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@ Natural (IN), Rationals (Q), Real (R), Complex (C), ...
@ How do we compute with such numbers?

@ How do we represent such numbers?

Representations

Number | Decimal | Binary | Continued Fractions
3 3 11 3
: .3333... | .0101... 0+3
V2 | 1.4142... | 1.011... T4 ——
tE=
e 2.7182... | 10.101.. 24+ ——
+2+ﬁ
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Representation of Real Numbers

@ Injective map from R to a set of infinite strings on an alphabet.

@ Alphabet ¥, := {0,1}.

o ¥} := {finite strings on X} = {€,0,1,00,01,10,11,...}.

@ Meaningful representation will preserve the arithmetic structure of RR.
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Computational perspective
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v

V. Sharma Introduction to Automatic Numbers IMSc 2016 3/11



Representation of Real Numbers

@ Injective map from R to a set of infinite strings on an alphabet.

@ Alphabet ¥, := {0,1}.

o ¥} := {finite strings on X} = {€,0,1,00,01,10,11,...}.

@ Meaningful representation will preserve the arithmetic structure of RR.

v

Computational perspective

@ We only have finite amount of time and can work with finite descriptions.

@ Computable Number: Representation is computable by finite means.
Turing (1936): Real numbers whose expressions as a decimal are
calculable by finite means.

v

V. Sharma Introduction to Automatic Numbers IMSc 2016 3/11



Representation of Real Numbers

@ Injective map from R to a set of infinite strings on an alphabet.

@ Alphabet ¥, := {0,1}.

o ¥} := {finite strings on X} = {€,0,1,00,01,10,11,...}.

@ Meaningful representation will preserve the arithmetic structure of RR.

v

Computational perspective

@ We only have finite amount of time and can work with finite descriptions.

@ Computable Number: Representation is computable by finite means.
Turing (1936): Real numbers whose expressions as a decimal are
calculable by finite means.

@ Input: an x € R and number n € IN
@ Output: Compute in finite time the nth bit of the real number x.

v

V. Sharma Introduction to Automatic Numbers IMSc 2016 3/11



Representation of Real Numbers

@ Injective map from R to a set of infinite strings on an alphabet.

@ Alphabet ¥, := {0,1}.

o ¥} := {finite strings on X} = {€,0,1,00,01,10,11,...}.

@ Meaningful representation will preserve the arithmetic structure of RR.

v

Computational perspective

@ We only have finite amount of time and can work with finite descriptions.

@ Computable Number: Representation is computable by finite means.
Turing (1936): Real numbers whose expressions as a decimal are
calculable by finite means.

@ Input: an x € R and number n € IN
@ Output: Compute in finite time the nth bit of the real number x.
@ Machine model: Turing Machine, Pushdown Automata, Finite Automata.

v

V. Sharma Introduction to Automatic Numbers IMSc 2016 3/11



Representation of Real Numbers

@ Injective map from R to a set of infinite strings on an alphabet.

@ Alphabet ¥, := {0,1}.

o ¥} := {finite strings on X} = {€,0,1,00,01,10,11,...}.

@ Meaningful representation will preserve the arithmetic structure of RR.

v

Computational perspective

@ We only have finite amount of time and can work with finite descriptions.

@ Computable Number: Representation is computable by finite means.
Turing (1936): Real numbers whose expressions as a decimal are
calculable by finite means.

@ Input: an x € R and number n € IN
@ Output: Compute in finite time the nth bit of the real number x.
@ Machine model: Turing Machine, Pushdown Automata, Finite Automata.

v

V. Sharma Introduction to Automatic Numbers IMSc 2016 3/11



Automatic Numbers

Informal Definition
A real number whose nth bit is computable by a Finite Automata.
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Automatic Numbers

Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata

M=(Q,X,8,q,F):

Q finite set of states.

3 finite input alphabet (e.g., ¥>).

°
°
@ §:Qx X — Qtransition function.
@ qp initial state.

°

F C Q set of accepting states.

v
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Automatic Numbers

Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata

M=(Q,X,8,q,F):

Q finite set of states.

3 finite input alphabet (e.g., ¥>).

L(M) ={w € X*|6(qo,w) € F}.
={11,011,011000110,.....}.
= {strings with even ones}.

°
°
@ §:Qx X — Qtransition function.
@ qp initial state.

°

F C Q set of accepting states.

v
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Automatic Numbers
Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata
(O Z 5 , 40, )
@ Qfinite set of states.

@ 2 finite input alphabet (e.g., >2).

@ 0 :Q x X — Q transition function.

@ qo initial state. L(M) = {w € 7|6(qo, w) € F}.
= {11,011,011000110,....}.

* = = {strings with even ones}.

e 7:Q— 2o.

v
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Automatic Numbers
Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata
(O Z 5 , 40, )
@ Qfinite set of states.

@ 2 finite input alphabet (e.g., >2).

@ 0 :Q x X — Q transition function.
@ ( initial state. L(M) ={w € *|6(qo,w) € F}.
= {11,011,011000110,....}.

o F< Qsetotaccepting states: = {strings with even ones}.
@ 7T:Q— 2.
0

1
L
1
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Automatic Numbers
Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata

(O Z 5 , 40, )
@ Qfinite set of states.

@ 2 finite input alphabet (e.g., >2).
@ 0 :Q x X — Q transition function.
@ q initial state. L(M) = {w € 27|5(qo, w) € F}.

_ = {11,011,011000110,....}.
F<=@Qsetofaceeptingstates: . :
° = {strings with even ones}.
e 7T:Q— o

0 0
Thue-Morse sequence: A | A
n=1234567 ...
th=110100T1 ... @_@
T=3+3+0+%+0+0+5+.. 1 )
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Automatic Numbers — More examples

Fredholm number = ¥~ 272"
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Automatic Numbers — More examples

Fredholm number = ¥~ 272"
0 0 0/1

o e 1 o o
Rudin-Shapiro

nth bit is *1” iff the number of (overlapping) occurrences of “11”in [n], is even.

v

0 0

0205050
0 1 1
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Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n], € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

V. Sharma Introduction to Automatic Numbers IMSc 2016 6/11



Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n], € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

s e . 3 456 7 89
@ nth bit is one iff nis a square: 100410000 {1
@ Suppose Squares is accepted by a DFA (i.e., it is regular).
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Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n], € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

s e . 3 4 5 6
@ nth bit is one iff nis a square: 100410 0
@ Suppose Squares is accepted by a DFA (i.e., it is regular).

7 8 9
0 0 1

@ Then Squares N(11)*(00)*01 is also regular.
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Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n], € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

3 456 7 89
1001000 O0 1
@ Suppose Squares is accepted by a DFA (i.e., it is regular).

@ Then Squares N(11)*(00)*01 is also regular.

@ What squares n have [n], = (11)*(00)*01?

@ nth bit is one iff nis a square:
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Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n]> € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

L e 1 2 4 7 9
@ nth bit is one iff nis a square: 10 g 1 g g 0 g 1
@ Suppose Squares is accepted by a DFA (i.e., it is regular).

@ Then Squares N(11)*(00)*01 is also regular.

@ What squares n have [n], = (11)*(00)*01?

@ If [n]z has k “11” and £ “00” then n = (22K — 1)22(+2 4 1,
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@ L C ¥} anon-regular language. Then nth bit is one iff [n]> € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

s e 1 3 45 6
@ nth bit is one iff nis a square: 100100
Suppose Squares is accepted by a DFA (i.e., it is regular).
Then Squares N(11)*(00)*01 is also regular.

o
o
@ What squares n have [n], = (11)*(00)*01?
o
o

7 8 9
0 0 1

If [n]2 has k “11” and £ “00” then n = (22K —1)22+2 11,
Claim: nis a square iff k = £.
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Non-Automatic Numbers

@ L C ¥} anon-regular language. Then nth bit is one iff [n]> € L.
@ E.g., the nth bit is one iff [n]2 is of the form 0K 1%, for some k > 0.

Characteristic sequence of Squares

@ nth bit is one iff nis a square: 8 j g g

1 7 8 9
1 00 0 0 1
@ Suppose Squares is accepted by a DFA (i.e., it is regular).

@ Then Squares N(11)*(00)*01 is also regular.

@ What squares n have [n], = (11)*(00)*01?

@ If [n]z has k “11” and £ “00” then n = (22K — 1)22(+2 4 1,

@ Claim: nis a square iff k = £.

o

Thus Squares N(11)*(00)*01 = {12k0%*"1}, which is not regular.
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Properties of Automatic Numbers

Let (a,)n>1 be a sequence of bits, and F; := {[n].|a, = i}, i € {0,1}.
@ (an)n>1 is automatic iff F; is regular.
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Let (an)n>1 be a sequence of bits, and F; := {[n]z|a, =i}, i € {0,1}.
@ (an)n>1 is automatic iff F; is regular.
o If a sequence differs from (&,),>1 in finitely many indices it is automatic.
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@ What if we want to accept the input in a different base?
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M=(Q,%,3,q,7): Qfinite set of states,
2 finite alphabet :

6 : QX X — Q transition function,

Qo initial state,

T:Q— Xo.
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Properties of Automatic Numbers

Let (an)n>1 be a sequence of bits, and F; := {[n]z|a, =i}, i € {0,1}.
@ (an)n>1 is automatic iff F; is regular.
o If a sequence differs from (an)n>1 in finitely many indices it is automatic.
@ If (an)n>1 is ultimately periodic with period t then it is automatic.
» Q:={0,....,t—1},8(q,b) =2g+b modt, be {0,1}, 7(q) := aq.
@ All rational numbers are automatic.

@ What if we want to accept the input in a different base?

k-automatic — input string is in base k Rationals are k-automatic

M= (Q,%,8,q,7): Qfinite set of states, e Q:={0,...,t—1}

Y finite alphabet X :={0,...,k—1}, o 5(q,b)=kg+b modt

8 : Q x ¥ — Q transition function, ’ ’
- be{0,k—1}

Qo initial state,

7:Q— . o 7(q) :=aq.
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Properties of Automatic Numbers

k and ¢ are multiplicatively independent if k' # ¢/, for all i,j € Z.
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Cobham’s Theorem
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L(k) be the set of all k-automatic reals, for k > 2. x =Y~y a,2"" € L(k)
° QCL(k)
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@ Closed under addition: x,y € L(k), then x+y € L(k).
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e QCL(k)
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@ Unnormalized: if (ap) is k-automatic, 0 < a, < C, then so is ¥, a,2"".
@ Closed under addition: x,y € L(k), then x+y € L(k).
@ Division by integers: x/c € L(k), c € Zi+g
—Zn%”T" _ L%J o1 {2rem(a;,c)+agJ o2 [2rem(2rem(a1,c)+a2,c)J 23 ...

c

@ L(k) forms a vector space over Q.

4
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Properties of Automatic Numbers

Non-closure properties of L(k)
@ Multiplication:
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Properties of Automatic Numbers

Non-closure properties of L(k)

@ Multiplication:

» nth bit of Xy is }; Xjyn—;.

> Need to store all the previous bits. Not possible in finite memory.
e Squaring: xy = ((x+y)? — (x—y)?)/4.
@ Inverse: x® = x + —

x—1

_1
X
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Subword Complexity

Let x be an infinite string over a finite alphabet ¥.

@ A subword of x is a finite substring.
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Subword Complexity

Let x be an infinite string over a finite alphabet ¥.

@ A subword of x is a finite substring.

@ p(x,n) is the number of distinct subwords of length n. At most |X|".
@ If x is ultimately periodic then p(x,n) = O(1).

@ p(12345678910111213141516...,n) = 10".

@ p(x,n) < p(x,n+1)
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Subword Complexity

Let x be an infinite string over a finite alphabet ¥.

@ A subword of x is a finite substring.

@ p(x,n) is the number of distinct subwords of length n. At most |X|".
@ If x is ultimately periodic then p(x,n) = O(1).

@ p(12345678910111213141516...,n) = 10".

o p(x,n) < p(x,n+1) < kp(x, n)
— Let X := {distinct subwords of length n}. Then X x X are all distinct.
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Subword Complexity

Let x be an infinite string over a finite alphabet ¥.

@ A subword of x is a finite substring.
@ p(x,n) is the number of distinct subwords of length n. At most |X|".
@ If x is ultimately periodic then p(x,n) = O(1).
@ p(12345678910111213141516...,n) = 10".
@ p(x,n) <p(x,n+1) < kp(x, n)
— Let X := {distinct subwords of length n}. Then X x X are all distinct.
@ If x is k-automatic then p(x,n) = O(n).

@ Multiplication can increase the subword complexity to |X|".
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Further Questions

@ Is /2 automatic? Are irrational algebraic numbers automatic?
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Further Questions

@ Is /2 automatic? Are irrational algebraic numbers automatic?
» Algebraic number: o € C s.t. 3f(x) € Z[x], f(ax) = 0.
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@ Automatic Continued fractions: ag +
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Further Questions

@ Is /2 automatic? Are irrational algebraic numbers automatic?
» Algebraic number: o € C s.t. 3f(x) € Z[x], f(ax) = 0.
@ Is w automatic?
@ Can we compute with automatic numbers?
» Given Xq,...,X, € L(k) and ay,...,a, € Z decide Y, aix; = 0?
1

;
aj+

@ Automatic Continued fractions: ag + .
ay+...

» Finite: Q; Periodic: Quadratic irrationals (/2 etc.); How about degree 3?

@ Stronger machine models? Pushdown automata? Turing machines are
too strong.
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Further Questions

@ Is /2 automatic? Are irrational algebraic numbers automatic?
» Algebraic number: o € C s.t. 3f(x) € Z[x], f(a) = 0.

@ Is w automatic?

@ Can we compute with automatic numbers?
» Given Xq,...,X, € L(k) and ay,...,a, € Z decide Y, aix; = 0?

@ Automatic Continued fractions: ag + ﬁ
apt..

» Finite: Q; Periodic: Quadratic irrationals (\@ etc.); How about degree 3?

@ Stronger machine models? Pushdown automata? Turing machines are
too strong.

Reference

Allouche and Shallit — Automatic Sequences. Theory, Applications, Generalizations.
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Further Questions

@ Is /2 automatic? Are irrational algebraic numbers automatic?
» Algebraic number: o € C s.t. 3f(x) € Z[x], f(a) = 0.

@ Is w automatic?

@ Can we compute with automatic numbers?
» Given Xq,...,X, € L(k) and ay,...,a, € Z decide Y, aix; = 0?

@ Automatic Continued fractions: ag + ﬁ
apt..

» Finite: Q; Periodic: Quadratic irrationals (\@ etc.); How about degree 3?

@ Stronger machine models? Pushdown automata? Turing machines are
too strong.

Reference

Allouche and Shallit — Automatic Sequences. Theory, Applications, Generalizations.

Thank You! J
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