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Diffusion Under Time-Independent 
External Potential



➤ Fluid remains in thermal equilibrium in the presence of such external 
potential 

How the probability distributions of the velocity and position of the 
tagged particle are modified? 

➤ Assumption: Heat bath is not affected significantly by the presence 
or absence of the external force 

                   - Fluctuation-dissipation relation still remains valid i.e.,  

➤ Langevin equation: 

                       where                                   s.t.           is delta correlated GWN with zero mean 

                    - In general, the equation is nonlinear 
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➤ Consider a general multi-component diffusion process represented by 
the following SDE: 

  
                                           : n X 1 vector                            : n X 1 vector (drift vector) 

                                           : n X    matrix                           :    X 1 matrix  (GWN) 

          What is the FPE satisfied by PDF corresponding to this SDE? 

         where  

➤ For 1-D i.e. n=2 and    =1: Kramers equation 

        

General SDE-FPE Correspondence

Out of n equations,     equations have noise⌫
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➤ Consider long-time regime or high friction approximation: 

                         -  In the presence of V(x), the long time limit is not guaranteed to be diffusive 

                         -                     (Smoluchowski time) 

                         -  Long-time limit consideration also requires: Applied force doesn’t vary      

                             significantly over distances of the order of characteristic length             

                          -  In such limit, velocity of tagged particle may be assumed to be thermalised 

                               where                denotes the PDF of the position 

                          -  Consider Langevin equation:  

                          -  In high friction limit, inertia term is neglected 

                           -  The FPE correspondence to this SDE is called Smoluchowski equation 

                     -  Phase-space FPE is reduced to Smoluchowski equation in high friction limit
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Sedimentation
Sedimentation: Diffusion in constant force field 

Sedimentation of particles in a fluid held in  

      container, under the influence of gravity 

Potential V(x) = mgx               with  

Assume x = 0 is perfectly reflecting boundary

⌘ Kx x � 0

➤ The Smoluchowski equation: 

                         -  Writing                and   

                          -  The two terms on RHS represent the effect of drift and diffusion respectively 

                          -  c/D: A natural or characteristic length scale 

                       What is the p(x,t) with some given I.C. and B.C. ?
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➤ Consider the following I.C. and B.C. : 

                         -  I.C. : 

                         -  B.C. :                                       and at x= 0 the perfectly reflecting boundary       

                             implies the probability current through the boundary vanishes identically 

                             i.e.,   

➤ Equilibrium PDF : 

                          -                                                                              Barometric distribution 

                          -                                                                              No long-range diffusion 

                          -  In such limit, velocity of tagged particle may be assumed to be thermalised 

➤ Time-dependent PDF : 
                          -  Can be solved using Laplace transform
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Brownian Oscillator
➤ Consider harmonically bound Brownian particles in a heat bath with 

high-friction approximation: 
➤ The Langevin equation:  
➤  The corresponding Smoluchowski equation: 

                          -  Valid for only overdamped  oscillator:   

                          -  The Langevin equation for x(t) in this case is same in form as the Langevin  

                              equation for velocity v(t) of a free tagged particle 

                          -  I.C.                                  and free B.C., the PDF p(x,t) is same as OU density  

                          -  Using above Smoluchowski equation: 

                          -  The variance saturates to some equilibrium value in long time limit 

                          - With given mean and variance of x(t), p(x,t|xo) can be easily written                    
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Linear Response Theory 

        

Kramers’ Escape Rate Formula



Diffusion Under Time-dependent     
External Potential



➤ Langevin equation in the presence of some external force: 

                          -  System is out of equilibrium 

                          -  We are interested in knowing the response of the system in terms of velocity 

                          -  Conditional average of velocity 

  

➤  If                                                         

                           -  Here transient is also included in response 

                           -  Steady state response :                             As per expectation 

                    -  Under continuous const. force: Particles reach terminal velocity, don’t accelerate
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➤ Mobility : 

                         -  Steady state average velocity per unit external force 

                         -  Diffusion constant 

                         -  In general, if forces are time-dependent:                                              : Dynamic mobility 

➤ If                             (for given   )  
                              

                          -    A general time-dependent applied force may be written as a Fourier integral 

                                over all frequencies (in general, the force is non-periodic) 

                          -    Dynamic mobility:
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➤ Linear response theory: 

                          -  Provides the link b/w correlation functions and response to weak perturbations 

                          -  Basic philosophy: A disturbance created in a system by a weak external             

                             perturbation decays in the same way as a spontaneous fluctuation in equilibrium 

                          -  The response of a system property B due to a perturbation field F(t) which     

                              couples to the system property A s.t. the equilibrium hamiltonian       is changed  

                              to                                                                  , is given to linear order in F(t) as 

                              where           which connects the response to stimulus, is called response function 

                           -  Here we have assumed : 

                                     1. F(t) has been switched on at  

                                     2.  response is causal and retarded                         

Linear Response Theory
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