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Characteristic function

Characteristic function of a probability distribution P(x) is

P̃X (k) = 〈ekX 〉 (1)

Expanding ekX in a power series, we have

P̃X (k) = ∑
n

(k)n

n!
〈X n〉= 1+k〈X 〉+ k2〈X 2〉

2!
+

k3〈X 3〉
3!

+ ... (2)

where µN = 〈XN〉 is the nth moment. Thus, above is also called
the moment generating function.



Cumulant generating function

The logarithm of characteristic function

KX (k) = ln P̃X (k) = ∑
n

(k)n

n!
〈XN〉c (3)

First two cumulants and moments are related as

〈X 〉c = 〈X 〉, 〈X 2〉c = 〈X 〉2−〈X 2〉 (4)

where 〈XN〉c is the n-th cumulant.
• To see an analogy in physics note that

〈X 〉nc = ∂
n
kKX (k)|k=0. (5)



Cumulants

• n-th cumulant of random variables X1, . . . ,Xn measures the
interaction of the variables which is genuinely of n-body.

• For Gaussian variables, the fourth moment is

〈X1X2X3X4〉= 〈X1X2〉〈X3X4〉+〈X1X3〉〈X2X4〉+〈X1X4〉〈X2X3〉

The cumulant, on the other hand is difference of LHS and
RHS, and is thus zero for a Gaussian distribution.

• Moments: correlations; cumulants: connected correlation
• P̃X (k) ∼ partition function, while KX ∼ free energy



Cumulants

Cumulants are additive for independent variables X and Y

KX+Y (t) = KX (t) +KY (t). (6)

• 1st cumulant - Mean (describes central value)

• 2nd cumulant - Variance (describes dispersion)

• 3rd cumulant - Skewness (describes asymmetry)

• 4th cumulant - Kurtosis (describes peakedness)



Gaussian distribution

• The PDF is

P(x ; µ,σ) =
1√
2πσ2

exp
(
−(x−µ)2

2σ2

)
, x ∈ [−∞;∞] (7)

• mean=µ , variance=σ2. If µ = 0 and σ = 1, the distribution is
called the standard normal distribution.

• Mode : value that appears most often.

• Median: value separating the higher half from lower half.

• For Gaussian distribution, mean, median and mode coincide!



Law of large numbers

• Sum of random variables

Yn =
X1 +X2 + ...+Xn

n

• It is given that each Xi has mean µ and standard deviation σ .
• As n increases, the average of the sum approaches the mean of
the distribution. More is the variation in X , higher is the n for
the average of the sum to reach the mean.

• What is PY (X )?

• when is δY small ?
• statistics of rare events when such fluctuations are “large”



Central limit theorem

• Let {Xn} be a sequence of independent identically distributed
(iid) random variables.

• CLT says that the sum of iid random variables approaches a
Gaussian distribution, as the sample size increases.

• The only condition is that µ and σ do not diverge!

• Proof using characteristic function



Central limit theorem

Choose
Zn =

X1 +X2 + ...+Xn−µn

σ
√
n

(8)

P̃(k) =
∫

dz PZn(z)ekz =
∫

dz
∫

∏
i

dXiP(Xi )e
kz

δ (z−Zn)

=
[∫

dX P(X )e−kX/σ
√
n
]n
ekµn/σ

√
n

This can be trivially simplified to

ln P̃Y (k) = n ln P̃X (k/σ
√
n) +

knµ

σ
(9)



Central limit theorem

• We now use the definition of cumulant generating function to
obtain

ln P̃Zn(k) = n
(k/σ

√
n)2

2!
σ

2 =
k2

2!
; as n→ ∞

• Thus, we approach a normal distribution

P(Zn) =
1√
2π

e−Z
2
n /2

• More generally, as n gets bigger the distribution of the sum of
random variables Yn = 1

n ∑i Xi will always converge to a
Gaussian distribution with mean µ and standard deviation σ√

n
.



Large deviation theory

• The large deviation theory is a generalization of the CLT
• Given a random variable Yn, we seek what is the probability
density of P(Yn = y)

• Large deviation principle 1

P(Yn = y) ≈ e−nI (y). (10)

• What it means is

lim
n→∞
−1
n
lnP(Yn = y) = I (y). (11)

• The rate function I (y)≥ 0 is positive definite.
• Agenda: Prove the existence of a LDP and derive I (y)

1H. Touchette, Phys Rep, 2009.
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Sum of Gaussian random number

• Sum of random variables

Yn =
X1 +X2 + ...+Xn

n

• Probability density function (pdf) of Yn, sum of Gaussian
distribution,

p(Yn = y) =

√
n

2πσ
e−

n(y−µ)2

2σ2 = e−nI (l). (12)

• Scaling law
P(Yn = y) ≈ e−nI (y). (13)

I (y) = (y−µ)2

2σ2 is the rate function.



Sum of Exponential random number

• Sum of exponentially distributed random number
• Large deviation principle says

P(Yn = y) ≈ e−nI (y). (14)

P(x) ≈
1
µ
e−x/µ . (15)

• The rate function in this case

I (y) = y
µ
−1− ln y

µ
.
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Spin system

• Sum of spins is the magnetization

M =
1
n ∑Si

• Number of states with a magnetization value of m is given as

Ω(m) =
n!

((1−m)n/2)!((1+m)n/2)!

• Then it can be written as Ω(m) = ens(m)

s(m) =−1−m

2
ln
1−m

2
− 1+m

2
ln
1+m

2

• Thus, the enropy plays the role of rate function



Quick summary

• Large deviation principle (LDP): P(Yn = y) ≈ e−nI (y).

• Generalization of CLT,
• Applicable for uncorrelated and correlated process
• How to calculate rate functions?
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The Gärtner–Ellis Theorem

• Define the scaled cumulant generating function as

λ (k) = lim
n→∞

1
n
ln〈enkYn〉 (16)

• The Gärtner–Ellis Theorem states that, if λ (k) exists and is
differentiable, then Yn satisfies a large deviation principle, i.e.,

P(Yn ∈ dy) ≈ e−nI (y)dy . (17)

I (y) = sup
k∈R
{ky −λ (k)} (18)



Cramér’s Theorem

• Apply Gärtner–Ellis Theorem to

YN =
1
N ∑

N

Xi . (19)

yields Cramér’s Theorem, where X is IID.

λ (k) = lim
n→∞

1
n
ln〈ek ∑Xi 〉= lim

n→∞

1
n
ln∏〈ekXi 〉= ln〈ekX 〉. (20)



Varadhan’s Theorem

• If Yn satisfies a large deviation principle with rate function
I (y), then λ (k) is the Legendre-fenchel transform of I (y)

λ (k) = lim
n→∞

1
n
ln〈enkAn〉= sup

a
{ky − I (y)}. (21)

• An arbitrary continuous function f of Yn yield Varadhan’s
theorem

λ (f ) = lim
n→∞

1
n
ln〈enf (An)〉= sup

a
{f (y)− I (y)}. (22)



Gaussian distribution

• For Gaussian distribution

〈ekX 〉=
∫

dx
1√
2πσ2

e−(x−µ)2/2σ2
ekx = ekµ+σ2k2/2

λ (k) = kµ +
σ2k2

2

Then

I (y) = k(y)y −λ (k(y)) =
(y −µ)2

σ2 ,

where k(y) is the maxima of ky −λ (k), with λ ′(k(y)) = y .



Exponential distribution

• For Exponential distribution

〈ekX 〉=
∫

dx
1
µ
e−x/µekx = ekµ+σ2k2/2

λ (k) =− ln(1−µk),

this implies
I (y) = y

µ
−1− ln y

µ
.



Langevin equation

• Motion of a Brownian colloid

ẋ = µF +
√
2Dξ

Here ξ is zero mean, unit variance delta-correlated noise.
• The probability distribution is then

P(x)≈ e−J(x)/4D , J(x) =
∫ t

0
(ẋ−µF )2 dt

• Here J is sometimes called entropy of the path2 or the action
functional3 or.

2Donsker and Varadhan 1983
3Freidlin, A.D. Wentzell 1984



Ornstein-Uhlenbeck process

• Consider OUP

ẋ =−αx +
√
2Dξ

• The most probable value of J(x) can obtained using
Euler-Lagrange equation such that δJ = 0 to give

∂t∂ẋL−∂xL = 0, L = (ẋ + αx)2

• Consider x(−∞) = 0 and x(τ) = x , the solution at the maxima
is then x∗(t) = xeα(t−τ). Thus

L = 4αx2



Summary

• Large deviation principle

P(Yn = y) ≈ e−nI (y).

• It is valid for any value of y and thus considers large
fluctuations

• CLT: the rate function is parabolic
• Obtain the rate function using an optimization principle
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