
Order 2 Tree-Automatic Graphs
(work in progress)

Antoine Meyer (UPEM)
Joint work with Arnaud Carayol (CNRS, UPEM)

Automatic Presentations of Graphs and Numbers
IMSc, 11/10/2016

Antoine Meyer Order 2 Tree-Automatic Graphs – 1

Summary
◦ The pushdown hierarchy of infinite graphs

[KNU02, Cau02, CW03]
◦ Level n : transition graphs of n-pushdown automata
◦ Can be obtained from a unique graph using logic-based

transformations
◦ Using more expressive transformations, one gets strictly
more graphs [CL07]
◦ At level 1: tree-automatic graphs
◦ Above: a strict hierarchy of tree-automatic-like graphs

◦ Our aim:
◦ Characterize these graphs directly using automata
◦ Characterize their traces

◦ This talk : spend time explaining levels 1 and 2
Antoine Meyer Order 2 Tree-Automatic Graphs – 2

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 3

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 4

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 5

Word-automatic graphs

Let u, v be finite words over alphabet C
◦ Padding of u : u�(i) = u(i) if i ∈ dom(u), � otherwise
◦ Overlap of u and v : u⊗ v : dom(u)∪dom(v)→ (C ∪�)2
such that u ⊗ v(i) = (u�(i), v �(i))

A relation R is word-automatic if {u ⊗ v | (u, v) ∈ R} is
regular (i.e. accepted by a finite automaton)

A graph G is word-automatic if all its edge relations are

Antoine Meyer Order 2 Tree-Automatic Graphs – 6

Examples of automatic graphs

Infinite grid of dimension k
◦ Vertices : words of the form an1

1 . . . ank
k representing

coordinate vectors (n1, . . . , nk)
◦ Edges :

Li = {an1
1 . . . ank

k ⊗ an1
1 . . . ani +1

i . . . ank
k | n1, . . . , nk ≥ 0}

Antoine Meyer Order 2 Tree-Automatic Graphs – 7

Examples of automatic graphs

Full binary tree with “equal length” predicate
◦ Vertices : {a, b}∗
◦ Edges :

◦ La = {u ⊗ ua | u ∈ {a, b}∗}
◦ Lb = {u ⊗ ub | u ∈ {a, b}∗}
◦ L∼ = {u ⊗ v | u, v ∈ {a, b}∗, |u| = |v |}

Antoine Meyer Order 2 Tree-Automatic Graphs – 8

Tree-automatic graphs

Let s, t be finite binary C -labelled trees
◦ Padding of t : t�(u) = t(u) if u ∈ dom(t), � otherwise
◦ Overlap of s and t : s ⊗ t : dom(s) ∪ dom(t)→ (C ∪ �)2
such that s ⊗ t(u) = (s�(u), t�(u))

A relation R is tree-automatic if {s ⊗ t | (s, t) ∈ R} is regular
(i.e. accepted by a finite tree automaton)

A graph G is tree-automatic if all its edge relations are

Antoine Meyer Order 2 Tree-Automatic Graphs – 9

Finite tree automata

A finite (binary) tree automaton over alphabet C consists in:
◦ A finite set of control states Q, some of which are root
states, and some leaf states

◦ A finite set of transitions of the form (p, c , q, r) or (p, c)
with p, q, r ∈ Q and c ∈ C

Antoine Meyer Order 2 Tree-Automatic Graphs – 10

Finite tree automata

A C -labelled tree t is accepted if it can be labelled by states in
such a way that
◦ The root of t is labelled by a root state
◦ For each leaf labelled p and c there exists a transition

(p, c)
◦ For each internal node labelled p and c , with children
labelled q and r , there exists a transition (p, c , q, r)

Antoine Meyer Order 2 Tree-Automatic Graphs – 11

Example of tree-automatic graph

Given A ⊆ {a, b}∗, write tA the smallest binary tree with all
positions in A marked

“Weak powerset” graph of the full binary tree
◦ Vertices : all tA for finite A
◦ Edges :

◦ La = {t{u} ⊗ t{ua} | u ∈ {a, b}∗}
◦ Lb = {t{u} ⊗ t{ub} | u ∈ {a, b}∗}
◦ L⊆ = {tA ⊗ tB | A ⊆ B}

Antoine Meyer Order 2 Tree-Automatic Graphs – 12

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 13

Monadic second order logic (MSO)
Language consisting of :
◦ first-order variables x , y , . . . denoting elements
◦ second-order variables X ,Y , . . . denoting sets
◦ atomic predicates R(x , y), x = y , x ∈ X
◦ Boolean connectives ∧,∨,¬
◦ first- and second-order quantification

Example (over binary relation R):

Reach(s, t) ≡ ∀X
(
s ∈ X

∧ ∀x∀y(x ∈ X ∧ xRy ⇒ y ∈ X)
)
⇒ t ∈ X

Antoine Meyer Order 2 Tree-Automatic Graphs – 14

MSO interpretations

Let:
◦ G be a Σ-labelled graph, Γ a finite set
◦ δ(x), φa(x , y) for all a ∈ Γ be MSO-formulas over

Σ-labelled graphs
◦ J =

(
δ(x), (φa(x , y))a∈Γ

)

J is called an MSO-interpretation and

J(G) = {u a−→ v | G |= δ(u) ∧ δ(v) ∧ φa(u, v)}

is the Γ-graph interpreted in G via J

Antoine Meyer Order 2 Tree-Automatic Graphs – 15

Finite sets interpretations

Let:
◦ G be a Σ-labelled graph, Γ a finite set
◦ δ(X), φa(X ,Y) for all a ∈ Γ be WMSO formulas over

Σ-labelled graphs
◦ J =

(
δ(X), (φa(X ,Y))a∈Γ

)

J is called an finite sets interpretation and

J(G) = {U a−→V | G |= δ(U) ∧ δ(V) ∧ φa(U ,V)}

is the Γ-graph interpreted in G via J

Antoine Meyer Order 2 Tree-Automatic Graphs – 16

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Grid :
◦ δX : set of distinct numbers {n1, . . . , nk} encodes tuple

(n1 − 1, n2 − n1 − 1, . . . , nk − nk−1 − 1)
◦ φi(X ,Y) ensures that the smallest i − 1 elements of X
and Y coincide, and all others are incremented by 1 in Y

Antoine Meyer Order 2 Tree-Automatic Graphs – 17

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Full binary tree with equal length predicate :
◦ Node u is represented by {i | u(i) = b} ∪ {|u|}
◦ φa(X ,Y) checks that Y = X \ {max(X)}∪{max(X) +1}
◦ φb(X ,Y) checks that Y = X ∪ {max(X) + 1}
◦ φ∼(X ,Y) checks that max(X) = max(Y)

Antoine Meyer Order 2 Tree-Automatic Graphs – 18

Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Weak powerset of ∆2 :
◦ tA (tree with all nodes in A marked) represented by... A !
◦ φa(X ,Y) holds iff X = {u} and Y = {ua}
◦ φb(X ,Y) holds iff X = {u} and Y = {ub}
◦ φ⊆(X ,Y) holds iff X ⊆ Y

Antoine Meyer Order 2 Tree-Automatic Graphs – 19

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 20

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of ∆2

⊇: For each formula φ(X ,Y) :
◦ From φ(X ,Y), build as usual an equivalent parity
automaton over ∆2 annotated by {0, 1}2

◦ Convert into an automaton over finite trees containing all
positions in X and Y (finite sets !)

◦ Below, it suffices to know from which states the parity
automaton accepts ∆2 to crop the computation

Antoine Meyer Order 2 Tree-Automatic Graphs – 21

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of ∆2

⊆: For each tree automaton over C 2,
◦ Reduce C to a singleton by coding (patterns in the tree’s
structure)

◦ Represent any (finite) tree by its domain (finite set
⊆ {a, b}∗)

◦ Build a WMSO formula satisfied in ∆2 by pairs of sets
encoding accepted overlaps of pairs of trees

Antoine Meyer Order 2 Tree-Automatic Graphs – 22

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 23

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 24

A few words on the infinite binary
tree (∆2)

Close connection with pushdown automata :
◦ Set of paths of the full {a, b} tree : {a, b}∗

◦ Positions may be used to represent stack contents over
stack alphabet {a, b}

◦ MSO interpretations yield the transition graphs of
pushdown automata (PDA)

◦ FS interpretations yield the tree-automatic graphs

Decidable MSO theory

Generalizations exist for more general pushdown automata
accessing nested stacks of stacks

Antoine Meyer Order 2 Tree-Automatic Graphs – 25

Order 2 pushdown stacks (2-stacks)

Let A be a finite stack alphabet
◦ a stack is a sequence [a1 . . . a`] with ai ∈ A
◦ a 2-stack is a sequence [s1 . . . s`] with si a stack

Allowed 2-stack operations:
◦ pusha

1: add a at the top of the topmost stack
◦ popa

1: remove a from the top of the topmost stack
◦ push2: duplicate the topmost stack
◦ pop2: destroy the topmost stack

Antoine Meyer Order 2 Tree-Automatic Graphs – 26

Order 2 pushdown automata

Definition: an order 2 pushdown automaton (2-PDA) is a
finite-state automaton with an auxiliary 2-stack, with
transitions of the form:
from p, if top symbol is a, move to q and apply op, reading b

p, a b−→ q, op

◦ All operations chosen in {push1, pop1, push2, pop2}
◦ Acceptance by final state
◦ If b is ε, then all other (p, a) transitions also labelled ε
◦ Deterministic or ε-free versions less expressive

Antoine Meyer Order 2 Tree-Automatic Graphs – 27

Pushdown graphs and trees

A 2-PDA A can be used to generate a language, or:
◦ A configuration graph (with ε-transitions):

(p, s) b−→ (q, s ′) if (p, top(s) b−→ q, op) ∈ A, s ′ = op(s)
◦ A transition graph (ε-closure of the configuration graph)
◦ A tree (unfolding of the transition graph)

Whenever A is deterministic, so are the above structures

Antoine Meyer Order 2 Tree-Automatic Graphs – 28

The “order 2 treegraph” (∆2
2)

Definition: vertices corresponding to all 2-stacks, edges
representing operations pusha

1, pushb
1 and push2

Close connection with 2-PDA :
◦ Walks between s and t (allowing some backward edges)
encode sequences of 2-stack operations yielding t from s

◦ MSO interpretations of this graph yield the transition
graphs of order 2 pushdown automata (2-PDA)

Decidable MSO theory

Definition: a graph G is 2-(tree-)automatic if there exists a
finite set interpretation J such that G = J(∆2

2)

Antoine Meyer Order 2 Tree-Automatic Graphs – 29

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 30

An order 2 generator tree

Remarks:
◦ No pure automata-based characterization of 2-TA
◦ ∆2

2 is not a tree! → Look for another generator

Definition: Let T 2
2 be the unfolding of ∆2 with added

backward edges (labelled ā, b̄)

Properties:
◦ There is an MSO-int. J such that ∆2

2 = J(T 2
2)

◦ Paths from the root of T 2
2 encode sequences of stack

operations which are well-defined on []1

Antoine Meyer Order 2 Tree-Automatic Graphs – 31

Finite tree automata over T 2
2

Idea:
◦ Use T 2

2 as a fixed enclosing domain to define binary
relations over finite trees

◦ Define tree automata running on finite C 2-labelled
prefixes of T 2

2

Problem:
◦ T 2

2 has infinitely many non-isomorphic subtrees
◦ Finite tree automata lack expressiveness w.r.t FSI

Solution: allow tree automata to test the stack content
reached after a sequence of operations

Antoine Meyer Order 2 Tree-Automatic Graphs – 32

Tree automata with oracles

Definition: finite tree automata with transitions of the form
(p, c ,O, q, r) with O a regular language over {a, b}

A C -labelled tree t is accepted if it can be labelled by states in
such a way that
◦ The root of t is labelled by a root state
◦ Each leaf is labelled by a leaf state
◦ For each internal node labelled p and c and reachable
from the root by w , with children labelled q and r , there
exists a transition (p, c ,O, q, r) with w([]1) ∈ O

Antoine Meyer Order 2 Tree-Automatic Graphs – 33

2-tree automatic relations

Definition: a relation R is 2-tree-automatic if
◦ Its support are finite trees t with dom(t) ⊂ dom(T 2

2)
◦ The set {s ⊗ t | (s, t) ∈ R} is accepted by a tree
automaton with oracles

No change to the notion of padding

A graph is 2-tree-automatic if each of its edge relations is

Antoine Meyer Order 2 Tree-Automatic Graphs – 34

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 35

Equivalence proof

Proposition: Given a graph G , the following statements are
equivalent

1 There exists a FSI J such that G = J(∆2
2)

2 There exists a FSI J such that G = J(T 2
2)

3 For each edge label a, the a-labelled edge relation in G is
accepted by a finite tree automaton with oracles

Antoine Meyer Order 2 Tree-Automatic Graphs – 36

Equivalence proof

1 ⇐⇒ 2:
◦ For all FSI J there exists a FSI J ′ such that

J(∆2
2) = J ′(T 2

2)
◦ The converse also holds

Antoine Meyer Order 2 Tree-Automatic Graphs – 37

Equivalence proof

2 =⇒ 3:
◦ From each φ(X ,Y) in J , build an equivalent parity
automaton A over T 2

2 annotated by {0, 1}2

◦ Lemma: for any state p of A, there exists a regular
language Op such that A accepts T 2

2 from node w and
state p iff w([]1) ∈ Op

◦ Convert A into a tree automaton with oracles Op over
finite prefixes of T 2

2 containing all positions in X and Y
3 =⇒ 2: As previously, transforming tests into equivalent
WMSO formulas

Antoine Meyer Order 2 Tree-Automatic Graphs – 38

Outline

1 Tree-automatic graphs
Defined by automata
Defined by interpretations
Equivalence proof

2 2-tree-automatic graphs
Defined by interpretations
Defined by automata
Equivalence proof

3 Application and perspectives

Antoine Meyer Order 2 Tree-Automatic Graphs – 39

Traces of automatic graphs

Extension of previous results on traces:
◦ The traces of automatic graphs are the context-sensitive
languages (linearly bounded Turing machines)
[MS01, Ris02, CM06]

◦ The traces of tree-automatic graphs are the class
DTIME(2O(m)) (alternating LBM, ASPACE(m)) [Mey07]

Using similar techniques, show that the languages of 2-TA
graphs form the class DTIME(22O(m)) accepted by
ASPACE(m)-P machines

Antoine Meyer Order 2 Tree-Automatic Graphs – 40

Towards a tree-automatic hierarchy
Similar classes of n-tree-automatic graphs are defined by
finite-set interpretations from ∆n

2

Work in progress:
◦ Define corresponding trees T n

2

◦ Define tree automata with oracles for level n (difficult)
◦ Generalize the result on traces to all levels

Possible implications:
◦ New proof of strictness based on traces
◦ No known results about the classes obtained using
collapsible stacks

Antoine Meyer Order 2 Tree-Automatic Graphs – 41

Didier Caucal.
On infinite terms having a decidable monadic theory.
In MFCS, volume 2420 of LNCS, pages 165–176. Springer, 2002.

Thomas Colcombet and Christof Löding.
Transforming structures by set interpretations.
Logical Methods in Computer Science (LMCS), 3(2), 2007.

Arnaud Carayol and Antoine Meyer.
Context-sensitive languages, rational graphs and determinism.
Logical Methods in Computer Science, 2(2), 2006.

Arnaud Carayol and Stefan Wöhrle.
The caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata.
In FSTTCS, volume 2914 of LNCS, pages 112–123. Springer, 2003.

Teodor Knapik, Damian Niwinski, and Paweł Urzyczyn.
Higher-order pushdown trees are easy.
In FoSSaCS, volume 2303 of LNCS, pages 205–222. Springer, 2002.

Antoine Meyer.
Traces of term-automatic graphs.
In MFCS, volume 4708 of LNCS, pages 489–500. Springer, 2007.

Antoine Meyer Order 2 Tree-Automatic Graphs – 42

Christophe Morvan and Colin Stirling.
Rational graphs trace context-sensitive languages.
In MFCS, volume 2136 of LNCS, pages 548–559. Springer, 2001.

Chloe Rispal.
The synchronized graphs trace the context-sensitive languages.
Electr. Notes Theor. Comput. Sci., 68(6):55–70, 2002.

Antoine Meyer Order 2 Tree-Automatic Graphs – 43

	Tree-automatic graphs
	Defined by automata
	Defined by interpretations
	Equivalence proof

	2-tree-automatic graphs
	Defined by interpretations
	Defined by automata
	Equivalence proof

	Application and perspectives

