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Thermodynamics

Thermodynamics is a funny subject. The first time you go through it, you don't 
understand it at all. The second time you go through it, you think you 
understand it, except for one or two small points. The third time you go through 
it, you know you don't understand it, but by that time you are so used to it, it 
doesn't bother you anymore.

— Arnold Sommerfeld



Heat bath at temperature T

Work done, W



First law: W = �V +Q = �V + T�S

Work done increases the internal energy of the system, or is dissipated as 
heat in the medium Q = T�Sm

Second  law: �S
tot

= �S +�S
m

� 0

Wdiss ⌘ W ��F � 0

W � �V � T�Sm ⌘ �F

Heat bath at temperature T

Work done, W



Fluctuation theorems



Thermal fluctuations

The role of thermal fluctuations are 
important for small systems of energy 
scale 1-100 kBT

Since the force is fluctuating: W, Q, V 
will also fluctuate and we will need to 
determine their probability distributions

Stochastic thermodynamics deals with 
extending concepts from classical 
thermodynamics to fluctuating 
trajectories

Bustamante et al Physics Today 2005

Examples include Brownian motion of colloidal particles in 
external potentials. Molecular machines also operate at several 
kBT. ATP hydrolysis is around 10-20 kBT



Control parameter

http://maillardlab.org/optical-tweezers/



Optical Tweezers

Dholakia, Reece, and Gu, Chem Soc Rev 2007



Fluctuation theorems
Fluctuations theorems describe the behaviour of trajectories under 
“time-reversal” and give the universal properties of the probability 
distribution p(Ω) and p(-Ω) as a function Ω.

A typical relation is of the type

p(�⌦)

p(⌦)
= e�⌦

Loschmidt’s paradox (1876): objection to the statement of second law 
that entropy always increases. As microscopic laws are time-reversal 
invariant, Trajectories with decreasing entropy must also be possible. 

The fluctuation theorem for entropy explains that such trajectories do 
exist but become extremely rare for large system sizes. 



The Jarzynski relation 

hexp(��w)i = exp(���F)

hexp(��wdiss)i = 1

                                 is the change in free energy to take the system 
from an initial equilibrium state to some final value. The average 
indicates infinite number of nonequilibrium experiments. Thus, for a 
macroscopic system, the dissipated work is positive but trajectories are 
allowed where dissipated work is negative! Those trajectories have 
been called to be transient violations of the second law. It provides a 
way to find free energy difference. 

�F = F(�t)� F(�0) is the change in free energy

� =
1

kBT

In 1997, Jarzynski derived that

Jarzynski, PRL 1997



Crooks fluctuation theorem

p̃(�w)

p(w)
= exp(��(w ��F))

Crooks in 1999, generalized Jarzynski relation. He showed that the 
ration of probability of work distribution along the forward and the 
backward path is given as

Just like the Jarzynski relation: initial state is at equilibrium while the 
final state is a non-equilibrium state in both forward and reverse path.

The Jarzynski  relation follows from the above as the probabilities are 
normalized. Averaging over all the possible states, we get Jarzynski 
relation from the above.

Crooks, PRE 1999



Experimental verification of Jarzynski relation

Liphardt et al Science 2002



Dynamics
The starting point in nonequilibrium statistical physics is dynamics. This 
is in contrast to equilibrium where energy plays this role. There exist  
equivalent but complementary descriptions of stochastic dynamics:

F is a systematic force and thermal noise has zero mean and
h⇣(⌧)⇣(⌧ 0)i = 2kBTµ�(⌧ � ⌧ 0)

Fokker-Planck eq: @
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Langevin description: ẋ = µF (x,�) + ⇣,



First law at single trajectory level
The first law can be identified from the Langevin equation as

dw = dV + dq

dw =
@V

@�

�̇d⌧ + fdx

Work done at fixed particle position

Contributions from non-conservative force

Integration of the above form gives the first law at trajectory level

w(x(⌧)) = q(x(⌧)) +�V

w(x(⌧)) =

Z t

0

✓
@V

@@

�̇+ fẋ

◆
d⌧, q(x(⌧)) =

Z t

0
Fẋd⌧

Using above equations, heat dissipated is obtained as

dq = dw � dV = Fdx = Tdsm



Thermodynamics of a colloidal particle 

Blickle, Speck, Helden, Seifer and Bechinger PRL 2006

Charged colloid is repulsed by a wall and is pushed periodically 
towards it by a laser trap

The energy, work and heat was measured from the particle trajectory

They should sum to zero but histogram shows error of the order kBT.

The work distribution is non-Gaussian: drive is beyond linear 
response. Red curve is theory.



Path integral representation

�̃(⌧) ⌘ �(t� ⌧), x̃(⌧) ⌘ x(t� ⌧) �̃(⌧) ⌘ �(t� ⌧), x̃(⌧) ⌘ x(t� ⌧)

time reversal protocol

P (⇣) ⇠ exp[�
Z t

0
dt ⇣2/4D]

P (x(⌧)|x0) ⇠ exp[�
Z t

0
dt (ẋ� µF )

2
/4D]

= exp[�
Z t

0
dt ẋF ] = exp�sm

p(x(⌧)|x0)

p̃(x̃(⌧)|x̃0)
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exp[�
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Detailed fluctuation theorem

Seifert PRL 2005

1 =
X

x̃(⌧),x̃0

p̃(x̃(⌧)|x̃0)p1(x̃0)

=
X

x̃(⌧),x̃0

p(x(⌧)|x0)p0(x0)
p̃(x̃(⌧)|x̃0)p1(x̃0)

p(x(⌧)|x0)p0(x0)

= hexp[��sm] p1(xt)/p0i

The above can be rewritten as

hexp[�(w ��V )/T ] p1(xt)/p0i = 1



Derivation of Jarzynski relation
From the generalized fluctuation relation we have

hexp[�(w ��V )/T ] p1(xt)/p0i = 1

Consider a initial equilibrium distribution of the form

p0 = exp[�(V (x0,�0)� F(�0))]

Use the free choice for the last term to complete the derivation

p1(xt) = exp[�(V (xt,�t)� F(�t))]

Seifert Rev Prog Phy 2012



Heat engines



https://www.shmoop.com/thermodynamics/carnot-cycle.html

The Carnot engine

E�ciency, ⌘C =
W

QH
= 1� Tc

Th

Carnot (1824) showed that the  most 
efficient cycle for a heat engine. But it 
has a zero power as the process is 
quasi-static, infinitely slow operation.

Curzon and Ahlborn (1975) showed 
the efficiency at maximum power is

⌘⇤ = 1�
r

Tc

Th

Here, a constant time ratio between the 
adiabatic and isothermal steps is taken.



The Stirling engine

Efficiency of Stirling’s engines is same as the Carnot’s engine.

Blickle and Bechinger Nat Phy 2011



Micrometer sized heat engine

Blickle and Bechinger, Nat Phy 2011



Micrometer sized heat engine in Bacterial bath

Krishnamurthy, Ghosh, Chatterji, Ganapathy and Sood, Nat Phy 2016 



Fluctuations are crucial for small systems

Fluctuation theorems: analytical relations for non-equilibrium system

Stochastic thermodynamics:  notions like work, heat and entropy of 

classical thermodynamics extended to microscopic systems 

Dynamics is obtained by Langevin and Fokker-Planck descriptions

The distributions functions of the mesoscopic quantities can be of 

the non-Gaussian form 

Summary

Thank You !


