Order 2 Tree-Automatic Graphs

(work in progress)

Antoine Meyer (UPEM)
Joint work with Arnaud Carayol (CNRS, UPEM)

Automatic Presentations of Graphs and Numbers
IMSc, 11/10/2016

Antoine Meyer Order 2 Tree-Automatic Graphs — 1

Summary

o The pushdown hierarchy of infinite graphs
[KNU02, Cau02, CW03]

o Level n : transition graphs of n-pushdown automata
o Can be obtained from a unique graph using logic-based
transformations

o Using more expressive transformations, one gets strictly
more graphs [CLO7]

o At level 1: tree-automatic graphs
o Above: a strict hierarchy of tree-automatic-like graphs

o Our aim:

o Characterize these graphs directly using automata
o Characterize their traces

o This talk : spend time explaining levels 1 and 2

Antoine Meyer Order 2 Tree-Automatic Graphs — 2

Outline

@ Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

@ 2-tree-automatic graphs
Defined by interpretations
Defined by automata

Equivalence proof

® Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs — 3

Outline

@ Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

Antoine Meyer Order 2 Tree-Automatic Graphs — 4

Outline

@ Tree-automatic graphs
Defined by automata

Antoine Meyer Order 2 Tree-Automatic Graphs — 5

Word-automatic graphs

Let u, v be finite words over alphabet C
o Padding of u: u®(i) = u(i) if i € dom(u), © otherwise
o Overlapof uand v: u®v : dom(u)Udom(v) — (CU©)?
such that u ® v(i) = (u°(i), v°(i))

A relation R is word-automatic if {u® v | (u,v) € R} is
regular (i.e. accepted by a finite automaton)

A graph G is word-automatic if all its edge relations are

Antoine Meyer Order 2 Tree-Automatic Graphs — 6

Examples of automatic graphs

Infinite grid of dimension k

o Vertices : words of the form af* ... a/* representing

coordinate vectors (ny, ..., ny)
o Edges :
. — n Nk ny ni+1 ng >0
i=A{aft...ak®@art...a" LAk ..., n >0}

Antoine Meyer Order 2 Tree-Automatic Graphs — 7

Examples of automatic graphs

Full binary tree with “equal length” predicate
o Vertices : {a, b}*
o Edges :
o Ly,={u®ua|ue{ab}}
o lp={u®ub|uec{a b}*}
o Lo={u®v|uveiab}|u=]v}

Antoine Meyer Order 2 Tree-Automatic Graphs — 8

Tree-automatic graphs

Let s, t be finite binary C-labelled trees
o Padding of t : t°(u) = t(u) if u € dom(t), © otherwise
o Overlapof sand t : s®t : dom(s) Udom(t) — (C U©)?
such that s ® t(u) = (s°(u), t°(u))

A relation R is tree-automatic if {s® t | (s, t) € R} is regular
(i.e. accepted by a finite tree automaton)

A graph G is tree-automatic if all its edge relations are

Antoine Meyer Order 2 Tree-Automatic Graphs — 9

Finite tree automata

A finite (binary) tree automaton over alphabet C consists in:

o A finite set of control states @, some of which are root
states, and some leaf states

o A finite set of transitions of the form (p, ¢, q, r) or (p, c)
with p,g,r € Q and c € C

Antoine Meyer Order 2 Tree-Automatic Graphs — 10

Finite tree automata

A C-labelled tree t is accepted if it can be labelled by states in
such a way that

o The root of t is labelled by a root state

o For each leaf labelled p and c there exists a transition
(p,c)

o For each internal node labelled p and ¢, with children
labelled g and r, there exists a transition (p, ¢, g, r)

Antoine Meyer Order 2 Tree-Automatic Graphs — 11

Example of tree-automatic graph

Given A C {a, b}*, write ta the smallest binary tree with all
positions in A marked

“Weak powerset” graph of the full binary tree

o Vertices : all t, for finite A
o Edges :
o Ly= {t{u} @ t{ya} | u€{a b}"}

o Lp= {t{u} & t{ub} ‘ uec {a, b}*}
o Lg:{tA®tB|AgB}

Antoine Meyer Order 2 Tree-Automatic Graphs — 12

Outline

@ Tree-automatic graphs

Defined by interpretations

Antoine Meyer Order 2 Tree-Automatic Graphs — 13

Monadic second order logic (MSO)

Language consisting of :
o first-order variables x, y, ... denoting elements
o second-order variables X, Y, ... denoting sets
o atomic predicates R(x,y), x =y, x € X
o Boolean connectives A, V, =

o first- and second-order quantification

Example (over binary relation R):

Reach(s, t) = VX(S eX
/\‘v’x‘v’y(XEX/\nyﬁyEX)) =teX

Antoine Meyer Order 2 Tree-Automatic Graphs — 14

MSO interpretations

Let:
o G be a X-labelled graph, I' a finite set

o 0(x), ¢a(x,y) for all a € I be MSO-formulas over
> -labelled graphs

o J = (8(x), (@a(x,¥))aer)
J is called an MSO-interpretation and

J(G) ={u—"v |G d(u) NO(v) A dalu, v)}

is the -graph interpreted in G via J

Antoine Meyer Order 2 Tree-Automatic Graphs — 15

Finite sets interpretations

Let:
o G be a X-labelled graph, I' a finite set

o 0(X), ¢a(X,Y) for all a € T be WMSO formulas over
> -labelled graphs

o J= (5(X)7 (Qba(X’ Y))aer)
J is called an finite sets interpretation and
JG)={U—=V[GEU)AI(V)Aa(U,V)}

is the -graph interpreted in G via J

Antoine Meyer Order 2 Tree-Automatic Graphs — 16

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N, <) or in the full binary tree A,

Grid :
o 0x : set of distinct numbers {ny, ..., ng} encodes tuple
(m—1,m—nm—1,...,n—ngq1—1)
o ¢i(X,Y) ensures that the smallest i — 1 elements of X
and Y coincide, and all others are incremented by 1 in Y

Antoine Meyer Order 2 Tree-Automatic Graphs — 17

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N, <) or in the full binary tree A,

Full binary tree with equal length predicate :
o Node u is represented by {i | u(i) = b} U {|u|}
o ¢4(X,Y) checks that Y = X\ {max(X)} U {max(X)+1}
o ¢p(X,Y) checks that Y = X U {max(X) + 1}
o ¢.(X,Y) checks that max(X) = max(Y)

Antoine Meyer Order 2 Tree-Automatic Graphs — 18

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N, <) or in the full binary tree A,

Weak powerset of A, :
o ta (tree with all nodes in A marked) represented by... A'!
o ¢,(X,Y) holds iff X = {u} and Y = {ua}
o ¢p(X,Y) holds iff X = {u} and Y = {ub}
o ¢c(X,Y) holds iff X C Y

Antoine Meyer Order 2 Tree-Automatic Graphs — 19

Outline

@ Tree-automatic graphs

Equivalence proof

Antoine Meyer Order 2 Tree-Automatic Graphs — 20

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of A,

D: For each formula ¢(X, Y) :

o From ¢(X, Y), build as usual an equivalent parity
automaton over A, annotated by {0, 1}?

o Convert into an automaton over finite trees containing all
positions in X and Y (finite sets !)

o Below, it suffices to know from which states the parity
automaton accepts A, to crop the computation

Antoine Meyer Order 2 Tree-Automatic Graphs — 21

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of A,

C: For each tree automaton over C?,
o Reduce C to a singleton by coding (patterns in the tree's
structure)
o Represent any (finite) tree by its domain (finite set
C {a, b}")
o Build a WMSO formula satisfied in A, by pairs of sets
encoding accepted overlaps of pairs of trees

Antoine Meyer Order 2 Tree-Automatic Graphs — 22

Outline

@ 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

Antoine Meyer Order 2 Tree-Automatic Graphs — 23

Outline

@ 2-tree-automatic graphs
Defined by interpretations

Antoine Meyer Order 2 Tree-Automatic Graphs — 24

A few words on the infinite binary

tree (A))

Close connection with pushdown automata :
o Set of paths of the full {a, b} tree : {a, b}*

o Positions may be used to represent stack contents over
stack alphabet {a, b}

o MSO interpretations yield the transition graphs of
pushdown automata (PDA)

o FS interpretations yield the tree-automatic graphs

Decidable MSO theory

Generalizations exist for more general pushdown automata
accessing nested stacks of stacks

Antoine Meyer Order 2 Tree-Automatic Graphs — 25

Order 2 pushdown stacks (2-stacks)

Let A be a finite stack alphabet
o a stack is a sequence [a;...a/] with a; € A

o a 2-stack is a sequence [s;...s,] with s; a stack

Allowed 2-stack operations:
o pushi: add a at the top of the topmost stack
o popj: remove a from the top of the topmost stack
o push,: duplicate the topmost stack
o pop,: destroy the topmost stack

Antoine Meyer Order 2 Tree-Automatic Graphs — 26

Order 2 pushdown automata

Definition: an order 2 pushdown automaton (2-PDA) is a
finite-state automaton with an auxiliary 2-stack, with
transitions of the form:

from p, if top symbol is a, move to q and apply op, reading b

p.a — q,0p

All operations chosen in {pushy, pop;, push,, pop,}

e}

e}

Acceptance by final state

O

If bis &, then all other (p, a) transitions also labelled ¢

e}

Deterministic or e-free versions less expressive

Antoine Meyer Order 2 Tree-Automatic Graphs — 27

Pushdown graphs and trees

A 2-PDA A can be used to generate a language, or:
o A configuration graph (with e-transitions):
(p.s) 2 (q,5) if (p, top(s) 2 q,0p) € A, s' = op(s)
o A transition graph (e-closure of the configuration graph)
o A tree (unfolding of the transition graph)

Whenever A is deterministic, so are the above structures

Antoine Meyer Order 2 Tree-Automatic Graphs — 28

The “order 2 treegraph” (A3)

Definition: vertices corresponding to all 2-stacks, edges
representing operations push;, pushi7 and push,

Close connection with 2-PDA :

o Walks between s and t (allowing some backward edges)
encode sequences of 2-stack operations yielding t from s

o MSO interpretations of this graph yield the transition
graphs of order 2 pushdown automata (2-PDA)

Decidable MSO theory

Definition: a graph G is 2-(tree-)automatic if there exists a
finite set interpretation J such that G = J(A3)

Antoine Meyer Order 2 Tree-Automatic Graphs — 29

Outline

@ 2-tree-automatic graphs

Defined by automata

Antoine Meyer Order 2 Tree-Automatic Graphs — 30

An order 2 generator tree

Remarks:
o No pure automata-based characterization of 2-TA

o A2 is not a tree! — Look for another generator

Definition: Let T3 be the unfolding of A, with added
backward edges (labelled 2, b)

Properties:
o There is an MSO-int. J such that A2 = J(T%)

o Paths from the root of T} encode sequences of stack
operations which are well-defined on [1;

Antoine Meyer Order 2 Tree-Automatic Graphs — 31

Finite tree automata over T3

Idea:

o Use T# as a fixed enclosing domain to define binary
relations over finite trees

o Define tree automata running on finite C2-labelled
prefixes of T2

Problem:
o T% has infinitely many non-isomorphic subtrees

o Finite tree automata lack expressiveness w.r.t FSI

Solution: allow tree automata to test the stack content
reached after a sequence of operations

Antoine Meyer Order 2 Tree-Automatic Graphs — 32

Tree automata with oracles

Definition: finite tree automata with transitions of the form
(p,c, O, q,r) with O a regular language over {a, b}

A C-labelled tree t is accepted if it can be labelled by states in
such a way that

o The root of t is labelled by a root state
o Each leaf is labelled by a leaf state

o For each internal node labelled p and ¢ and reachable
from the root by w, with children labelled g and r, there
exists a transition (p, c, O, q,r) with w([1;) € O

Antoine Meyer Order 2 Tree-Automatic Graphs — 33

2-tree automatic relations

Definition: a relation R is 2-tree-automatic if
o lts support are finite trees t with dom(t) C dom(T2)

o Theset {s®t | (s,t) € R} is accepted by a tree
automaton with oracles

No change to the notion of padding

A graph is 2-tree-automatic if each of its edge relations is

Antoine Meyer Order 2 Tree-Automatic Graphs — 34

Outline

@ 2-tree-automatic graphs

Equivalence proof

Antoine Meyer Order 2 Tree-Automatic Graphs — 35

Equivalence proof

Proposition: Given a graph G, the following statements are
equivalent

©® There exists a FSI J such that G = J(A3)
® There exists a FSI J such that G = J(T%)

© For each edge label a, the a-labelled edge relation in G is
accepted by a finite tree automaton with oracles

Antoine Meyer Order 2 Tree-Automatic Graphs — 36

Equivalence proof

1 <— 2:

o For all FSI J there exists a FSI J' such that
J(D3) = J(T3)

o The converse also holds

Antoine Meyer Order 2 Tree-Automatic Graphs — 37

Equivalence proof

2 — 3:

o From each ¢(X,Y) in J, build an equivalent parity
automaton A over T3 annotated by {0, 1}?

o Lemma: for any state p of A, there exists a regular
language O, such that A accepts TZ from node w and
state p iff w([11) € O,

o Convert A into a tree automaton with oracles O, over
finite prefixes of TZ containing all positions in X and Y

3 = 2: As previously, transforming tests into equivalent
WMSO formulas

Antoine Meyer Order 2 Tree-Automatic Graphs — 38

Outline

© Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs — 39

Traces of automatic graphs

Extension of previous results on traces:

o The traces of automatic graphs are the context-sensitive
languages (linearly bounded Turing machines)
[MSO1, Ris02, CMO6]

o The traces of tree-automatic graphs are the class
DTIME(2°9(m) (alternating LBM, ASPACE(m)) [Mey07]

Using similar techniques, show that the languages of 2-TA
graphs form the class DTIME(22") accepted by
ASPACE(m)-P machines

Antoine Meyer Order 2 Tree-Automatic Graphs — 40

Towards a tree-automatic hierarchy

Similar classes of n-tree-automatic graphs are defined by
finite-set interpretations from AJ

Work in progress:
o Define corresponding trees T,
o Define tree automata with oracles for level n (difficult)

o Generalize the result on traces to all levels

Possible implications:
o New proof of strictness based on traces

o No known results about the classes obtained using
collapsible stacks

Antoine Meyer Order 2 Tree-Automatic Graphs — 41

Didier Caucal.
On infinite terms having a decidable monadic theory.
In MFCS, volume 2420 of LNCS, pages 165-176. Springer, 2002.

Thomas Colcombet and Christof Léding.
Transforming structures by set interpretations.
Logical Methods in Computer Science (LMCS), 3(2), 2007.

Arnaud Carayol and Antoine Meyer.
Context-sensitive languages, rational graphs and determinism.
Logical Methods in Computer Science, 2(2), 2006.

B & B W

Arnaud Carayol and Stefan Wohrle.

The caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata.

In FSTTCS, volume 2914 of LNCS, pages 112-123. Springer, 2003.

&)

Teodor Knapik, Damian Niwinski, and Pawet Urzyczyn.
Higher-order pushdown trees are easy.
In FoSSaCs, volume 2303 of LNCS, pages 205—222. Springer, 2002.

@ Antoine Meyer.
Traces of term-automatic graphs.
In MFCS, volume 4708 of LNCS, pages 489-500. Springer, 2007.

Antoine Meyer Order 2 Tree-Automatic Graphs — 42

@ Christophe Morvan and Colin Stirling.
Rational graphs trace context-sensitive languages.
In MFCS, volume 2136 of LNCS, pages 548-559. Springer, 2001.

@ Chloe Rispal.
The synchronized graphs trace the context-sensitive languages.
Electr. Notes Theor. Comput. Sci., 68(6):55-70, 2002.

Antoine Meyer Order 2 Tree-Automatic Graphs — 43

	Tree-automatic graphs
	Defined by automata
	Defined by interpretations
	Equivalence proof

	2-tree-automatic graphs
	Defined by interpretations
	Defined by automata
	Equivalence proof

	Application and perspectives

