
Schedule For Summer Program 2016

Date 9:45 – 11:00 11:30 – 12:45 14:15 – 15:30

May 30 Kamal – Learning Formal
Languages

Pradeesha – Topics in Com-
putational Geometry

Raja – Entropy and Counting

May 31 ” ” ”

June 1 ” ” Krithika – Special Graph
Classes

June 2 Krithika ” ”

June 3 Kamal ” Kamal

June 6 Teodor – Logic and structures
for system modelling

PC Lecture 1 PC Tutorial 1

June 7 ” PC Lecture 2 PC Tutorial 2

June 8 ” PC Lecture 3 PC Tutorial 3

June 9 ” PC Lecture 4 PC Tutorial 4

June 10 ” PC Lecture 5 PC Lecture 6

June 13 Jam – A Theory of Regular
“Anything”

Venkatesh: Exact Exponen-
tial time algorithms

Ragukumar – The Equitable
Coloring of Graphs

June 14 ” ” ”

June 15 ” ” Roohani – Complete Disorder
is an impossibility

June 16 ” ” ”

June 17 ” ” ”

June 20 Vikram – Slimy Algorithms Diptapriyo – Approximation
Algorithms for Graph Prob-
lems

Anantha & Anup – The
Logic-Automata Connection

June 21 ” ” ”

June 22 ” Swaroop – The Probabilistic
Method

”

June 23 ” ” ”

June 24 ” ” ”

June 27 Student Presentations Student Presentations
onwards

Abstracts of Lectures

Parameterized Complexity (PC) Lectures and Tutorials

Lecture 1: Introduction to Parameterized Complexity and Kernelization (Roohani)
Lecture 2: Bounded Search Trees (Prafullkumar)
Lecture 3: Iterative Compression (Krithika)
Lecture 4: Color Coding (Diptapriyo)
Lecture 5: Treewidth (Roohani)
Lecture 6: Parameterized Intractability (Pranabendu)

1



Tutorial 1: A Warm-up tutorial (NP-Completeness and Dynamic Programming on trees) (Aditi,
Roohani)
Tutorial 2: Kernelization Tutorial (Aditi, Roohani)
Tutorial 3: Bounded Search Trees Tutorial (Sanjukta, Prafullkumar)
Tutorial 4: Iterative Compression Tutorial (Abhishek, Krithika)

Krithika – Special Graph Classes

This set of lectures will introduce graph classes like chordal graphs, bipartite graphs and perfect
graphs. We will study structural properties of these graphs and describe algorithms for some
classical problems.

Teodor – Logic and structures for system modelling

While for centuries mathematics have been concerned by modelling a continuous world, computer
science makes use mainly of discrete methods for the representation, simulation or qualitative
prediction of systems behaviours. Computer science logic is of paramount importance in this
field because it allows to prove, using appropriate algorithms, that a system, provided its formal
description, will or will not evolve according to some property. Abstracting from, on one hand,
a user-friendly description of a system and, on the other hand, a syntactic sugar of the logical
language, we understand a system as a logical structure and its property (like e.g. “something
wrong will never occur”) as a logical sentence. May one decide, for a structure G and a sentence
ϕ, whether G |= ϕ? This is the central question of these few summer lectures.

More precisely, we study several classes of structures and a few classes of sentences. Given such
classes G and Φ, we consider the following decision problem

Instance: G ∈ G and ϕ ∈ Φ.
Question: G |= ϕ? (or equivalently, ϕ ∈ Th(G)?)

We are also interested in operations that build one structure from another. For such an operation
f, we wonder whether the decidability of Th(f(G)) may be reduced to the decidability of Th(G).

A tentative outline of the five lectures is as follows:

1. Introduction (the location of the theme): system defined by a set of sentences, system defined
as a single structure

2. Expressing properties of a structure in 1st order logic, 1st order logic with reachability, 1st
order logic with transitive closure, monadic 2nd order logic, 2nd order logic

3. Structure building operations and compatibility: interpretations and logical transductions,
products, unions, unfolding, iteration, powerset construction

4. Describing an infinite structure: linear structures, branching structures, and more general
infinite structures such as transition graphs of machines/automata, graphs of string rewriting
systems, graphs of term rewriting systems, transducer-defined structures, automatic struc-
tures, Petri nets, equational structures

5. hyperalgebraic structures: higher order equational structures, unfolding hierarchy

6. Deciding theories for a class of structures

Anantha & Anup – The Logic-Automata Connection

The aim of this tutorial is to introduce the connection between ’expressiveness’ of two formalisms
for describing formal languages, namely, automata and logic.

The first result in this tradition is credited to Buchi and Elgot, who showed that finite word
automata and monadic second order logic(interpreted over finite words) have the same expressive

2



power. We will study this and many such correspondence between classes of formal languages
and various logics. We will also study some techniques for showing how a formal language is
‘inexpressive’ in a certain logic.

Raja – Entropy and Counting

We explain the notion of the entropy of a discrete random variable, and derive some of its ba-
sic properties. We then show through few examples how entropy can be useful as a combinatorial
enumeration tool.

Pradeesha – Topics in Computational Geometry

We will discuss some topics in Computational Geometry including Convex Hulls, Voronoi Dia-
gram, Triangulation and Range Searching. It will be assumed that the participants have done
an introductory course in Data Structures and Algorithms. No prior knowledge of Geometry is
required.

Kamal – Learning formal languages

We look at a tiny and basic part of machine learning theory, namely, learning formal languages.
Below is an approximate development. Things will change depending on classroom interaction.

Lecture 1: Language acquisition and learning (Big question: how do birds learn how to fly?)
Lecture 2: Deterministic finite automata (Big question: do teachers help?)
Lecture 3: Probabilistic finite automata (Miller and Chomsky, 1963: We cannot seriously propose
that a child learns the values of 109 parameters in a childhood lasting 108 seconds.)
Lecture 4: Substitutability and context-free grammars (Big idea: how far can we push our algo-
rithms?)
Lecture 5: Applications.

Some references are given here http://www.imsc.res.in/~kamal/tut/learn.html Some back-
ground reading on basics of probability, finite automata and context-free grammars would be re-
quired.

Ragukumar – The Equitable Coloring of Graphs

Let the vertices of a graph G be colored with k colors such that no adjacent vertices receive the
same color and the sizes of the color classes differ by at most one. Then G is said to be equitably
k-colorable. The equitable chromatic number x(G) is the smallest integer k such that G is equitably
k-colorable. We pay more attention to work done on the Equitable Coloring Conjecture. We also
discuss related graph coloring notions and their problems.

Swaroop – The Probabilistic Method

The focus of these lectures will be on learning how to use probabilistic tools in proving mathe-
matical statements. More specifically, we shall concentrate on “Linearity of Expectation” and its
applications in proof techniques.
Reference: Extremal Combinatorics by Stasys Jukna , Second edition, Chapter 18.

Jam – A Theory of Regular “Anything”

In automata theory, we learn about ”regular” languages, where a language is a set of finite words
over a finite alphabet. What is the notion of regularity essentially speaking ? Can we have such
notions for sets of trees ? For sets of graphs or other mathematical structures ? And why finite
words, what are regular sets of infinite words (and why not infinite trees) ? Going further, why
not infinite alphabets as well ? That’s an interesting formal game, and rather interestingly the
answers can be formulated using simple algebra, with even some game theory somewhere in the

3



story. But is it all only mathematical entertainment ? As it turns out, such explorations lead
us to very practical domains like consistency of XML schema, circuit synthesis and verification of
”cyber-physical” systems, offering uniform algorithms in these areas.

Roohani – Complete Disorder is an impossibility

Ever stargazed the sky and noticed that the sky is filled with constellations in the shape of straight
lines, rectangles, pentagons and even larger polygons? Could it be that such geometric patterns
arise from unknown forces in the cosmos? In 1928, an English mathematician, philosopher and
economist, Frank Plumpton Ramsey proved that such patterns are actually implicit in any large
structure, whether it is a group of stars, an array of pebbles or a series of numbers generated by
throws of a die. In other words, Ramsey proved that complete disorder is an impossibility.

In this series of lectures, we will explore some results around this theme in different settings,
for example when the underlying universe is a graph or a set of points in the plane or a sequence of
numbers etc. We may also see a connection between results of this kind and the game tic-tac-toe,
if time permits.

Vikram – Slimy Algorithms

We understand the mathematical models explaning the unusual collective capability of a single
cells organism, called the Physarum Polycephalum, to solve problems such as the shortest path in
graphs and approximating Steiner trees.

4


