), t + O(1))ε scheme for rank(x). This is because for each y ∈ S, if y is the predecessor
of x, then rank(x) = rank(y). So given x we first find pred(x), and then query a dictionary to find
rank(pred(x)). And for each y ∈ S, we can use the FKS scheme for the dictionary problem to store
rank(y). Similarly, under this hypothesis,

⊕
rank(x) also has an (x+O(n), w +O(m), t+O(1))ε

scheme.

Let (m,n) denote the size of the universe |U | = 2m and the size of the subset |S| = n. We carry
these parameters as subscripts with the function.

To actually prove the theorem for the
⊕

rankm,n function, we will consider the communicatoin game
associated with

⊕
rankm,n. Alice has an element x ∈ U , with x = (x1, . . . , xm), each xi ∈ 0, 1. Bob

has the subset S = y1, . . . , yn ⊂ U . They wish to determine
⊕

rankm,n(x) with respect to S.

Now, given a (2a, b, t)ε scheme for
⊕

rankm,n, there is a protocol for the communication game which
satisfies the following,

• Messages from Alice to Bob are a bits long.

• Messages from Bob to Alice are b bits long.

• Alice begins, and there are 2t rounds.

• The protocol errs with probablity at most ε.

The protocol is simple. Bob runs the preprocessing algorithm and constructs the data structure T .
Alice runs the query algorithm. Whenever she needs to probe a cell, she sends the ccell number to
Bob, who responds with the contents of that cell in T . The randomness can be private or public,
it is required only by Alice, while running the query algorithm.

We call any protocol with these properties a (2a, b, t)A(ε,m,n) protocol for
⊕

rankm,n. A (2a, b, t)B(ε,m,n)

protocol for
⊕

rankm,n is a similar (2t − 1)-round protocol where Bob begins the communication.
Note that a protocol for (m,n) is also a protocol for (m′, n) for every m′ ≤ m.

The lower bound proof proceeds as follows. Suppose we have a (2t, a, b)Aε protocol for
⊕

rankm,n.
Using round elimination we will then show that: (2t, a, b)Aε protocol for

⊕
rankm,n =⇒ (2t −

1, a, b)Bε+frac112t protocol for
⊕

rankm
k
,n [eliminate Alice’s first message; still OK for slightly smaller

universe] =⇒ (2t−2, a, b)Aε+frac16t protocol for
⊕

rankm
k
−log l,n

l
[eliminate Bob’s first message; still

OK for slightly smaller set]

We will show that for c1 = 72 ln 2, k = c1at
2, and l = c1bt

2, each round elimination adds no more
that 1/6t to the error.

Consider the following parameters: m is any given value. Choose n = 2log2m/ log logm. Set c1 =
72 ln 2, and let c2, c3 be any constants greater than 1. Choose a = c2 log n, b = mc3 .

Let t = logm
(c1+c2+c3) log logm . Choose k = c1at

2, l = c1bt
2. With these parameters, we can verify that:

• m
k − log l ≥ m

2k .

• m′ = m
(2k)t ∈ m

Ω(1).

2

• n′ = n
lt ∈ n

Ω(1).

Then, if we repeat round elimination t times, we obtain a (0, a, b)ε+ 1
6

protocol for
⊕

rankm′,n′ for

non-trivial m′, n′. For ε < 1
3 , we get a zero round protocol with error less than 1

2 . But this means
that with no information whatsoever about the set S (since there is no communication between
Alice and Bob), Alice can guess

⊕
rank(x) and be right with probability greater than 1/2, which

is a contradiction.

We now proceed to prove the round elimination theorem. Assume that the constants are chosen
as above. Suppose P is a (2t, a, b)Aε protocol for

⊕
rankm,n. We will convert P into a (2t −

2, a, b)Aε+frac16t for
⊕

rankm
k
−log l,n

l
.

1.1 Round Elimination: Eliminating Alice’s message

We will first convert P into a (2t− 1, a, b)Bε+frac112t protocol Q for
⊕

rankm
k
,n. To do so we will use

the randomized version of Yao’s lemma which states, Rε(f) = maxµD
µ
ε (f) where the protocols Dµ

ε

are randomized. We will show that for any distribution µ over (x, S), there is a (2t − 1, a, b)B
ε+ 1

12t

protocol Q that solves
⊕

rankm
k
−log l,n

l
well when the inputs are distributed according to µ. Recall

that P works well for all distributions; in particular, it works well for (m,n) distributions that
somehow extend µ.

Choose any distribution µ over (x, S) where |U | = 2
m
k and |S| = n. We first design a protocol

(2t, a, b)Aε protocol Q′ for
⊕

rankm
k
,n with respect to µ. Then we adapt Q′ to obtain Q.

1.1.1 The Protocol Q

Consider a run of the protocol P . Let Alice’s input be x′ = x1, . . . , xk where x′ is broken up intp
blocks of length m/k, and each block xi is drawn according to µ. Let M be the first message that
Alice sends in the protocol P while using randomness R.

I(x′ : MR) = I(x′ : R) + I(x′ : M |R)

≤ 0 +H(M |R)

≤ H(M)

≤ |M | = a

Therefore,

a ≥ I(x1, . . . , xk : MR)

= I(x1 : MR) + I(x2 : MR|x1) + . . .+ I(xk : MR|x1, . . . , xk−1)

3

Therefore. there is a block numbered i ∈ [k] such that

I(xi : MR|x1, . . . , xi−1) ≤ a

k

That is, the first message from Alice and the public randomness together give Bob very little
information about the ith block, even if Bob knows the strings in all the preceding blocks. Fix such
an i. By definition,

Ex1=u1,...,xi−1=ui−1 [I(xi : MR|x1 = u1, . . . , xi−1 = ui−1)] ≤ a

k

So ∃u1, . . . , ui−1[I(xi : MR|x1 = u1, . . . , xi−1 = ui−1) ≤ a
k

Fix these u1, . . . , ui−1.

Now we start designing Q′. Alice gets x ∈ U = 2
m
k and Bob gets a set S ⊂ U of size n, where

(x, S) are drawn according to µ. To run P , they must extend their inputs to look like inputs to P .
The idea is to embed x and S into the ith block of suitable chosen longer strings, so as to make
the first message almost irrelevant.

Bob extends his set by prefixing each element of S with u1 . . . ui−1 with suffixing it with zeroes.
That is, he constructs the set S′ = u1 . . . ui−1y0(k−1)m

k |y ∈ S.

Alice constructs the element x′ by prefixing x with u1 . . . ui−1 and suffixing it with k − i blocks
each chosen according to µ using private randomness. Thus x′ = u1 . . . ui−1xxi+1 . . . xk, where
xi+1, . . . , xk are drawn according to µ.

Observe that
⊕

rankm
k
,n(x, S) =

⊕
rankm,n(x′, S′). So Alice and Bob can now run the protocol P

to determine
⊕

rankm
k
,n(x, S). This is the (2t, a, b)Aε protocol Q′ for

⊕
rankm

k
,n.

1.2 The Protocol Q

Observe that because of the way we constructed the protocol Q′, the first message M sent by Alice
to Bob contains very little information about x, i.e. I(x : MR) ≤ a

k . Since M contains so little
information about x, Bob might as well replace it with an ”average” message. This will introduce
some additional error, but we can keep this within bounds using the following:

Theorem 7. (Average Encoding Theorem) Let X,Y be correlated random variables with joint
distribution rx,y. Let F be the marginal distribution of Y . For any x, let F x denote the distribution
of Y conditioned of the event X = x. Then,

∑
x

Pr[X = x]‖F x − F‖1 ≤
√

2 ln(2)I(X : Y)

Proof. Consider the definitions of these quantities:

F (y) =
∑
x′

rx′,y; F x(y) =
rx,y∑
y′ rx,y′

; Pr(X = x) =
∑
y′

rx′,y

4

Define the following distributions on XY :

P (x, y) = Pr[X = x]F x(y) Q(x, y) = Pr[X = x]F (y)

The first distribution P is exactly the joint distribution rx,y. The second distribution Q is a product
distribution: imagine independent random variables X ′, Y ′ distributed according to the marginals,
and consider their joint distribution. Therefore,

LHS in Theorem = ‖P −Q‖1 ≤
√

(2 ln(2))D(P‖Q) =
√

2 ln(2)I(X : Y)

Here, D(P‖Q) is the relative entropy or Kullback-Leibler distance between P and Q. This gives
the inequality above.

Now we define the (2t − 1, a, b) protocol Q for
⊕

rankm
k
,n, where (x, S) are drawn according to

distribution µ.

Alice gets a string x of mk bits. Bob gets a set S of size n. Bob constructs S′ = {u1 . . . ui−1y0(k−1)m
k |y ∈

S}. Bob then uses public randomness R to construct the ”average” message. That is, using public
randomness he samples Ui, . . . , Uk according to µ, and then simulates the protocol P to generate the
first message Alice would have sent if her input were u1 . . . ui−1Ui . . . Uk. We call this the ”average”
message M ′.

Observe that Alice also knows M ′, because Bob uses public randomness R. Now Alice does a ”re-
verse engineering” of M ′. Using private randomness, she samples Vi+1, . . . , Vk according to µ, con-
ditioned on the message being M ′ and Vi being x. She then constructs x′ = u1 . . . ui−1xVi+1 . . . Vk.
This ensures that Alice and Bob now have ”consistent” states with input x, S and first message
M ′, and Bob still has very little information about x.

Now Alice and Bob proceed using the protocol Q′ (which itself used P) from the second message
onwards.

1.3 Calculating the Error

Assume Alices input is x. Consider the following distributions on the set of first messages that
can be be sent by Alice. Let F x be the distribution in protocol Q′ , when Alice has input x and
F be the distribution in protocol Q where Bob samples an average first message. By the Average
Encoding Theorem, ∑

x

Pr[X = x]‖F x − F‖1 ≤
√

2ln(2)I(X : MR)

≤
√

(2ln(2)
a

k

5

Pr[Q errors] = Pr[Q errors|M = M ′] ∗ Pr[M = M ′] + Pr[Q errors|M 6= M ′] ∗ Pr[M 6= M ′]

≤ Pr[Q errors] + Pr[M 6= M ′]

≤ ε+
∑
x

Pr[X = x]Pr[M 6= M ′|X = x]

≤ ε+
∑
x

Pr[X = x]
1

2
‖F x − F‖1

≤ ε+
1

2

√
2ln(2)

a

k

For a suitable choice of k such as 72ln(2)at2, we will get the error to be less than ε+ 1
12t .

1.4 Eliminating Bob’s Message

We have a (2t− 1, a, b)Bδ protocol for
⊕
rankM,N , where M = m

k and N = n. Following a similar
strategy as above, we will convert P into a (2t− 2, a, b)B

δ+ 1
12t

protocol Q for
⊕
rankM−log(l),N

l
.

Choose a distribution µ on (x, S) where x ∈ 2M−log(l) and |S| = N
l . Now let Bobs input in protocol

P be S = [1].S1 ∪ · · · ∪ [l].Sl, where the Si are chosen according to µ, [i] is the representation of i
using log(l) bits and [i].Si = {[i], y|y ∈ Si}. Let M be the first message that Bob sends in protocol
P while using randomness R. Then,

b ≥ I(S : MR) =
∑
x

I(Si : MR|S1, . . . , Si−1)

So ∃i such that I(Si : MR|S1 . . . Si1) ≤ b
k . Fix such an i. By definition,

b

k
≥ ES1=si...Si−1=si−1I[Si : MR|S1 = s1, . . . , Si−1 = si−1]

So, ∃s1, . . . , si1 such that I(Si : MR|S1 = s1, . . . , Si1 = si1) ≤ b
k . Fix these sets s1, . . . , si1.

Now the (2t1, a, b)Bδ protocol Q′ for
⊕
rankM−log(l),N

l
is as follows. Bob and Alice embed their

inputs into inputs suitable for protocol P .
Bob gets a set S of size N

l . Bob draws sets Si+1, . . . , Sl according to µ using public randomness,
and constructs S′ = [1].s1 ∪ · · · ∪ [i1].si1 ∪ [i].S ∪ [i+ 1].Si+1 ∪ · · · ∪ [l].Sl.
Alice gets a string x of length M − log(l). Alice constructs the string x′ = [i]x.
Now observe that

⊕
rankS′(x

′) =
⊕
rankS(x). Therefore Alice and Bob run the protocol P on

(x′, S′). This is the protocol Q′ for
⊕
rankM−log(l),N

l
.

In this protocol, Alice knows the sets s1, . . . , si1 since they are fixed. By choice of the index i and
these sets, knowing this and after getting the first message from Bob, she still has very little (at
most b

k) information about S. So if the first message is dispensed with and replaced with an average
message, the error wont increase much. This gives the protocol Q: As before, Alice will sample
the average first message M ′ with public randomness, and Bob will reverse engineer the process to
sample Si+1, . . . Sl conditioned on M ′ and S.
To bound the error, as before, use the Average Encoding Theorem. For a suitable choice of l (at
least 72(ln(2))bt2), we will get the error to be less than δ + 1

12t .

6

