Large deviation theory

Rajesh Singh

The Institute of Mathematical Sciences, Chennai, India

September 16, 2017

Outline

Cumulants and moments Correlations and connectedness

Central limit theorem Law of large numbers

Large deviation theory Varadhan's Theorem

Characteristic function

Characteristic function of a probability distribution P(x) is

$$\tilde{P}_X(k) = \langle e^{kX} \rangle$$
 (1)

Expanding e^{kX} in a power series, we have

$$\tilde{P}_X(k) = \sum_n \frac{(k)^n}{n!} \langle X^n \rangle = 1 + k \langle X \rangle + \frac{k^2 \langle X^2 \rangle}{2!} + \frac{k^3 \langle X^3 \rangle}{3!} + \dots \quad (2)$$

where $\mu_N = \langle X^N \rangle$ is the nth moment. Thus, above is also called the moment generating function.

Cumulant generating function

The logarithm of characteristic function

$$K_X(k) = \ln \tilde{P}_X(k) = \sum_n \frac{(k)^n}{n!} \langle X^N \rangle_c$$
(3)

First two cumulants and moments are related as

$$\langle X \rangle_c = \langle X \rangle, \qquad \langle X^2 \rangle_c = \langle X \rangle^2 - \langle X^2 \rangle$$
 (4)

where $\langle X^N \rangle_c$ is the *n*-th cumulant.

• To see an analogy in physics note that

$$\langle X \rangle_c^n = \partial_k^n K_X(k)|_{k=0}.$$
 (5)

Cumulants

- *n*-th cumulant of random variables X₁,..., X_n measures the interaction of the variables which is genuinely of *n*-body.
- For Gaussian variables, the fourth moment is

 $\langle X_1 X_2 X_3 X_4 \rangle = \langle X_1 X_2 \rangle \langle X_3 X_4 \rangle + \langle X_1 X_3 \rangle \langle X_2 X_4 \rangle + \langle X_1 X_4 \rangle \langle X_2 X_3 \rangle$

The cumulant, on the other hand is difference of LHS and RHS, and is thus zero for a Gaussian distribution.

- Moments: correlations; cumulants: connected correlation
- $\tilde{P}_X(k) \sim$ partition function, while $K_X \sim$ free energy

Cumulants

Cumulants are additive for independent variables X and Y

$$K_{X+Y}(t) = K_X(t) + K_Y(t).$$
(6)

- 1st cumulant Mean (describes central value)
- 2nd cumulant Variance (describes dispersion)
- 3rd cumulant Skewness (describes asymmetry)
- 4th cumulant Kurtosis (describes peakedness)

Gaussian distribution

• The PDF is

$$P(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \qquad x \in [-\infty;\infty] \quad (7)$$

- mean= μ , variance= σ^2 . If $\mu = 0$ and $\sigma = 1$, the distribution is called the standard normal distribution.
- Mode : value that appears most often.
- Median: value separating the higher half from lower half.
- For Gaussian distribution, mean, median and mode coincide!

Law of large numbers

• Sum of random variables

$$Y_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- It is given that each X_i has mean μ and standard deviation σ .
- As *n* increases, the average of the sum approaches the mean of the distribution. More is the variation in *X*, higher is the *n* for the average of the sum to reach the mean.
- What is $P_Y(X)$?
- when is δY small ?
- statistics of rare events when such fluctuations are "large"

Central limit theorem

- Let {*X_n*} be a sequence of independent identically distributed (iid) random variables.
- CLT says that the sum of iid random variables approaches a Gaussian distribution, as the sample size increases.
- The only condition is that μ and σ do not diverge!
- Proof using characteristic function

Central limit theorem

Choose

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - \mu n}{\sigma \sqrt{n}} \tag{8}$$

$$\tilde{P}(k) = \int dz P_{Z_n}(z) e^{kz} = \int dz \int \prod_i dX_i P(X_i) e^{kz} \delta(z - Z_n)$$
$$= \left[\int dX P(X) e^{-kX/\sigma\sqrt{n}} \right]^n e^{k\mu n/\sigma\sqrt{n}}$$

This can be trivially simplified to

$$\ln \tilde{P}_{Y}(k) = n \ln \tilde{P}_{X}(k/\sigma\sqrt{n}) + \frac{kn\mu}{\sigma}$$
(9)

Central limit theorem

• We now use the definition of cumulant generating function to obtain

$$\ln \tilde{P}_{Z_n}(k) = n \frac{(k/\sigma \sqrt{n})^2}{2!} \sigma^2 = \frac{k^2}{2!}; \quad \text{as } n \to \infty$$

• Thus, we approach a normal distribution

$$P(Z_n)=\frac{1}{\sqrt{2\pi}}e^{-Z_n^2/2}$$

• More generally, as *n* gets bigger the distribution of the sum of random variables $Y_n = \frac{1}{n} \sum_i X_i$ will always converge to a Gaussian distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

Large deviation theory

- The large deviation theory is a generalization of the CLT
- Given a random variable Y_n , we seek what is the probability density of $P(Y_n = y)$

¹H. Touchette, Phys Rep, 2009.

Large deviation theory

- The large deviation theory is a generalization of the CLT
- Given a random variable Y_n , we seek what is the probability density of $P(Y_n = y)$
- Large deviation principle ¹

$$P(Y_n = y) \approx e^{-nI(y)}.$$
 (10)

What it means is

$$\lim_{n \to \infty} -\frac{1}{n} \ln P(Y_n = y) = I(y).$$
(11)

- The rate function $I(y) \ge 0$ is positive definite.
- Agenda: Prove the existence of a LDP and derive I(y)

¹H. Touchette, Phys Rep, 2009.

Sum of Gaussian random number

• Sum of random variables

$$Y_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

• Probability density function (pdf) of *Y_n*, sum of Gaussian distribution,

$$p(Y_n = y) = \sqrt{\frac{n}{2\pi\sigma}} e^{-\frac{n(y-\mu)^2}{2\sigma^2}} = e^{-nI(I)}.$$
 (12)

• Scaling law

$$P(Y_n = y) \approx e^{-nI(y)}.$$
 (13)

 $I(y) = \frac{(y-\mu)^2}{2\sigma^2}$ is the rate function.

Sum of Exponential random number

- Sum of exponentially distributed random number
- Large deviation principle says

$$P(Y_n = y) \approx e^{-nI(y)}.$$

$$P(x) \approx \frac{1}{\mu} e^{-x/\mu}.$$
(14)
(15)

Sum of Exponential random number

- Sum of exponentially distributed random number
- Large deviation principle says

$$P(Y_n = y) \approx e^{-nI(y)}.$$
 (14)

$$P(x) \approx \frac{1}{\mu} e^{-x/\mu}.$$
 (15)

• The rate function in this case

$$I(y) = \frac{y}{\mu} - 1 - \ln \frac{y}{\mu}.$$

Spin system

• Sum of spins is the magnetization

$$M=\frac{1}{n}\sum S_i$$

• Number of states with a magnetization value of *m* is given as

$$\Omega(m) = \frac{n!}{((1-m)n/2)!((1+m)n/2)!}$$

• Then it can be written as $\Omega(m) = e^{ns(m)}$

$$s(m) = -\frac{1-m}{2}\ln\frac{1-m}{2} - \frac{1+m}{2}\ln\frac{1+m}{2}$$

• Thus, the enropy plays the role of rate function

Quick summary

- Large deviation principle (LDP): $P(Y_n = y) \approx e^{-nI(y)}$.
- Generalization of CLT,
- Applicable for uncorrelated and correlated process
- How to calculate rate functions?

Quick summary

- Large deviation principle (LDP): $P(Y_n = y) \approx e^{-nI(y)}$.
- Generalization of CLT,
- Applicable for uncorrelated and correlated process
- How to calculate rate functions?

The Gärtner–Ellis Theorem

• Define the scaled cumulant generating function as

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nkY_n} \rangle$$
 (16)

 The Gärtner–Ellis Theorem states that, if λ(k) exists and is differentiable, then Y_n satisfies a large deviation principle, i.e.,

$$P(Y_n \in dy) \approx e^{-nI(y)} dy.$$
(17)

$$I(y) = \sup_{k \in \mathbb{R}} \{ ky - \lambda(k) \}$$
(18)

Cramér's Theorem

• Apply Gärtner-Ellis Theorem to

$$Y_N = \frac{1}{N} \sum_N X_i. \tag{19}$$

yields Cramér's Theorem, where X is IID.

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{k \sum X_i} \rangle = \lim_{n \to \infty} \frac{1}{n} \ln \prod \langle e^{k X_i} \rangle = \ln \langle e^{k X} \rangle.$$
(20)

Varadhan's Theorem

• If Y_n satisfies a large deviation principle with rate function I(y), then $\lambda(k)$ is the Legendre-fenchel transform of I(y)

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nkA_n} \rangle = \sup_{a} \{ ky - I(y) \}.$$
(21)

• An arbitrary continuous function *f* of *Y_n* yield Varadhan's theorem

$$\lambda(f) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nf(A_n)} \rangle = \sup_{a} \{f(y) - I(y)\}.$$
(22)

Gaussian distribution

• For Gaussian distribution

$$\langle e^{kX} \rangle = \int dx \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} e^{kx} = e^{k\mu + \sigma^2 k^2/2}$$

$$\lambda(k) = k\mu + \frac{\sigma^2 k^2}{2}$$

Then

$$I(y) = k(y)y - \lambda(k(y)) = \frac{(y-\mu)^2}{\sigma^2},$$

where k(y) is the maxima of $ky - \lambda(k)$, with $\lambda'(k(y)) = y$.

Exponential distribution

• For Exponential distribution

$$\langle e^{kX} \rangle = \int dx \frac{1}{\mu} e^{-x/\mu} e^{kx} = e^{k\mu + \sigma^2 k^2/2}$$

 $\lambda(k) = -\ln(1-\mu k),$

this implies

$$I(y) = \frac{y}{\mu} - 1 - \ln \frac{y}{\mu}.$$

Langevin equation

Motion of a Brownian colloid

$$\dot{x} = \mu F + \sqrt{2D} \xi$$

Here ξ is zero mean, unit variance delta-correlated noise.

• The probability distribution is then

$$P(x) \approx e^{-J(x)/4D}, \qquad J(x) = \int_0^t (\dot{x} - \mu F)^2 dt$$

• Here J is sometimes called entropy of the path² or the action functional³ or.

²Donsker and Varadhan 1983 ³Freidlin, A.D. Wentzell 1984

Ornstein-Uhlenbeck process

Consider OUP

$$\dot{x} = -\alpha x + \sqrt{2D}\xi$$

 The most probable value of J(x) can obtained using Euler-Lagrange equation such that δJ = 0 to give

$$\partial_t \partial_{\dot{x}} L - \partial_x L = 0, \qquad L = (\dot{x} + \alpha x)^2$$

• Consider $x(-\infty) = 0$ and $x(\tau) = x$, the solution at the maxima is then $x^*(t) = xe^{\alpha(t-\tau)}$. Thus

$$L = 4\alpha x^2$$

Summary

• Large deviation principle

$$P(Y_n=y)\approx e^{-nI(y)}.$$

- It is valid for any value of y and thus considers large fluctuations
- CLT: the rate function is parabolic
- Obtain the rate function using an optimization principle