
Notes for LPCO Course

1 Intro

This course is about optimization problems. What do we mean by this? Consider the following problem:
Given positive reals x, y, maximize xy subject to the constraint that x + y = 2. The answer is x = y = 1,
and the geometric interpretation is that the square has the largest area amongst all rectangles with a given
perimeter. This was first shown by Euclid, and is a classic example of an optimization problem. This
example is a special case of the following more general problem: given a polynomial p(x) and a bounded
interval I ⊆ R find the maximum or minimum of p over I. It is clear that the optimum is attained either at
the points where the derivative vanishes, or at the boundaries of the interval.

Loosely speaking, an optimization problem consists of a domain D and an objective function (or cost
function) f : D → R, and the aim is to find a point in the domain that attains the minimum value of the
objective function over D (a minimization problem) or attains the maximum value of the objective function
(a maximization problem). In general, the problems may be unsolvable, since f may fail to have an optimum
value over D. However, if the domain is bounded and f is nice (continuous, let’s say) then there will be both
a minimum and a maximum. It is clear that by flipping the sign of the objective function a minimization
problem becomes a maximization problem and vice versa, hence it is sufficient to focus on one of the two
formulations. We now look at some more examples of optimization problem.

Another classical optimization problem is called Dido’s problem. Dido (also called Elissa) was a princess
of Tyre in Lebanon during the Phoenician times. She had to flee her brother Pygmalion due to a dynasty
struggle. In her flight with her trusted companions she came to a place in North Africa, where she requested
a piece of land for herself and her followers from a Berber king. The king allowed them to take as much land
that can be enclosed by an oxhide. What should Dido do? She cut the bull hide into thin rectangular strips
and formed an enclosed area in the shape of a circle. Amazingly, this is the optimal solution. The account
is given in Virgil’s epic poem Aeneid. The city she founded was Carthage, the great enemy-city of Rome.
Unfortunately for us, we won’t be covering optimization problems of this nature. 1

A more specific class of optimization problems are of the following nature: We are not only given an
objective function f : Rn → R as before, but some more functions g1, . . . , gm : Rn → R and a vector b ∈ Rm.
The aim is to find a x ∈ Rn which not only optimizes f but also satisfies the constraints gi(x) ≤ bi, for
i = 1, . . . ,m; note the direction of the inequality does not matter since by flipping the signs we can always
ensure that it is of the desired form. Such an optimization problem is called a mathematical optimiza-
tion problem or mathematical programming; the m functions g1, . . . , gm are called the constraint
functions. An example is the following projection problem: Suppose we are given a non-empty set S in Rn
defined by certain constraint functions, and a point p ∈ Rn; our aim is to find the “projection of p onto S”,
i.e., a point in S nearest to p. What is the objective function here? It depends on how distances are measured
in Rn. Let’s pick the euclidean norm for measuring distances. Then the problem is to find an x ∈ S such
that ‖x−p‖2 is minimized. In fact, let’s be more precise in defining the set S by a system of linear equations
Ax = b, where A ∈ Rm×n and b ∈ Rm, where m ≤ n. This particular class of optimization problems
has more structure to it than what we have described above, namely within the domain of mathematical
programming it comes from a special class of optimization problems called convex optimization, because

1This problem is called the isoperimetry problem and its solution is an extreme case of the isoperimetric inequality. Given a
closed curve of length L if A is the area covered by the curve then the inequality states that 4πA ≤ L2. Equality is achieved iff
the curve is a circle; in other words, amongst all closed curves of fix length L, the circle encloses the maximum area. A similar
inequality holds in three dimensions, where amongst all bodies of a fixed volume the sphere attains the smallest surface area,
this is the reason why a rain drop is spherical in shape.

1

both the objective function and the constraint functions are convex. What does it mean that a function is
convex?

A set S ⊆ Rn is called convex if for any two points in x,y ∈ S, the line segment joining the two points
is contained in S; algebraically, for all λ ∈ [0, 1] the set of points λx + (1−λ)y ∈ S. An equivalent definition
involves the notion of convex combination of a set of points p1, . . . ,pn, namely the set of all points of the
form

∑n
i=1 λipi, where λi ∈ [0, 1] and

∑
i λi = 1.

Claim: A set S is convex iff S is closed under taking convex combinations.
Let S ⊆ Rn be a convex set. A function f : S → R is called a convex function if for every x,y ∈ S and

λ ∈ [0, 1],
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1)

In terms of convex sets, a function is convex iff its epigraph, i.e., the set
{

(x, y) ∈ Rn+1 : y ≥ f(x)
}

, is a
convex set. The following are examples of convex functions:

1. All linear functions, i.e., functions which satisfy the following property

f(cx + dy) = cf(x) + df(y), (2)

for all x,y ∈ Rn, and for all c, d ∈ R, are convex; this is easy to verify from (1).

2. All norms are convex functions, in particular, the euclidean norm used in our example above is a convex
function.

To see the claim for norms, recall that a norm ‖ · ‖ : Rn → R is a function that satisfies the following
properties:

1. for all x ∈ Rn, ‖x‖ ≥ 0, with equality iff x = 0;

2. for all c ∈ R and x, ‖cx‖ = |c|‖x‖; and

3. the triangular inequality holds: for all x,y ∈ Rn, ‖x + y‖ ≤ ‖bfx‖+ ‖y‖.

Clearly,
‖λx + (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖.

Example of a non-convex function is
√
x, for positive x, and sin(x). Therefore, the objective function for the

projection problem above is convex. But why is the domain convex? Recall that the domain wsa given by
the solution to a system of inequalities gi(x) ≤ bi, where gi are convex functions. To see this we need two
results.

Lemma 1. Intersections of convex sets is a convex set.

Proof. For every x,y in the common intersection we know that the line segment joining them belongs to
all the sets, and hence to their intersection. Q.E.D.

Lemma 2. Let g : Rn → R be a convex function and b ∈ R. Then the set {x ∈ Rn : g(x) ≤ b} is a convex
set.

Proof. Follows from the definition of convexity and the property of convex combinations. Q.E.D.

But perhaps the most important aspect of convex programming is the uniqueness of the optimum. Recall
that a local minima x for an objective function f with domain D is a point such that there is an ε-
neighborhood of x such that for all points y in this neighborhood f(x) ≤ f(y). In contrary to this, a global
minima x is one such that for all points y ∈ D, f(x) ≤ f(y). One reason why general optimization problems
are difficult to solve is because there may be many local minimma that are situated far away from a global
minima, which means that locally optimal decisions may not lead to a global optimum. In the case of convex
programming, however, this situation does not arise:

Theorem 3. For a convex function f : D → R, where D is a convex set, every local minima is also a global
minima.

2

Proof. Let x be a local optimum and z ∈ D be an arbitrary point. Then we know that there exists an
ε-neighborhood of x on which x is the local minima. Consider the line segment joining x and z and let y
be a point on this segment that is contained in the ε-neighborhood of x. Then we have f(x) ≤ f(y), but by
definition y = λx + (1− λ)z and it is in D since D is convex. Therefore, from the convexity of f we have

f(x) ≤ λf(x) + (1− λ)f(z).

Since (1− λ) ≥ 0, this implies that f(x) ≤ f(z) for all z ∈ D. Q.E.D.

Remark: Note that we do not have a converse to this result, i.e., if a function has a unique optimum

then it is convex. The functions
√
x is a counterexample.

Most of the course will be around a rather special class of convex programming, namely linear pro-
gramming, i.e., an optimization problem where both the objective function and the constraint functions
are linear functions. More precisely: Given a linear objective function f : D → R and m linear functions
gi : D → R a linear program is to

minimize f(x) subject to

gi(x) ≤ bi for i = 1, . . . ,m.
(3)

The minimization part can be suitably replaced with maximization, by flipping the sign.
Dantzig was the first to realize the importance of this set of problems and gave the simplex algorithm

to solve such problems. We will see this method. The simplex gives us more than one algorithms to solve
LP depending upon certain choice of “pivot rules”. For most of the known choices of these rules, LP takes
exponential time in the worst case. Whether there is a choice of rules which gives a poly-time algorithm
is still unknown. There are randomized algorithms whose expected running time is polynomial, we will see
some of them. But we will see the first two deterministic polynomial time algorithms – Khachiyan’s ellipsoid
method, and Karmarkar’s interior point method.

In CS we come across a different kind of optimization problem, namely where the domain is discrete.
For instance, MST on a undirected weighted graph, or the TSP. Such optimization problems are called
Discrete/Combinatorial Optimization problems. We will see how sometimes the LP solution to the problem
can be used to obtain good approximations to the optimal solution, or occasionally even the optimal solution.
The problem of optimizing over a discrete set is related to the integer optimization problem.

Other topics are the notion of duality in LP, which gives a unified proof to many theorems of the
form: max-cut is equal to min-flow, or Menger’s theorem (max-vertex disjoint paths = min-cut between two
vertices).

Generalizations to SDP and vector programming.

1.1 Some interesting examples of LPs

Realizing that an optimization problem is an LP and formulating it in the form (3) is some times not
straightforward, as illustrated by the following examples.

1. Flows in a graph. A flow network is a directed graph G = (V,E) with a capacity function c : E → R≥0

and two distinguished vertices, a source vertex s and a target vertex t. For every vertex v, let I(v)
denote the set of edges directed to v and similarly define O(v). A flow in G is a function f : E → R
satisfying the following conditions:

(a) Non-negativity: for all e ∈ E, f(e) ≥ 0,

(b) Capacity constraints: for all e ∈ E, f(e) ≤ c(e), and

(c) Flow conservation: for all v ∈ V \ {s, t},
∑
e∈I(v) f(e) =

∑
e∈O(v) f(e).

The size of the flow is defined as
∑
e∈O(s) f(e) −

∑
e∈I(s) f(e), which measures the gradient of flow

across the source node. The optimization problem is to obtain the largest flow for G. How do we
model this as an LP? For every edge e introduce a variable xe. Then the set of constraints is of the
form: for all e, 0 ≤ xe ≤ c(e), and similarly for flow conservation. The optimization function is simply∑
e∈O(s) xe −

∑
e∈I(s) xe, which is clearly linear.

3

2. In Nature in year 2009 some scientists showed that there is a linear relationship between the total
cumulative emissions and global temperature change for the last two centuries. How can they show
such a claim? Or suppose we have some oil wells in the plane, and you want to lay a single pipeline
that is optimal wrt its distance from all the oil wells, how will we do it? This is the problem of linear
data-fitting. Basically, given a set of points (xi, yi) ∈ R2, i = 1, . . . , n, we have to find a line y = ax+ b
that best fits the data. One notion of best fitting could be to minimize

∑
i(axi + b − yi)2, but this

optimization function is not linear. How about taking
∑
i |axi + b− yi| as our optimization function?

Can we write an LP for this problem? This is not immediately evident because of the absolute value,
however, we know that this function is still piecewise linear. The basic problem is the following: given
a number a ∈ R, we want to compute its absolute value. Can we write an LP to do that? Yes, and
here is how: minimize x, subject to x ≥ a,−a. From this observation, the LP for the problem follows:
One way to do this is to introduce variables e1, . . . , en for the absolute values, and a, b for the line,
then the LP is minimize

∑
ei subject to ei ≥ (axi + b− yi),−(axi + b− yi).

3. Suppose we are given a convex polygon P by the equation of the lines corresponding to its segments,
and we want to find the largest disc that can be fitted inside it P . On the face of it, the problem again
doesn’t appear to be linear because we are trying to fit a non-linear object, a disc, inside a piecewise
linear object. The only variables that seem to be required are the coordinates (p, q) of the center of the
disc and its radius r. We want to maximize r, subject to the constraint that p, q is inside the polygon
and its distance to all the lines is at least r. The distance of (p, q) from a line y = ax+ b is∣∣∣∣q − ap− b√

1 + a2

∣∣∣∣ .
Let’s suppose that we know the order of the lines around the polygon. Then the lines can be partitioned
into a lower hull (where the slopes are increasing) and an upper hull where the slopes are decreasing.
The value above is positive for the lines in the lower hull and negative for the lines in the upper. A
proper choice of sign for each gives us the desired set of n inequalities.

4

2 Two Forms of LP – Canonical and Equational

In (3) we have seen one way to formulate an LP. There are many neat ways to express the same. The crucial
point is that a linear functional has a very special structure:

Lemma 4. Let f : Rn → R be a linear functional then f corresponds to the inner product operator corre-
sponding to some vector v, i.e., for all x ∈ Rn, f(x) = 〈v,x〉.

Proof. Let e1, . . . , en be the standard basis vectors in Rn and x =
∑
i αiei. Then by linearity of f we

have
f(x) =

∑
i

αif(ei).

Let vi := f(ei), then the claim follows. Q.E.D.

From this result it follows that for f and each gi there is a corresponding vector whose inner-product
operation gives us the function. Let c be the vector corresponding to the objective function, and ai be the
vectors corresponding to the constraint function. Then the LP in (3) can be expressed as

maximize 〈c,x〉 subject to

〈ai,x〉 ≤ bi for i = 1, . . . ,m.
(4)

Let A be the m × n matrix whose rows are the vectors ai’s then we can express the problem above even
more succinctly:

maximize 〈c,x〉 subject to Ax ≤ b (5)

This will be called the canonical form of LP. We will usually assume in this form that m ≥ n.
The canonical form gives us a neat way to formalize LPs. However, given our comparatively better

understanding of solving linear equations, we would ideally like to replace the complicated inequalities
Ax ≤ b by equality constraints Ax = b and very simple inequalities on the variables, namely that all
the variables are positive; the transformation is also necessary for the simplex method. More formally, the
standard form or equational form of an LP is the following:

maximize 〈c,x〉 subject to Ax = b and x ≥ 0. (6)

It is easy to see that this form is a special case of the canonical form. We next show the other way round,
namely, obtaining the ef from cf.

First, how do we convert inequalities to equalities? Given an inequality, 〈ai,x〉 ≤ bi, we introduce a
slack variable yi ≥ 0, and solve for 〈ai,x〉 + yi = bi. This would seem to address our concerns. However,
there may be variables that are unconstrained, whereas the equational form emphasizes that all variables
are positive. To address this issue, we introduce two positive variables w, z for each unconstrained variable
x and express x as their difference, i.e., x = w − z, and substitute x by w − z in all the equations. Thus in
total we could have introduced at most m + 2n new variables, m for each inequality and 2 for each of the
n variables. Thus, wlog, we will always assume in the equational form that the number of variables exceeds
the number of inequalities. Consider the following LP:

maximize 2x1 − 3x2

s.t. x1 − x2 ≤ 4

3x1 + x2 ≥ 2

x2 ≥ 0.

The canonical form is obtained by flipping the sign of the second constraint:

maximize 2x1 − 3x2

s.t. x1 − x2 ≤ 4

− 3x1 − x2 ≤ −2

x2 ≥ 0.

5

The equational form is obtained by adding slack variables x3, x4 to the first two constraints and as x1 is
unconstrained by expressing it as a difference of two positive numbers x5 − x6. The resulting ef is the
following:

maximize 2x5 − 2x6 − 3x2

s.t. x5 − x6 − x2 + x3 = 4

− 3x5 + 3x6 − x2 + x4 = −2

x2, x3, x4, x5, x6 ≥ 0.

In the next few sections we will be mostly concerned with an lp in ef. We cannot overemphasize the
point that statements valid in equational form do not carry over to the canonical form.

3 Basic Feasible Solutions and A First Algorithm for LP

We next try to understand the solution set to the system Ax = b subject to x ≥ 0, where A is an m × n
matrix, m ≤ n. Geometrically, the set of solutions to Ax = b is an affine space (i.e., a translated version
of a vector space). The set of feasible solutions are the solutions to this system that are in the positive
orthant. For any feasible solution x, let π(x) ⊆ [n] denote the set of indices j for which xj > 0. We will
show that amongst the feasible solutions, there are certain interesting solutions that will attain the optimum
value, if there is an optimum value. We first cleanup our system of equations.

How can we check if an LP is feasible or not? We know that under elementary row and column operations
the set of solutions to Ax = b remains unchanged. We claim that we can do these operations on A to obtain
another system of equations with full row rank having the same set of solutions as the original system. The
idea is to perform Gaussian elimination on the augmented matrix [A|b]. If at any point we get a row whose
first n entries are zero and the last entry is non-zero, we know that the original system of equations has
no solution; if this does not happen, this means that the equation corresponding to that row is linearly
dependent on other rows and hence is redundant in our system of equations and can be discarded. The
system of equations A′x = b′ obtained at the end of this process has the following two properties:

1. the system has a solution and

2. the matrix A′ is full row-rank.

Thus from now on we can assume that the original system Ax = b satisfies these two assumptions, and
hence rank(A) = m. The definition of an equational form will always include these two assumptions.

If A is square, i.e., m = n, then Ax = b has a unique solution A−1b, and if this solution is feasible then
clearly this is the optimal solution. In general, when m < n, can we find similar interesting solutions? Let
B ⊆ [n] be a set of m-indices of columns of A, and AB be the m×m matrix obtained from A after removing
all the columns from A except those indexed by B. Suppose the columns of AB are linearly independent;
we know that such a B exists because rank(A) = m. Then AB is a non-singular matrix and we can solve
the equation ABxB = b, and use this solution to construct a solution for Ax = b by amending xB by
introducing zeros at all the indices in x that are not in B. A basic feasible solution (bfs) of Ax = b is a
feasible solution with the following properties:

1. there exists a set B ⊆ [n] of size m such that AB is non-singular,

2. xj = 0 for all j 6∈ B, and

3. x ≥ 0.

The set B above is called a feasible basis. The set of variables indexed by B are basic variables, and
those not in B are non-basic variables. Note that a bfs is uniquely determined by the set B, but two
different feasible bases can yield the same bfs. For example, suppose

A =

[
1 5 −3 1
0 3 −2 1

]
and b =

[
2
1

]
.

6

Then B = {1, 4} is a feasible basis and AB =

[
1 1
0 1

]
and the corresponding bfs is (1, 0, 0, 1)t. Consider

the set B = {2, 3}, which is also feasible as AB =

[
5 −3
3 −2

]
is non-singular and the corresponding bfs is

(0, 1, 1, 0)t. Why are bfs interesting?

Theorem 5. If an optimum solution to the ef of an LP exists, then there is a bfs that is optimum.

Algorithm: Choose all subsets of m columns of A; check if AB is non-singular; if so, compute the basic
solution; if the basic solution is non-negative, then pick the one that maximizes the objective function. The
algorithm takes

(
n
m

)
steps; if n = 2m, then this is roughly 22m, which is exponential. What about the sizes

of the numbers involved? We can show using Cramer’s rule that the bit-size of all bfs’s is polynomially
bounded.

We first show the following result:

Lemma 6. A feasible solution x is a bfs iff the columns in A indexed by the set π(x) are lid.

Proof. One direction is easy: If x is a bfs corresponding to a feasible basis B then we know that any
subset of columns of AB is linearly independent, in particular, the columns corresponding to π(x) are lid.

For the converse, suppose x is a feasible solution and the columns of Aπ(x), are lid. Then we know from
basic linear algebra that there are m−|π(x)| columns of A that are lid of the columns in Aπ(x) and together
form a basis for the column space of A. Therefore, π(x) along with the m− |J | indices for these additional
columns gives us a feasible basis B, and as Ax = b it follows that ABxB = b, and hence x is a bfs. Q.E.D.

So, for instance, in our example LP above, x = (1/3, 1/3, 0, 0)t is a feasible solution and clearly the first
two columns of A are lid, therefore, x is also a bfs. The proof above demonstrates how the same bfs can

correspond to more than one feasible basis. For example, consider the earlier example but with b =

[
2
2

]
.

Then x = (0, 0, 0, 2)t is a solution but it corresponds to all the bases {1, 4}, {2, 4} and {3, 4}, as we can
combine the last column with any of the remaining columns to get a feasible basis (the corresponding xB
differs for each choice of B, namely it has 2 for the fourth column and zero everywhere else). We now prove
Theorem 5.

Proof. Let x∗ be an optimal solution to the LP. The basic idea is to give an iterative process that
transforms x∗ to a bfs by making its positive entries zero. For convenience, let J :=π(x∗).

If x∗ is not a bfs, then from the lemma above we know that the columns of AJ are ld, i.e., there is a
vector v ∈ R|J| such that AJv = 0. Note that v can have negative entries. Define w as the vector wj := vj ,
for j ∈ J and wj = 0, for j 6∈ J . Then Aw = AJv + AJ0 = 0. Thus x∗ + λw is always a solution to the
equation Ax = b; in fact, we can add λw to any solution of Ax = b to obtain another solution.

We next give an iterative procedure to obtain a bfs from x∗.

1. Let x0 ← x∗, i← 0.
2. while columns in π(xi) are ld and xi 6= 0
2.a. Let wi be the vector constructed as above corresponding to xi.

xi+1 := xi + λwi, where λ is choosen as the smaller
in absolute value of the following two quantities

max−(xij/w
i
j), for j ∈ π(xi) and wij > 0

and
min(xij/|wij |), for j ∈ π(xi) and wij < 0.

/ The choice of λ ensures that xi+1 ≥ 0.

/ Moreover, if k is an index that defines λ then xi+1
k = 0.

i← i+ 1.
3. Return xi as a bfs.

When the while-loop terminates, we will either reach a bfs, or the zero vector; the latter case is very special
as in this case Ax = 0 has only one bfs, namely the origin, if the LP is bounded.

7

The crucial claim is that the iterative approach above does not change the value of the objective function,
i.e., 〈c,x∗〉 = 〈c,xi〉, for all i ≥ 0. We only prove this for i = 1. By construction 〈c,x1〉 is 〈c,x∗〉+λ〈c,w1〉.
We claim that 〈c,w1〉 = 0. For sake of contradiction, suppose 〈c,w1〉 > 0. Then there exists a β > 0
sufficiently small such that x∗ + βw1 is a feasible solution and

〈c,x∗ + βw1〉 = 〈c,x∗〉+ β〈c,w1〉 > 〈c,x∗〉.

But this is a contradiction as x∗ was an optimum. We can similarly argue that if 〈c,w〉 < 0, then there exists
a β > 0 sufficiently small such that x∗ − βw has a larger objective value, which again gives a contradiction.
Note that if the objective function is unbounded on the set of feasible solutions then we cannot derive this
contradiction.

Q.E.D.

A point x in a convex set S is called extreme if it cannot be expressed as a convex combination of any
two other points y, z ∈ S \ {x}, i.e., x is not contained in the interior of any line segment in S. There are
two other properties of bfs that make them interesting: (i) they are “extreme” and (ii) given a bfs, there is
an objective function for which only it attains the optimum value. The next two lemmas give the proof.

Lemma 7. A feasible solution is basic iff it is extreme.

Proof. The easy part first: a bfs is extreme. If a bfs x is not extreme, then there are feasible solutions
y, z distinct from x and λ ∈ [0, 1] such that

x = λy + (1− λ)z.

Then considering this equation coordinate-wise we have for all j ∈ [n] \ π(x), 0 = λyj + (1− λ)zj , which is
possible iff yj = zj = 0. Suppose B is an extension of π(x) such that B is a feasible set corresponding to x,
i.e., ABxB = b. Since the entries of y and z are zero outside π(x), we have Ay = AByB = b, which implies
that yB = A−1

B b = xB , i.e., y and x agree on the indices in B and hence on π(x); similarly for z. Thus
x = y = z, which gives us a contradiction. Therefore, x must be extreme.

Assume that x is a feasible solution that is extreme. If x is not a bfs then the columns indexed by the
positive entries of x are ld, i.e., there is a vector v such that Av = 0. For λ > 0 small enough we know that
x± λv are also feasible solutions. Moreover

x =
1

2
(x + λv) +

1

2
(x− λv).

i.e., x is not extreme which is a contradiction. Thus an extreme feasible solution is also a bfs. Q.E.D.

We will need the following lemma later:

Lemma 8. Given a bfs x∗ to the sytem of inequalities Ax = b, x ≥ 0, there is a vector c such that x∗

attains the maximum value wrt this vector over all the feasible set, i.e., for all other feasible solutions y,
〈c,x∗〉 > 〈c,y〉.

Proof. Let B be a basis corresponding to x∗. Then define c as cj = 0, for j ∈ B, and cj = −1, for j 6∈ B.
Clearly, 〈c,x〉 = 0, and for any other feasible solution y we know that there is a j 6∈ B such that yj > 0,
and hence 〈c,y〉 < 0. Q.E.D.

Note that in the proofs above we have crucially used the fact that x ≥ 0. Dropping this assumption and
just looking at the set {x : Ax = b} will not give us extreme points, as is obvious from the example x+y = 1
(however, x+ y = 1 and x, y ≥ 0 has extreme points); intuitively, the solutions to the system Ax = b define
an affine space of dimension n −m, and hence cannot contain zero-dimensional points such as vertices. In
general, we can define the notion of a bfs for any lp as a point where some n constraints hold as equalities.
However, it may not be true anymore that a bfs attains opt, even if an opt exists; e.g., the following lp in
canonical form maximize x + y s.t. x + y ≤ 1 has an opt, but no bfs. As we said earlier, this distinction
between equational form and other forms of lp cannot be overemphasized. In the following section, we give
a geometric interpretation of the results above.

8

4 Some Geometry Behind Linear Programming

We start with some basic definitions. We know that Rn is a vector space over the field of reals. That means we
can define linear combinations of vectors, the linear span of a set of vectors, and the linear space spanned by
a set of vectors. A linear subspace of Rn is a set closed under addition of vectors and scalar multiplication,
i.e., it is a subset which itself forms a smaller vector space in Rn. Examples of linear subspaces are lines
and planes containing the origin in R3. The dimension of a subspace is the maximum number of linearly
independent vectors in it. Any (n − 1) dimensional subspace is the set of all points that are orthogonal to
a vector a; such a space is called a linear hyperplane, i.e., a hyperplane containing the origin. A neat
way to capture any k-dimensional linear subspace L is as the intersection of (n − k) linear hyperplanes, or
as the solution set to the system of equations Ax = 0, where A is an (n− k)× n matrix. Thus the (n− k)
rows of A correspond to a set of linearly independent vectors in the space orthogonal to L, i.e., the set
{y|〈y,x〉 = 0, for all x ∈ L}.

A line, in general, is not a linear subspace since it may not contain the origin. However, it essentially
has the structure of a linear subspace, in the sense that if we translate it to the origin then we can work
with this translated structure as a linear subspace and translate the results back. The notion that captures
this geometry is that of an affine subspace that is a set of the form a +L, where a ∈ Rn and L is a linear
subspace. Thus an affine subspace is merely a translation of a linear subspace. Examples would be any
point, line, or plane in R3. Other notions carry as well. In particular, there is a notion corresponding to
linear combination. Given (k + 1) points p0, . . . ,pk in an affine space A, we translate p0 to the origin, take
a linear combination, and translate back by +p0 to get a point in A. The point so obtained has the form∑

i>0

αi(pi − p0) + p =
∑
i>0

αipi + (1−
∑
i>0

αi)p0.

Thus an affine combination of a set of points p0, . . . ,pk is a combination of the form

k∑
i=0

αipi, where

k∑
i=0

αi = 1.

An affine hull of a set of points or affine space spanned by of a set of points is the set of all affine
combinations of those points. It is clear that convex combinations and convex hulls are special type of affine
combinations. An affine hull of a set S ⊆ Rn is the set of all affine combinations of the points in S, or the
smallest affine space containing S. There is a natural notion corresponding to linear dependence: The points
p0, . . . ,pk are affinely dependent if the points the points pi − p0 are linearly dependent, i.e., there exists
αi’s not all zero such that ∑

i>0

αi(pi − p1) = 0

which is the same as saying
k∑
i=0

αipi = 0 where
∑
i

αi = 0.

Thus in Rn there are (n + 1) affinely independent points (e.g., the n standard vectors ei and the origin).
The dimension of an affine subspace is one less than the maximum number of affinely independent points
in it, or the dimension of the underlying linear subspace. Certain special affine subspaces are interesting:
Affine subspaces in Rn of dimension 0, 1, 2 and (n − 1) are called points, lines, planes, and hyperplanes,
respectively. In other words, a hyperplane is the solution set to the equation 〈a,x〉 = c, for some vector
a ∈ Rn \ 0 and c ∈ R; a linear hyperplane is one where c = 0. Any k-dimensional affine subspace can be
expressed as the intersection of (n− k) hyperplanes. The dimension of a set in Rn is the dimension of the
smallest affine space containing it.

To understand lps geometrically, we need to understand the geometry of linear inequalities. Given a
hyperplane h, a halfspace is the set of points on one side of it. More precisely, suppose h is given by the
equation 〈a,x〉 = b then we can associate two halfspaces with h

h+ := {x : 〈a,x〉 ≥ b}

9

and
h− := {x : 〈a,x〉 ≤ b} .

Clearly, h = h+ ∩ h−. These are the closed halfspaces associated with h; if we replace ≥ and ≤ by > and <
respectively then we obtain open halfspaces. A polyhedron is the intersection of finitely many halfspaces in
Rn. Since intersection of convex sets is convex, a polyhedron is always a convex set. They can be unbounded,
as in the case of a halfspace.2 A polytope is a bounded polyhedron. Now it is clear that the set of feasible
solutions of an LP, whether in equational or canonical form, is given as the common intersection of closed
halfspaces, and hence is a polyhedron. In fact, any convex set can be represented as the intersection of
hyperplanes (not necessarily finite); e.g., the unit disc in the plane can be represented as the intersections
of the hyperplanes parametrized . Some polytopes are specially interesting: A simplex is the convex hull
of a set of affinely independent points. A d-simplex is a simple whose dimension is d. Thus a 1-simplex
is a line segment (two affinely independent points), a 2-simplex is a triangle (three affinely independent
points), and a 3-simplex is a tetrahedron (four affinely independent points). A hyperplane h is called a
supporting hyperplane for a polyhedron P if P ∩ h 6= ∅ and P ⊂ h+ or P ⊂ h−, i.e., P intersects h and
is strictly contained in one of the halfspaces defined by h. The intersection of a supporting hyperplane with
a polyhedron is called its face. A vertex of P is a face of dimension 0, an edge is a face of dimension 1, and
a facet is a face of dimension one less than the dimension of P . A face can have more than one supporting
hyperplane, as is clear in the case of a vertex. The faces of P form a poset under subset inclusion.

The following theorem shows the geometrical interpretation of bfs:

Theorem 9. Let P be the set of all feasible solutions of an LP in equational form. Then x is a vertex of P
iff it is a bfs.

Proof. We shows that a bfs is a vertex. We know that for every bfs y there is an objective function c
such that 〈y, c〉 = 0 and for all other feasible solutions this value is negative. Thus there is a supporting
hyperplane through the origin that meets P exactly at y.

To show that a bfs has to be a vertex, we show that vertices are extreme points of P . Suppose a vertex v
is not an extreme point and is on the segment joining u,w ∈ P . Since v is a vertex we know that there is a
supporting hyperplane h that meets this segment exactly in v. This is possible iff u and w are on opposite
sides of h, which gives us a contradiction since h is a supporting hyperplane.

Q.E.D.

4.1 Some Results from Convex Geometry

Lemma 10 (Radon’s Lemma). Any set of d+ 2 points in Rd can be partitioned into two non-empty subsets
such that the convex hull of these two sets intersect.

Proof. Suppose p0, . . . ,pd+1 are our points. Then we know that any d+ 2 points are affinely dependent.
Hence there exists αi’s, not all zero, such that∑

i

αipi = 0 and
∑
i

αi = 0.

Note that some of the αi’s must be positive and some negative; let P and N be the corresponding index
sets. Then we have

S :=
∑
i∈P

αi =
∑
i∈N
|αi|

and ∑
i∈P

αipi =
∑
i∈N
|αi|pi.

Dividing both sides by S we get the desired convex combination and the partition of the point set. Q.E.D.

2There are two ways to define unboundedness of polyhedra: one, if the supremum of the norms of all points in the set is
unbounded, and second, if the set contains a ray in it. The first definition uses the notion of a norm, the second is purely
algebraic and so is independent of any norm. However, the first applies to any set, but the second does not.

10

Theorem 11 (Caratheodory’s theorem). If a point in Rd belongs to the convex hull of a set of n points P ,
then it can be expressed as a convex combination of at most d+ 1 points from P .

Proof. Suppose b is a convex combination of p1, . . . ,pn. Then we know that there exists a solution to
the following LP

Px = b, 〈x,1〉 = 1,x ≥ 0.

This can be reduced to the equational form by moving the constraint 〈x,1〉 = 1 into the system of equations
by adding a new row to P of all ones; let P ′ be the resulting (d + 1) × n matrix. Then we know that the
following system has a feasible solution

P ′x =

(
b
1

)
,x ≥ 0.

That means there is a bfs x with the corresponding index set B of size (d+ 1), which implies that b can be
expressed as a convex combination of at most (d + 1) points, corresponding to the columns indexed by B.

Q.E.D.

Consider the following problem: If two unit line segments [a, b] and [c, d] in the plane are such that
diam(a, b, c, d) ≤ 1, then show that the line segments intersect. With some geometric manipulations it is
possible to show this claim. But note that line segments are 1-simplices in R2, therefore, we can generalize
the problem to higher dimension as follows: Given two regular (d − 1) simplices ∆1, ∆2 in Rd suppose the
diameter, i.e., the maximum distance any pair of points, of the union of their vertices is at most one then the
two simplices intersect, and in fact, share at least (d− 2) vertices. For d = 2 the claim is trivial, though for
line segments we asked for something non-trivial. The problem is solved in three dimensions, and remains
open for higher dimensions.

11

5 Dantzig and the Simplex Method

5.1 Brief Biography and Buildup to LP

His full name was George Bernard Dantzig, son of a mathematician Tobias Dantzig with his wife Anja
Ourisson; they had met while Tobias was studying mathematics at the Sorbonne. Dantzig was named after
George Bernard Shaw, hoping that he would become a writer like his namesake. Incidentally, his younger
brother was named after Henri Poincaré and later on became an applied mathematician. 3

Dantzig completed his undergraduate in mathematics and physics from the university of maryland in
1936. Subsequently he joined university if michigan, ann arbor, to do a ma in mathematics, which he
completed in 1938. The only course he enjoyed there was a statistics course by HC Carver, and found
the rest of the curriculum excessively abstract. After finishing his ma he got a job as a statistical clerk at
the Bureau of Labour Statistics. This turned out to be a fateful decision for him. While working at the
Bureau he was asked to review a paper by Jerzy Neyman, a leading statistician of his day. Dantzig was so
impressed by the logically based approach to statistics in the paper, and not just a bag of tricks that he
decided to do a doctorate under Neyman, who had by now moved to UCB. In 1939 Dantzig enrolled in the
phd program of UCB. He took only two courses from Neyman, and had a remarkable experience in one of
them, so remarkable that it is legend now.

Dantzig arrived lated in one of the lectures of Neyman, and saw two problems mentioned on the black-
board. He mistook these to be homework problems and worked hard on them. He found them to be more
challenging than the usual ones, but still managed to solve them, and submitted the solution to Neyman.
As it turned out, these problems were actually two open questions in the theory of mathematical statistics.
One of these would later become part of his theses and was published in 1940; the other, for appeared only
a decade later in 1951 as a joint paper. His work in the theses turns out to be fundamental later in the
development of simplex method and linear programming. Here is the event described in his own words:

During my first year at Berkeley I arrived late one day to one of Neyman’s classes. On the
blackboard were two problems which I assumed had been assigned for homework. I copied them
down. A few days later I apologized to Neyman for taking so long to do the homework - the
problems seemed to be a little harder to do than usual. I asked him if he still wanted the work.
He told me to throw it on his desk. I did so reluctantly because his desk was covered with such
a heap of papers that I feared my homework would be lost there forever.

About six weeks later, one Sunday morning about eight o’clock, Anne and I were awakened by
someone banging on our front door. It was Neyman. He rushed in with papers in hand, all
excited: ”I’ve just written an introduction to one of your papers. Read it so I can send it out
right away for publication.” For a minute I had no idea what he was talking about. To make a
long story short, the problems on the blackboard which I had solved thinking they were homework
were in fact two famous unsolved problems in statistics. That was the first inkling I had that
there was anything special about them.

Without completing the formal requirement for getting a phd, Dantzig joined the is air force office of
statistical control in pentagon in order to contribute to the war effort in 1941. Some of the work there
involved planning. He returned to UCB in 1946 to complete his phd requirements. Though he was later
offered a position at Berkeley (though at a very low salary) he decided to become a mathematical advisor
to the is air force comptroller’s office. The second fateful decision set him on a path to the discover of linear
programming and the simplex method. This is what he had to say:

My own contributions grew out of my World War II experience in the Pentagon. During the war
period (1941– 45), I had become an expert on programming-planning methods using desk calcu-
lators. In 1946, I was Mathematical Advisor to the US Air Force Comptroller in the Pentagon.
I had just received my PhD (for research I had done mostly before the war) and was looking for
an academic position that would pay better than a low offer I had received from Berkeley.4 In
order to entice me to not take another job, my Pentagon colleagues, D. Hitchcock and M. Wood,

3Tobias was very impressed by Poincaré and wrote a book on the bequest of Poincaré’s scientific philosophy.
4“A grand salary of $1400 per annum.”

12

challenged me to see what I could do to mechanize the planning process. I was asked to find a
way to more rapidly compute a time-staged deployment, training and logistical supply program.
In those days mechanizing planning meant using analog devices or punch-card equipment. There
were no electronic computers.

5.2 The Literature on Linear Inequalities before 1947

Here we only mention the significant literature that was know till 1947. Though all of them was unknown to
Dantzig when he started to work on lps. He was instead influenced by a work of the economist Leontief from
1932 who had given a modeling of what he called the “Interindustry Input-Output Model of the American
Economy”, for which he obtained the Noble prize in 1976. Dantzig remarks: “I greatly admired Leontief for
having taken the three steps necessary to achieve a successful application: 1. Formulating the inter-industry
model. 2. Collecting the input data during the Great Depression. 3. Convincing policy makers to use the
output.”

1. Even though there was a wealth of literature on solving linear equations, until 1947 there was very little
for linear inequalities; perhaps one reason being that the applicability of such solutions was not clear.
The earliest known work on linear inequalities dates back to Jean-Baptiste Joseph Fourier in 1826
(Solutions d’une question particulère du calcul des inégalités), who gave an elimination style approach
to solving linear inequalities and has some overlap with the simplex method. There was a subsequent
paper in 1911 by de la Vallée Poussin (Sur la Methode de l’approximation minimum).

2. One of the most important contribution to the field before 1947 was by the russian mathematician
Leonid V. Kantorovich, who was the head of dept. of mathematics at the institute of mathematics and
mechanics of leningrad state university. He was consulted by some engineers for from the laboratory
if the veneer trust. The outcome of this interaction was a report on linear programming published in
1939, which only becomes available to the west in the 1950s. There were some later followup papers
that were known in the west.

3. The other key principal contributor was the mathematician and economist TJ Koopmans, who later
got a nobel prize in economics for his contributions. His earliest work on lp was during the war in 1942,
and therefore remained classified until 1970. In 1947, he formulated what is called the transportation
problem. However, the transportation problem was already earlier published in 1941 by an algebraist
from MIT, named FL Hitchcock, but was unknown to him (just as Knatorovich’s work was unknown
to the rest). Koopmans was one the earliest people that Dantzig met in June 1947, from where he got
to know about the earlier work of Koopman. Though they had a slow start, Koopman soon realized
the significance of Dantzig’s work and was the first person to organize a conference (Conference on
Activity Analysis of Production and Allocation) in 1949 on lp giving a much needed impetus to the
field.

4. The fourth significant contributor was J. von Neumann. His work on two players game in 1928 and
book with Oscar Mrogenstern published in 1944 are intimately connected to lp. Dantzig also visited
him in 1947, and received a lecture on duality.

The four most pre-1947 publications considered significant by Dantzig are Fourier, de la Vallee Poussin,
Kantorovich and Hitchcock. He mentions that all except Kantorovich proposed a solution method similar
to the way we describe the simplex method today. Given these results, Dantzig, in retrospect, terms lp as
an anachronism. According to him his significant contribution was realizing that the objective function can
be modelled as a linear function, which is made clear in the following quote:

What seems to characterize the pre-1947 era was lack of any interest in trying to optimize. T.
Motzkin in his scholarly thesis written in 1936 cites only 42 papers on linear inequality systems,
none of which mentioned an objective function.

13

5.3 The Simplex in the Simplex Method

If we follow the idea of gradient descent then we know that in order to maximize a function over a polyhedra
we have to walk along the edges of the polyhedra from one vertex to a neighboring vertex. Even though
this is how we conceptually think of the simplex method now, Dantzig considered this very inefficient, and
instead wated a method that went directly through the interior. We retrace Dantzig’s original setting and
motivation, which also reveals the terminology of the method.

The problem that Dantzig addressed in his thesis was “proving the existence of optimal Lagrange mul-
tipliers for a semi-infinite linear program with bounded variables.” Let’s see what that means. Let Ω be a
probability space with probability distribution dP (u), where u ∈ Ω. The problem was to prove the existence
of a subset ω ∈ Ω that satisfies the conditions of the so called Neymon-Pearson Lemma: if α ∈ (0, 1) then

1. the size of ω is α ∫
ω

dP (u) = α.

2. For a given vector function f : Ω→ Rm−1 and b ∈ Rm−1∫
ω

f(u)dP (u) = bα,

i.e., the expected value of f over ω is b.

3. For a given scalar function f : Ω→ R ∫
ω

g(u)dP (u) = zα,

i.e., the unknown expected value z of g over ω is to be minizmed.

Instead of finding ω, we can find a characteristic function φ : Ω→ {0, 1} for the set. With this notation the
three conditions above are modified to ∫

Ω

φ(u)dP (u) = α,∫
Ω

φ(u)f(u)dP (u) = bα,∫
Ω

φ(u)g(u)dP (u) = zα.

Now consider the discrete version of the problem where we pick n sample points u1, . . . , un ∈ Ω. Let
∆1, . . . ,∆n be the corresponding discrete point probabilities dP (uj); note that n may be finite or infinite.
For each j, introduce a variable x′j to denote the unknown φ(uj). Then the equations above reduce to the
following:

α−1
n∑
j=1

x′j∆j = 1,

α−1
n∑
j=1

x′jf(uj)∆j = b,

α−1
n∑
j=1

x′jg(uj)∆j = z.

For the sake of convenience, define xj :=x′j∆j/α, then we have the simplified integer program

n∑
j=1

xj = 1,

n∑
j=1

xjAj = b,

n∑
j=1

xjcj = z,

14

where Aj := f(uj), cj := g(uj) and our aim is to minimize z. Dantzig considered the lp relaxation of the above
program, i.e., xj ∈ [0, 1]. Since n could be infinite, Dantzig considered it natural to look at the “column
geometry”. The geometric interpretation is as follows. Consider the m-dimensional points (Aj , cj) in Rm.
Consider the “solution line” (b, z) in Rm. Our aim is to take find a convex combination of the points (Aj , cj)
that is on the line (b, z) and attains the smallest value for the z-coordinate. In order to achieve that, the
algorithm consider the simplicies corresponding to the “triangulation” of the faces of the polyhedra defined
by the points (Aj , cJ). Clearly, we are interested in those simplicies that intersect the line (b, z). It is this
interpretation that is the origin of the name simplex method.

With this geometric interpretation, the algorithm can be described geometrically as follows. Suppose we
have an (m − 1)-dimensional simplex ∆ of m points that intersects the line (b, z). Then we find a point
(Aj , cj) farthest from the plane containing the simplex and below it. The m dimensional simplex defined by
(Aj , cj) and ∆ intersects the solution line at some face. Replace ∆ with the simplex corresponding to this
face; note that the value of z has decreased. If we reach a simplex ∆, such that all the points (Aj , cj) are on
one side of the containing hyperplane then we can stop.

In this geometric description, it seems we are going through the interior of the polyhedra containing the
points (Aj , cj). However, Dantzig realized later, using duality, that this is the same as moving along the
edges of the polyhedron in the “row geometry”, an idea he had dispensed earlier as too slow. To quote
him, “It is my opinion that any well trained mathematician viewing the linear programming problem in
the row geometry of the variables would have immediately come up with the idea of solving it by a vertex
descending algorithm as did Fourier, de la Vallee Poussin, and Hitchcock before me – each of us proposing
it independently of the other. I believe, however, that if anyone had to consider it as a practical method,
as I had to, he would have quickly rejected it on intuitive grounds as a very stupid idea without merit.
My own contributions towards the discovery of the simplex method were (1) independently proposing the
algorithm, (2) initiating the development of the software necessary for its practical use, and (3) observing
by viewing the problem in the geometry of the columns rather than the rows that, contrary to geometric
intuition, following a path on the outside of the convex polyhedron, might be a very efficient procedure.”

15

6 The Simplex Method

The input to an algorithm solving lp is A, b, c, which define the lp in equational form. The output of the
algorithm should be one of the following: (i) the lp is infeasible, or (ii) the lp is feasible but unbounded (i.e.,
opt does not exist), or (iii) the lp is feasible and bounded, in which case we output an optimum solution.
We next describe a method, starting with concrete examples, that allows us to detect all these cases. Start
with the examples of Chapter 5 in Matousek-Gartner. These examples clearly demonstrate the functioning
of the method, and the possible problems that occur.

The simplex method is an approach for solving LPs in equational form; the difference between various
formulations of the simplex method arise because of the various options of performing a certain step, called
the “pivot step”. The method is famously attributed to Dantzig, but some earlier work of Fourier and
Kantorovich also contains related approaches.

The general strategy is to start from a bfs and obtain another bfs from it while increasing the value of
the objective function. While doing so, the algorithm also figures out whether the LP is feasible, i.e., the
set of feasible solutions is not empty and the objective function is bounded on the feasible set. We assume
that we have a bfs in hand to begin with; note that checking for feasibility of an LP is as hard as getting
the optimal solution, so this is not very straightforward; however, the examples reveal situations in which a
starting bfs is evident; the idea otherwise is to construct an auxillary lp whose optimum gives us a bfs for
the original lp.

Consider an LP in ef. The simplex method, as in the examples above, constructs a sequence of tableaus.
Each tableaux corresponds to a feasible basis B, and gives us the bfs and the value of the objective function
at the bfs. Let xB , xN represent the basic and nonbasic variables corresponding to a feasible basis B. A
simplex tableaux, or Tucker’s condensed schemata, T (B) corresponding to B is a set of m+ 1 equations
in n+ 1 variables of the form

xB = p +QxN

z = zB + 〈r,xN 〉,
(7)

where p ∈ Rm≥0, Q is an m× (n−m) matrix, zB ∈ R, and r ∈ Rn−m. Moreover, the set of solutions of the
system above is the same as that of the system of equations Ax = b, and z = zB + 〈r,xN 〉 = 〈c,x〉 is the
value of the objective function. It is clear that xB = p and xN = 0 is a solution to this system, and since
p ≥ 0, it is clearly a bfs. Moreover, zB is the value of the objective function at this bfs. Why should such a
tableau exist for a feasible basis B? The following lemma shows that a tableau exists and is unique for B.

Lemma 12. The simplex tableau corresponding to a feasible basis B is uniquely determined and is the fol-
lowing:

p = A−1
B b, Q = −A−1

B AN , zB = 〈cB , A−1
B b〉, and r = cN − (A−1

B AN)tcB .

Proof. Consider the system Ax = b. The LHS of this equation is equal to ABxB + ANxN . Therefore,
ABxB = b−ANxN , which implies that xB = A−1

B b−A−1
B ANxN . Therefore, p = A−1

B b and Q = −A−1
B AN ;

note the dimension of the LHS is m× (n−m).
The value of the objective function is captured by the variable z, and is 〈c,x〉 = 〈cB ,xB〉 + 〈cN ,xN 〉.

Substituting the value of xB from above we obtain that

〈c,x〉 = 〈cB , A−1
B b〉 − 〈cB , A−1

B ANxN 〉+ 〈cN ,xN 〉.

Rewriting the RHS we obtain that r = cN − (A−1
B AN)tcB .

For the uniqueness, suppose we have two system of equations of the form (7). We know that the solution
set for the two systems is the same. In particular, substituting xN = 0, we get that the vector p and the
value zB must be the same for the two systems. Substituting the standard vectors ei, i = 1, . . . , n −m for
xN , we get that the ith columns of the matrix Q and the ith entry of the vector r are the same in both the
systems. Thus the simplex tableau is uniquely defined wrt B. Q.E.D.

Remark: : In practice, only the m × m matrix AB in its LU decomposition, and the vector p is
maintained, since this reduces the cost from mn to m2. For instance, only a column of Q will be needed
in the pivot step, but this can be obtained by taking A−1

B Au, where Au is the column corresponding to the
incoming variable.

16

The next claim is easy to see: If in a simplex tableau T (B), the vector r ≤ 0 then the corresponding bfs
is optimal. If x is any other feasible solution then it is clear that 〈r,x〉 ≤ 0 and hence 〈c,x〉 ≤ zB , where zB
is the value of the objective function at the bfs.

Given T (B), the simplex method constructs another st T (B′) by constructing a feasible basis B′ from
B, where B′ substitutes a basic variable by a nonbasic variable in B. This is done in the pivot step where
we first choose a nonbasic variable xv and then choose a basic variable xu to be dropped. The variable xv
is chosen to increase the value of the objective function. Thus a nonbasic variable xv can come in the new
tableau T (B′) iff its coefficient in r is positive. We know that such an xv exists if r < 0. How to choose the
basic variable xu that leaves B? This is determined by the entering variable xv. Look at the column of Q
corresponding to xv. We will suppose that the column has a negative entry; otherwise, we will show that the
lp is unbounded. Then corresponding to this negative entry we have an equation with a basic variable on
the LHS. The variable xu is chosen such that its non-negativity gives us the strongest upper bound on xv.
To be more precise, suppose B = {1, . . . ,m}, N = {m+ 1, . . . , n}, and v = n. The set of first m equations
in T (B) are of the form: for i = 1, . . . ,m,

xi = pi +

n−m∑
j=1

qij · xm+j .

We plan to make xn positive, and this has to be done while ensuring that the xi’s remain non-negative. For
each i such that qin < 0, this gives us a constraint that xn ≤ −pi/qin. The variable xn can take min−pi/qin,
over all i’s such that qin < 0. Let k be an index for which the minimum is attained. Then xn replaces xk in
B to get B′. We now have to show two things:

1. B′ is a feasible basis, and

2. if the column corresponding to xn in Q has no negative entries then the LP is unbounded.

We start with the latter.
Suppose the column Qn−m corresponding to xn is non-negative and has one non-zero entry. Then let

xn := t and consider the following set: for i = 1, . . . ,m

xi = pi + qi,n−mt

and xi = 0 for all the other non-basic variables. Then this line is a feasible solution to the system. Moreover,
the objective function is of the form z0 + rn−mt, which increases as t increases. Therefore, the objective
function is unbounded on the feasible set.

To show the former, suppose that xn replaces xk in the set B to get B′; thus qkn 6= 0. We have to show
that AB′ is also non-singular. Recall that AN = ABQ, which implies that the last column of AN (which is
the same as the last column An of A) can be expressed as a linear combination of the columns of AB . In
particular, since qkn 6= 0, the kth column of AB (which is Ak in A) must occur in this linear combination,
i.e.,

An = qknAk +

m∑
i=1;i 6=k

qinAi.

Thus Ak can be expressed as a linear combination of An and all the remaining columns of AB . That means
the columns of A can be expressed as a linear combination of the columns in AB′ , and hence AB′ must be
non-singular, which implies that B′ must be a feasible basis.

6.1 Infeasibility and finding a starting bfs

The previous sections shows that if we are given a bfs for an lp, which means that we can detect whether the
feasible solution set of an lp is empty or not, then we can detect whether the opt exists, and if yes, then find
an optimum. In this section, we want to remove the first assumption. The assumption was unnecessary in
the examples that we started with, because they were given to us in canonical form, rather than equational,
and after introducing slack variables for all inequalities it was clear that the system of equations has a bfs
corresponding to setting the non-slack variables to zero and for an appropriate choice of slack variables.

17

However, the input to the simplex method is an lp in ef. How can we detect whether an lp in ef has a
feasible solution and get a starting bfs to invoke the simplex method? The idea is similar to “adding slcack
variables” as in the canonical form.

We want to substitute zero for the variables in the equation Ax = b. However, doing that does not give
us a solution. How “far away” we are from a solution can be captured by introducing m new variables y,
and looking for the solutions to the system

Ax + y = b. (8)

In this case the vector (0,b) is a solution to the system; it need not be feasible since b can have negative
entries; to overcome this we flip the sign of the equations corresponding to negative entries in b in the
original system, which guarantees that b ≥ 0 and we have a basic feasible solution. Thus it is clear that if
Ax = b has a solution then so does Ax + y = b, where y = 0. What about the converse? It is clear that
any solution of (8) of the form (x,0) is a solution to the original system. But not every solution of (8) has
this form. How do we obtain a solution of (8) where the entries corresponding to y are zero? We formulate
it as an LP:

max−(
∑
i

yi) s.t. Ax + y = b, and x, y ≥ 0. (9)

We know that the LP above is feasible, since we have a starting bfs. But why is the lp bounded? Note that
the value of the objective function cannot exceed zero; since there is a bfs, it is bounded from below as well;
therefore, the lp is feasible and bounded. We can now invoke the simplex method to obtain an opt solution
(x∗,y∗). We claim the following: The original LP is feasible iff the LP above has an optimal solution where
y∗ = 0. If y∗ = 0 then we have a bfs for the original LP, and so it is feasible. Conversely, any feasible
solution x of the original LP gives us an optimum solution (x,0) for the new LP as the value of the objective
function is zero. The solution to the new lp returns a feasible basis B′. If this feasible basis has none of the
new variables, then we are done. Otherwise, we know that the columns indexed by B′ corresponding to the
variables x are lid. It is straightforward linear algebra to extend this set from the columns of A to form a
feasible basis B of size m.

6.2 Termination and Cycling

Does the simplex method terminate? The method goes from one tableau to another. Each tableau T (B) is
uniquely determined by a feasible basis B. But there are only finitely many feasible basis (

(
n
m

)
to be precise).

So the method will not terminate iff a feasible basis, and hence the corresponding tableau, repeats itself in the
method. This behavior is called cycling. When can this happen? Suppose the incoming nonbasic variable
xv occurs in the equation xu = pu − quvxv, then replacing xv by pu/quv − xu in the objective function
increases the value of the objective function by rvpu/quv. Well, it increases iff pu 6= 0. Thus degeneracy can
occur iff pu = 0, i.e., a basic variable takes the value zero in the bfs. Such a bfs is called degenerate bfs,
because it has more than one feasible basis associated with it. This was precisely what we observed in the
examples in the starting of this section. But recall that in the examples considered, we were able to escape
a degenerate vertex after one pivot step. This shows that even though you may have degenerate bfs’s, it’s
not necessary that you end in a cycle – the method can stall at a bfs and come out of it after some pivot
steps. In practice, stalling is a more common phenomenon than cycling. Nevertheless, it is desirable to
have guarantees on the algorithm that for certain choice of pivot rule, we will never cycle (we may stall, but
that will not prevent from termination). How to prevent cycling? This is done by choosing an appropriate
incoming variable and an exiting variable, or a pivoting rule. From a theoretical perspective, one can argue
that degeneracies are rare since the probability of more that n hyperplanes passing through a point is fairly
small. However, this is a specious argument, as observed by Dantzig:

He (Koopmans) wanted me to try to prove that the algorithm would converge without a non-
degeneracy assumption, an assumption which I felt initially was reasonable. After all, what
was the probability of four planes in three space meeting in a point (for example)? But then
something unexpected happened. It turned out that although the probability of a L.P. being
degenerate was zero, every practical problem tested by my branch in the Air Force turned out
to be so. Degeneracy couldn’t happen but it did. It was the rule not the exception!

18

6.3 Pivoting Rules

It is clear from the description of the simplex method given above that there are certain choices that have to
be made in the pivoting step. Two most important choices are the nonbasic variable that enters in the pivot
and the corresponding basic variable that should leave. Of these, the first one is of primary importance.
Amongst the nonbasic variables with positive coefficient in 〈r,xN 〉, let’s call these variables as the improving
variables, which one should we choose in the pivot step? Pivoting rules give us a uniform way to do make
these choices. Here we mention some of the pivoting rules. In this section, we will assume that r ∈ Rn, with
zero entries corresponding to the basic variables; therefore, the value of the objective function at a point x
is 〈c,x〉 = zB + 〈r,x〉 = zB + 〈rN ,xN 〉. This convention is mostly for convenience later.

1. Largest coefficient: Amongst the improving variables, pick one that has the largest positive coefficient
in the objective function in the tableau. The rational is that since we are trying to increase the objective
function, we should pick a variable that maximizes the improvement of the objective function for unit
increase of the improving variable. This was the rule originally proposed by Dantzig.

2. Largest increase: Every improving variable gives us a new feasible basis B, a corresponding bfs, and
a value zB of the objective function at that bfs. Therefore, it makes sense to choose that improving
variable for which this value is maximized. That is, make a locally optimum decision. However, this
rule is computationally more expensive. If xn and xo are the new and old bfs respectively, then this
rule picks an n that maximizes 〈c,xn − xo〉 = max rvpu/|quv|, where v is incoming and u is such that
quv < 0.

3. Steepest Edge: Pick the new variable such that the unit vector from the old bfs to the new bfs is the
closest to the optimizing vector c, i.e., the projection of the unit vector onto c is the largest, or an edge
that attains the maximum increase in the objective function for a unit movement along the edge. More
precisely, maximize 〈c,xn − xo〉/‖xn − xo‖, where xn is the new bfs and xo is the old bfs. In practice,
this rule is the most preferred. However, as described the rule is a bit expensive to compute. There
are more practical rules that compute approximations to the steepest edge and are usually preferred
in practice; one such rule is given by PMJ Harris called Devex (from devexus latin for steepest).

4. Bland’s rule: The rules presented above do not prevent cycling. R. Bland proposed a rule where it can
be shown that cycling does not occur. He suggested that amongst the improving variable we should
choose the one with the smallest index, and similarly for the leaving variable. We will show that this
prevents cycling.

5. If randomness is allowed, then it is most natural to pick an improving variable randomly. This strategy
works, and gives an algorithm whose expected running time can be theoretically bounded (reference?).

An aspect common to all approaches to avoid cycling is to introduce some additional ordering information.
Since while cycling the bfs and the value of the objective function does not change, this ordering usually comes
from some combinatorial information, such as the indices of the non-basic variables, or some lexicographic
ordering on the columns of Q. We see two such rules that avoid cycling.

6.3.1 Bland’s rule to avoid cycling

Bland stated the following pivot rule: Amongst the possible entering variables, choose the one with the
smallest index; similarly, for the exiting variables. In this section we show that this prevents cycling.
Though in practice it is not preferred, and hence is only of theoretical significance.

Suppose the simplex method runs into a cycle of tableaux. We will derive a contradiction from this
supposition. While going from one tableaux to another we replace a basic variable by a non-basic variable.
However, since we are in a cycle, any variable that enters has to also exit at some point in the cycle (may be
this happens more than once); the entry and exit point may not be in that sequence, e.g., an index which is
present in the starting of the cycle exits first and then enters; for our proof, this ordering does not matter.
We call all such variables as fickle variables and denote their set by F . As already observed earlier, we
stay at the same bfs x∗ in a cycle. Our first claim is that all fickle variables are set to zero in x∗. To see
this suppose xv is an fickle variable, and consider a basis when it is incoming; the value of the objective

19

function is some constant plus rvxv; if xv takes a positive value then the objective function increases, which
is a contradiction since in a cycle the objective function remains the same. The crucial idea of the proof is
to pick an extreme index from F and see what happens to the lp when this variable enters and leaves the
lp. From these observations we will derive another LP that has an optimum solution and is also unbounded,
which would yield us the desired contradiction.

Two choices for a variable from F are the one with the smallest index and the one with the largest index.
For reasons that will become clear later, we choose the latter of the two, and denote it by xv. Let B be
the basis when xv enters and B′ be the basis when it leaves, and is replaced by some nonbasic variable xu;
note that B and B′ may not be unique. We now understand the role of xv when it is incoming and exiting
variable.

Observation 1: Consider the tableau for a feasible basis B and let xn be the incoming variable. Then we
know that rv in 〈r,x〉 must be positive. Moreover, since Bland’s rule always picks the nonbasic variable with
the smallest index it must be the case that all the other coefficients ri, i < v, must be negative. Specifically,
the coefficient in r corresponding to all the fickle variables except v must be negative, as v is the index of
the largest fickle variable.

Observation 2: Now consider the case when xv is leaving the basis B′ and is being replaced by xu. We
know that the coefficient of xu in r is positive. Also the coefficient in p′ corresponding to xv is zero, and the
entry qv,u is negative. Again from Bland’s rule we know that the coefficient of qv′,u for all other basic fickle
variables must be positive, otherwise xv′ would be exiting instead of xv.

We use the two observations above to devise an LP that has an optimum solution and is unbounded at
the same time, which gives us the desired contradiction. Our new LP should have the property that the bfs
x∗ corresponding to B (and hence also to B′) must be feasible, and better still optimal for it. Note that
the coefficient rv is positive, so that decreasing xv decreases the value of the objective function; similarly,
for all the other fickle variables the coefficient in r is negative, so increasing them decrease the value of the
objective function. Thus if x∗ has to be the optimal solution in the new LP then it makes sense to assume
that xv′ ≥ 0, for v′ ∈ F \ {v} and xv ≤ 0; the rest of the LP almost remains the same. More precisely,
consider the following LP: maximize 〈c,x〉 such that

Ax = b,xF\{v} ≥ 0, xv ≤ 0,xN\F = 0.

Clearly, x∗ satisfies all the constraints, and hence is feasible; moreover, by the argument above it is also
optimal, since for any other feasible solution to this system the value of the objective function can only
decrease. Note that there is no constraint on the basic variables that are not fickle in this LP; also note that
the set of nonbasic non-fickle variables is the same whether we consider B or B′.

Now consider the case when we are at the tableau corresponding to B′. We will show that the LP above
is unbounded; this proof is similar to the unboundedness that we had seen earlier. Let t denote the value of
the incoming variable xu; keep all the other nonbasic variables as zero. Since the coefficient of xu is positive
in r, the value of the objective function is zB′ + tru, which clearly increases as t increases. We know that
the solutions of Ax = b are the same as the solutions of xB′ = p′ + Q′xN ′ . From observation 2 we know
that for all basic fickle variables v′ their value is qv′,ut, which is positive since qv′,u > 0; for xv its value is
qv,ut, which is negative since qv,u < 0; the rest of the basic variables vary with t, but we are not concerned
about them. It is clear that the line parametrized by t satisfies the constraints in the LP above, while the
objective function grows unbounded on this line. But why can we increase xu? This is because xu is also
fickle variable distinct from xv and the constraints in the LP above allow us to increase xu. Thus we have a
contradiction to the existence of an optimal solution that we had shown earlier.

6.4 Worst Case Running Time

In 1972, Klee and Minty showed that the simplex method with Dantzig’s pivot rule of largest coefficient
takes exponential time. Their basic idea was to construct an LP for which the simplex method visits all the
vertices of the polytope. The polytope itself, as we will see later, looks like a deformation of the hypercube,
and hence has 2n vertices. This shows that in the worst case the algorithm is not better than the naive
algorithm that enumerated all the bfs.

Let us try to construct examples where the simplex method takes exponentially many tableaux. We first
do this for smaller values of n, which will help us construct the examples in general. Consider the following

20

most straightforward LP for the case n = 1: maximize x subject to x ≤ 1. It is not hard to verify that we
need exactly two tableaux for this example, as desired. We next try the following sequence of LPs in two
variables; our goal is to come with an lp that constructs 4 tableaux.

1. maximize x s.t. x ≤ 1. This involves two tableaux.
2. maximize x1 + x2 s.t. x1 ≤ 1, x1 + x2 ≤ 1. There is one problem with this lp, namely the choice of

the incoming variable is not clear in the first step. However, it is clear that if x1 enters then we need
more tableau; so let’s ensure that x1 is the first incoming variable by increasing its coefficient in the
objective function to two to obtain our next lp.

3. maximize 2x1 + x2 s.t. x1 ≤ 1, x1 + x2 ≤ 1. The issue with this lp is that it has a degenerate bfs. So
to avoid that we increase the rhs of the inequality to two and get the next lp.

4. maximize 2x1 + x2 s.t. x1 ≤ 1, x1 + x2 ≤ 2. This lp is almost there. We need three tableaux to
reach the opt. In order to get one more tableau, we ought to make the coefficient of y1 (the slack
variable such that x1 + y1 = 1) positive. If we observe carefully, then this is achieved by increasing the
coefficient of x1 in the second inequality, so let us increase it by 4 to get the next lp.

5. maximize 2x1 + x2 s.t. x1 ≤ 1, 4x1 + x2 ≤ 2. This lp is unbounded since in the second tableau x2 can
grow unbounded as their is no positivity constraint bounding it. The least such constraint is attained
by increasing the rhs of the second inequality to something greater than 4, let’s choose 5. The lp so
obtained is the next one.

6. maximize 2x1 + x2 s.t. x1 ≤ 1, 4x1 + x2 ≤ 5. It can be verified now that this lp takes exactly four
tableaux, giving us our example in two variables. Note how x1 enters in the first tableau and leaves in
the last one. How about three variables? Consider the following lp. Can we argue inductively that it
requires 8 tableaux?

7. maximize 4x1 + 2x2 + x3 s.t. x1 ≤ 1, 4x1 + x2 ≤ 5, 8x1 + 4x2 + x3 ≤ 25.

Consider the following LP Ln(x1, . . . , xn):

maximize

n∑
i=1

2n−ixi

subject to

x1 ≤ 1

4x1 + x2 ≤ 5

8x1 + 4x2 + x3 ≤ 25

...

...

2n−1x1 + 2n−2x2 + · · ·+ xn−1 ≤ 5n−2

2nx1 + 2n−1x2 + · · ·+ 4xn−1 + xn ≤ 5n−1

x1, . . . , xn ≥ 0.

We first convert the LP to the equational form by introducing n slack variables

x1 + y1 = 1

4x1 + x2 + y2 = 5

8x1 + 4x2 + x3 + y3 = 25

...

...

2nx1 + 2n−1x2 + · · ·+ 4xn−1 + xn + yn = 5n−1

x1, . . . , xn, y1, . . . , yn ≥ 0.

21

Let this LP be denoted by Ln. We will show that the simplex method constructs 2n tableaux to solve this
LP using the largest coefficient rule. The proof is by induction, but first we prove certain properties of this
LP. Why is this LP feasible, and even if it is why should there be an optimal solution?

Prop1. There exists a unique optimal solution to the LP, namely xi = 0 and yi = 5i−1 for all i except xn = 5n−1

and yn = 0. Note that the objective function has coefficients smaller than the coefficients in the last
constraint, so that the maximum value it can take is 5n−1. But we can make this relation more precise,
namely the last contraint can be expressed as 2〈c,x〉 − xn ≤ 5n−1. Thus the value of the objective
function is upper bounded by (5n−1 + xn)/2. Thus the objective function will be maximized if we
choose xn as large as possible. The maximum value that xn can take is 5n−1, therefore the objective
function is upper bounded by 5n−1 (as argued earlier), but more importantly attains it for the values
of xi’s and yi’s mentioned above. Note that for any other feasible solution if any other xi is non-zero
then from the last inequality we know that xn < 5n and hence this feasible solution cannot be an
optimum solution.

Prop2. Exactly one of xi, yi is a basic variable. We have n basic and n nonbasic variables in any given
tableau. Note that at least one of xi, yi is non-zero in any feasible solution of the equational form.
This is because the ith constraint is twice the (i − 1)th constraint plus xi + yi; now the largest value
that the (i− 1)th constraint can take is 5i−1, and twice of that can never be equal to 5i unless one of
xi, yi is non-zero. This means that in any bfs at least one of them is there, and since we can have only
n basic variables in a bfs, therefore, both xi, yi cannot simultaneously included.

We now claim that the simplex method with the largest coefficient rule computes 2n tableaux for the LP
above (we are of course considering the equational form). The proof is via induction. The starting tableau
is evident: there are i equations for i = 1, . . . , n

yi = 5i−1 − 2ix1 − 2i−1x2 − · · · − 4xi−1 − xi,

and
z =

(
2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn

)
;

the corresponding bfs has xi = 0 and yi = 5i−1; the value of the objective function is 0. What about the final
tableau? We know the set of feasible variables for the optimum solution, namely xn, y1, . . . , yn−1, and the
bfs. What about the matrix Q and the vector r? It is easy to construct Q in the final tableau by expressing
y1, . . . , yn−1, xn in terms of the non-basic variables. Thus the final tableau has the following form:

y1 = 1− x1

y2 = 5− 4x1 − x2

y3 = 25− 8x1 − 4x2 − x3

...

...

xn = 5n−1 − 2nx1 − 2n−1x2 − · · · − 4xn−1 − yn
z = 5n−1 − 2n−1x1 − 2n−2x2 − · · · − 2xn−1 − yn.

Consider the initial tableau. Observe that the objective function is of the form 2(2n−2x1 + · · ·+ xn−1) +xn,
i.e., it is twice the objective function for (n− 1) variables plus xn. Therefore, to maximize this objective we
can try to maximize the objective function for the (n − 1) variables, along with the first n − 1 constraints,
which is exactly the lp Ln−1; we do this inductively, and further observe that the coefficients, if positive,
of x1, . . . , xn−1, y1, . . . , yn−1 in the objective function will alway be twice that of xn, i.e., xn will not be
an incoming variable (and hence yn will not be outgoing from Prop2 above) unless the coefficients of the
remaining variables in the objective function is negative. This happens precisely when we reach the opt of

22

Ln−1(x1, . . . , xn−1). Using induction we know that the tableau after 2n−1 pivot steps has the following form:

y1 = 1− x1

y2 = 5− 4x1 − x2

y3 = 25− 8x1 − 4x2 − x3

...

...

xn−1 = 5n−2 − 2n−1x1 − 2n−2x2 − · · · − 4xn−2 − yn−1

yn = 5n−1 − 2nx1 − 2n−1x2 − · · · − 4xn−1 − xn
= 5n−2 + 2n−1x1 + 2n−2x2 + · · ·+ 4yn−1 − xn

z = 2(5n−2 − 2n−2x1 − 2n−3x2 − · · · − yn−1) + xn.

At this instance, xn is the incoming variable and yn is the outgoing variable. The resulting tableau is

y1 = 1− x1

y2 = 5− 4x1 − x2

y3 = 25− 8x1 − 4x2 − x3

...

...

xn−1 = 5n−2 − 2n−1x1 − 2n−2x2 − · · · − 4xn−2 − yn−1

xn = 5n−2 + 2n−1x1 + 2n−2x2 + · · ·+ 4yn−1 − yn
z = 3 · 5n−2 + 2n−1x1 + 2n−2x2 + · · ·+ 2yn−1)− yn.

Again, the subsequent steps will solve Ln−1(x1, . . . , xn−2, yn−1) inductively (note the change from xn−1

earlier to yn−1) to obtain the final tableau given above; note that the coefficient of yn remains negative
and it never enters the feasible basis, which means by Prop2 that xn never leaves the feasible basis. It is
instructive to try these steps on L3(x1, x2, x3) using the solution for L2 that we derived earlier.

Similar lower bounds have been derived for other pivot rules as well. Is it possible to argue that no matter
what choice of pivot rule, simplex method will always take exponential time. One such approach could be
based on the “clairvoyant pivot rule”, namely, an oracle that always gives us the shortest path between two
vertices v,w of a polyhedron P . Let ρP (v,w) be one less than the number of vertices on the shortest path
from v, w while moving from neighbor to neighbor. The diameter of P , ∆P is defined as the maximum such
distance over all pairs of vertices. It is clear then that the clairvoyant rule will take ∆P steps for some pair
of vertices. Further define, ∆(m,n) as the maximum over all diameters over all polyhedra defined by m ≥ n
facets in Rn. If we can show an exponential lower bound on ∆(m,n) then we will have a correspondng
lower bound on the simplex method. However, this is far from the bounds we have. How about tight upper
bounds? The following section gives the best known upper bound on ∆(m,n).

6.5 Hirsch’s conjecture and the Kalai-Kleitman bound

In practice, Dantzig observed that the number of iterations of the simplex method hardly exceeded 1.5m. To
justify this behavior, Hirsch conjectured that ∆(m,n) ≤ m− n. The first counterexample to the conjecture
was given by Klee and Walkup who showed that there is a polyhedron in four dimensions defined by 8
halfspaces such that its diameter is at least five, i.e., ∆(8, 4) > 4. However, theor polyhedron was unbounded.
The conjecture remained open for polytopes. This was recently proved to be false by Francisco Santos in 2010,
who showed that ∆(82, 41) > 41; the counterexample has been simplified further. One can, nevertheless,
ask whether the diameter is bounded by a polynomial in m and n.

In 1992, Kalai gave a subexponential upper bound on the diameter. The proof was simplified and
presented in a paper jointly with Kleitman. Their main claim is the following:

23

Lemma 13. ∆(m,n) ≤ ∆(m− 1, n− 1) + 2∆(bm/2c , n) + 2.

Proof. Let P be a polyhedron and v,w be two vertices such that ρP (v,w) = ∆(m,n), i.e., the pair of
vertices and the polyhedron witness the worst case diameter for (m,n)-polyhedra. Let F be a subset of
bm/2c facets from the m facets defining P . Define kv,F as the furthest point from v in F , i.e., the furthest
one can go while taking the facets in F . Further define kv as the maximum of kv,F over all subsets F of size
bm/2c. Let Fv be a subset of facets that attain the distance kv. Now consider the set Gv of facets that we
can reach from v in kv +1 steps; from the definition of Fv, it follows that Fv ⊂ Gv, that is |Gv| ≥ bm/2c+1.
Similarly define kw, Fw and Gw. Since |Gv|, |Gv| ≥ bm/2c+ 1, it follows that the two sets share a common
facet f . Let t ∈ f be the nearest point in Gv from v and u ∈ f be the nearest from w in Gw. Then ρP (v,w)
is bounded by the distance of v to t plus the distance of w to u plus the distance of t to u. We claim that
the first two distances are at most ∆(bm/2c , n) + 1 and the last is ∆(m− 1, n− 1), which will complete the
proof.

The last claim is easy to see: since t, u are on the same facet, P restricted to the facet is affinely
isomorphic to a polyhedron in (n− 1) dimensions defined by at most (m− 1) facets. For the first claim, we
show that kv ≤ ∆(bm/2c , n). observe that the shortest distance from v to t in P is

Q.E.D.

Todd, 2014, used a careful inductive argument to show that ∆(m,n) ≤ (m− n)logn.

24

7 Randomized Algorithms

As we have seen above, the running time of simplex algorithm is exponential in the worst case. For a long
time it was an open problem whether LP problems can be solved in polynomial time. This was settled by
Khachiyan in 1980 (using the ellipsoid method), and later on by Karmarkar in 1984 (using interior points
method). The running time of both methods depends on the size of the coefficients of the constraint matrix
and the objective function. Such algorithms are not considered strongly polynomial time algorithms, i.e.,
algorithms whose running time in the Real RAM model is polynomially bounded. E.g., Euclid’s algorithm
for computing gcds of two integer polynomials is a strongly polynomial time algorithm. Or, in other words,
the algebraic complexity(as compared to the bit-complexity) of the algorithm does not depend on the size
of the numbers given as input; the algorithm can assume that each operation takes unit cost. One reason
why the complexity of the ellipsoid method and the interior point methods depend on the bit-length of the
input integers is because they exploit the geometry of the polyhedra underlying the LP. This is unlike the
simplex algorithm which only works with the combinatorial structure of the polyhedra, namely by moving
from one vertex to a neighboring vertex. Therefore, simplex algorithm is really a combinatorial algorithm
and its worst case complexity is upper bounded by

(
m
n

)
= O(mn), where m is the number of constraints and

n is the number of variables. In this section, we will focus only on combinatorial algorithms.
The first significant improvement on the running time of the simplex algorithm was by Meggido, who

gave an O(22n

m) algorithm, i.e., assuming the dimension is a constant, a linear algorithm in the number of

constraints. Dyer and Clarkson independently improved it to O(3n
2

m). The best deterministic bound is by
Chazelle and Matousek, who give an (nO(n)m) running time algorithm. In the case of randomized algorithms,
better bounds are known. Already, Dyer and Frieze gave a O(n3nm) runnnig time algorithm, which was
improved to O(nn/2 log n+ n2m+ n4

√
m logm) by Clarkson. This was improved to O(n!m) by Seidel, who

gave a very elegant algorithm, and to O(2nn3m) by Sharir and Welzl. The first subexponential bound is

by Kalai and Matousek-Sharir-Welzl. The current best bound of O(n2m + eO(
√
n logn)) is a combination of

the subexponential algorithm with those of Clarkson. Such randomized algorithms are useful otherwise also,
as Chazelle and Matousek’s algorithm is actually a derandomization of such algorithms. In this section,
we study some of these randomized algorithms. There is another type of randomized algorithms that are
variants of the simplex method with a random pivot rule. Two such rules are either to pick a random
facet or a random edge over all the possible incoming variable. Subexponential upper bounds have been
derived for both these variants (this is the algorithm of Matousek-Sharir-Welzl); however, at the same time
subexponential lower bounds are also known (this is the work of Friedmann-Hansen-Zwick using lower bounds
from game theory). We start by considering simple randomized algorithms. Whether there is a strongly
polynomial time algorithm, either randomized or deterministic, is still open.

Consider the canonical form of lp (5). Suppose the underlying polyhedra is actually bounded, i.e., it is a
polytope. Clearly, in this case the optimum solution is well-defined and is actually attained at some vertex
of the polytope; further suppose that this vertex is unique. Now from hw1 we know that the vertices of this
polytope correspond to some n constraints satisfied as equations. The key idea behind all the algorithms is
to get hold of a small enough subset of the m constraints that contain the n constraints defining the optimum
solution. Once we have this small subset of constraints then we can go ahead and use either simplex method
or brute force enumeration to find the optimum solution. Thus the key is to prune the set of constraints and
figure out the constraints that are critical to the lp.

7.1 Notation

We first consider a slightly modified version of the canonical lp:

minimize 〈c,x〉 subject to Ax ≤ b.

We will further make certain assumptions that will help us reduce the technicalities, starting with the
assumption that the lp is feasible (this can be checked as was done earlier). We will use the convenient
notation w(x) := 〈c,x〉.

Let H be the set of m halfspaces denoted by Ax ≤ b. For G ⊆ H, consider the set of points attaining
the least value of the objective function over all the vertices of the polyhedron PG defined by G; amongst all
such points, define vG as the lexicographically smallest point; this ensures the uniqueness of vG, which may

25

now be thought of as the optimum wrt G, or the value of G. But we have to be slightly careful in defining
vG, since there may be no lexicographically smallest point attaining the minimum, in which case vG is
defined as −∞; note this can be caused by three factors: either the objective function is unbounded but the
lexically smallest point is well defined (e.g., minimize y, s.t. x ≥ |y|), or because there is no lexicographically
minimum point in the set of points attaining the minimum (e.g., minimize y such that y ≥ 1), or both the
objective function and the lexically smallest point are unbounded. Clearly, according to our assumptions on
the canonical form, the point vH is the unique optimum for the lp. For two sets F,G, we say vF ≤ vG if
either w(vF) < w(vG), or if the objective function takes the same value then vF ≤

LEX
vG. Thus, ’≤’ is a total

ordering on the opts.
A basis of a set G ⊆ H is a minimal subset F of G such that vF = vG; in words, the optimum wrt F

is the same as the optimum wrt G; in Figure 1 for G = {1, 2, 3, 6} the sets {1, 2}, {2, 6} are a basis, whereas
{1, 6} is not. We say that a constraint (or halfspace) h ∈ H is violated by G iff vG does not satisfy h.
Note that if vG satisfies h then vG = vG∪h. Finally, a constraint h is extreme in G if h is violated
by G − h, i.e., the optimum wrt G − h is different than the optimum wrt G (or dropping of h changes the
optimum); e.g., if G = {1, 2, 3, 6} in Figure 1 then the constraint 2 is extreme, whereas 1 and 6 are not.
Note that removing an extreme constraint does not necessarily mean that the value of the objective function
changes; e.g., if G := {1, 2, h}, then h is extreme, however, w(vG) = w(vG\h). Also it is possible that G has
no extreme constraints: for instance, if G = {1, 2, 6, 7}, then removing a single constraint does not change
vG. See Figure 1 for an illustration of these definitions.

We now study some properties of these definitions.

Lemma 14. Let F,G ⊆ H be such that vF and vG are finite.

(i) If F ⊆ G, then w(vF) ≤ w(vG) and vF ≤
LEX

vG.

(ii) If vF = vG then h is violated by F iff h is violated by G.

(iii) A basis of G has exactly n constraints.

(iv) h is violated by G iff h is extreme in G ∪ h.

(v) Extreme constraints in G belong to all basis of G, or in other words, constraints in G \ F , for a basis
F of G, are not extreme.

(vi) G has at most n extreme constraints.

(vii) Let F be such that vF violates a constraint in G. Then for all basis B of G, vF violates a constraint
in B.

Proof.

(i) In going from F to G we are adding new constraints, therefore, the set PG ⊆ PF . Clearly, the minimum
(either lexicographically speaking or of the objective function) over PF cannot exceed the minimum
over PG.

(ii) Since the two opts are the same, if the opt violates h then it is violated for both the sets F,G.

(iii) This is because a vertex of the polyhedron PG is uniquely determined by some n constraints holding
as equalities. Therefore, by picking exactly these set F of constraints we ensure that attaining the
optimum on PF is the same as attaining the optimum on PG. Note that there can be other constraints
that capture the same vertex of PG (e.g., 1, 6 for G = {1, 2, 6} in Figure 1), however, they do not
define the same polyhedron as PG on that vertex.

(iv) This follows from the definition of extreme constraint.

(v) Suppose h does not belong to a basis F . We will show that h is not extreme in G, i.e., vG\h = vG; this
suffices because we know that vG satisfies h, so h is not violated by G, and hence h is not an extreme
constraint. Since F ⊆ G \ h ⊂ G, from (i) we know vF ≤

LEX
vG\h ≤

LEX
vG. But as F is a basis, vF = vG,

and hence vG\h = vG.

26

Figure 1: Illustrating various definitions

(vi) Since all extreme constraints appear in a basis, and a basis has exactly n constraints, it follows that
there are not more than n extreme constraints in G.

(vii) Proof is by contradiction. Suppose vF does not violate any constraint in B, i.e., satisfies all the
constraints in B, then vF = vB∪F . But recall that vB satisfies all the constraints in G, and so also
the constraints in B ∪F . Hence vB∪F = vB = vG, which means vF does not violate any constraint in
G, giving us a contradiction.

Q.E.D.

7.2 Two Algorithms of Clarkson

The aim of the algorithm is to find a basis of H. The idea is to construct a set G containing a basis of H
iteratively; initially, G := ∅. To construct G, we will pick a set R of size r from H uniformly at random, and
if the set of constraints V in H violated by R is small then we reassign G :=G∪ V ; we again pick a random
set R from H (i.e., pick with replacement), look at the constraints V violated by G ∪ R, and again if V is
small we add it to G; we keep on doing this until G does not violate any constraint in H, which means that

27

G contains a basis of H, and hence vG = vH . Hopefully, the size of G is much smaller than m at any given
step.

Clarkson 1

Input: The set H of constraints and the objective function c.
1. If m is small (roughly n2) then
1.a Do a brute force enumeration to find a basis G of H.

Return vG.
Let r be small compared to m and G← ∅.

2. repeat

2.a choose R uniformly at random from
(
H
r

)
.

2.b Compute the optimum vG∪R.
2.c Let V ⊆ H be the set of constraints violated by vG∪R.
2.d If |V | is small compared to m, then G← G ∪ V .

until V = ∅.
3. Return v and G ∪R.

To give precise values for r, and the bound on |V |, we need to bound the expected size of V at any given
iteration of the repeat-until loop.

Lemma 15. Let H be a multiset of m constraints, G be a subset of constraints of H, and 1 ≤ r ≤ m. Given
a subset R of H of size r, picked uniformly at random, the expected number of constraints in H violated by
G ∪R is bounded by n(m− r)/(r + 1).

Proof. The expectation is given as

E(|V |) =
∑

R∈(H
r)

1(
m
r

) ∑
h∈H

[h is violated by G ∪R],

where the notation [·] returns one if h is violated by G∪R, and zero otherwise; note that for h ∈ G∪R this
function is always zero. Also observe that h is violated by G ∪R iff h is extreme in G ∪R ∪ h. Therefore,

E(|V |) =

(
m

r

)−1 ∑
R∈(H

r)

∑
h∈H

[h is extreme in G ∪R ∪ h],

If we define Q :=R ∪ h, then we can rewrite the equation above as

E(|V |) =

(
m

r

)−1 ∑
Q∈(H

r+1)

∑
h∈H

[h is extreme in G ∪Q].

But we know that any set of constraints contains at most n extreme constraints; note that Q can be a
multiset, and that means only fewer extreme constraints. Thus

E(|V |) ≤
(
m

r

)−1 ∑
Q∈(H

r+1)

n = n

(
m

r

)−1(
m

r + 1

)
=
n(m− r)
r + 1

.

Q.E.D.

What value of r should we choose to minimize the expectation? Clearly r = m will minimize it, but
then we haven’t made any progress since if we choose all the constraints then in step 2.b we are solving the
original lp. So our aim is to minimize r and also the expectation. So it makes sense to minimize the sum

n(m− r)
r + 1

+ r.

28

Differentiating it wrt r and equating to zero we get that r must be roughly
√
mn and then the expectation is

also roughly
√
mn. This is still slightly large for us. Our aim is to have around

√
m expected violations. To

obtain this we increase r to n
√
m. Note that for this choice of r the expected value is positive if m > n

√
m,

i.e., m > n2. If m is smaller than this value then we do the brute force search given in step 1.a.
How many repeat-until loops do we need to ensure that V is small compared to m? From Markov’s

inequality, we know that Pr(|V | > a) < E(|V |)/a; for a = 2
√
m, we get that the probability the number of

violated constraints exceeds 2
√
m is at most half. Thus the expected number of repeat-until loops to ensure

that V ≤ 2
√
m is at most 2.

How many repeat-until loops do we need to ensure that V is empty? Since at each step |V | is on the
average

√
m, it would appear that we would need at most

√
mmany iterations. However, from Lemma 15(vii),

we know that V must contain a constraint from all the bases of H. Since a basis has exactly n constraints,
the number of times we increase G is at most n. Thus the expected number of iterations of the repeat-until
loop to ensure that |V | < 2

√
m and that it will become empty is bounded by 2n.

The arithmetic cost of step 2.c to find the number of constraints violated by v is O(mn). Therefore, the
expected number of arithmetic operations is O(n2m), and in Step 2.b the optimum is computed for an lp
with at most O(n

√
m) constraints. Of course, all of this is if m > n2. To summarize we have the following

concrete algorithm:

Clarkson 1

Input: The set H of constraints and the objective function c.
1. If m < n2 then
1.a Do a brute force enumeration to find a basis G of H.

Return vG.
Let r :=n

√
m and G← ∅.

2. repeat

2.a choose R uniformly at random from
(
H
r

)
.

2.b Compute the optimum v for G ∪R.
2.c Let V ⊆ H be the set of constraints violated by v.
2.d If |V | ≤ 2

√
m, then G← G ∪ V .

until V = ∅.
3. Return v and G ∪R.

The aforementioned arguments are summarized in the following result:

Lemma 16. If m > n2 then the procedure above computes the optimum with an expected number of O(n2m)
arithmetic operations and O(n) calls to a subroutine to solve lps with at most O(n

√
m) constraints.

If we do a brute-force search or use simplex algorithm for the smaller lps then the running time of the
algorithm is O(nn+1mn/2), which is slightly better than O(mn). The crucial step here is to use a different
algorithm to solve these smaller lps.

The second algorithm of Clarkson is based on the following observation: we have seen that if the itera-
tion does not terminate then every basis must contain a violated constraint; if we increase the probability
of picking these constraints in subsequent iterations then we will hopefully pick a basis in our sampling.
However, this will come at the cost of increasing the number of iterations. Thus in the new algorithm after
picking R and identifying the violated constraints V , instead of enforcing these constraints the algorithm
will increase the probability that they are picked in the next iteration. This is effected by assigning weights
to every constraint and doubling the weight of all the violated constraints at every iteration. Thus over time
the constraints in the bases have such high weights that they are picked with very high probability. The
weights are implemented as multiplicity of a constraint, i.e., with every h we associate its multiplicity µh
and treat H as a multiset. For any set V ⊆ H define µ(V) :=

∑
h∈V µh; for H, µ(H) = |H|. The algorithm

is as follows:

29

Clarkson 2

Input: The set H of constraints and the objective function c.
Output: The optimum solution vH .
1. If m < n2 then
1.a Do a brute force enumeration to find a basis G of H.

Return vG.
Let r := 4n2.

2. repeat

2.a choose R uniformly at random from
(
H
r

)
. / R is a multiset .

2.b Compute the optimum vR for R.
2.c Let V ⊆ H be the set of constraints violated by v. / Note V is not a multiset
2.d If µ(V) ≤ µ(H)/(2n) then

For every h ∈ V , let µh ← 2µh.
until V = ∅.

3. Return vR and R.

From Lemma 15, it follows that the expected value of µ(V) is µ(H)/n, where r := 4n2. Therefore, it
again follows from Markov’s inequality that the expected number of trials to ensure that µ(V) < µ(H)/2n
is bounded by 2. We now want to bound the expected number of iterations to ensure V = ∅. The claim is
that for all bases B, µ(B) increases exponentially, but it cannot go beyond µ(H), which is roughly m, so
that we would need around logm iterations. A successful iteration is one where the condition in step 2.d
holds. The following lemma makes it more precise:

Lemma 17. Let B be a basis of H and k be some positive number. After kn successful iterations we have
2k ≤ µ(B) ≤ mek/2.

Proof. Let Hi be the set of total constraints and Vi be the set of violations at the ith iteration,. After the
ith successful iteration µ(Hi+1) − µ(Hi) is at least µ(Vi) ≤ µ(Hi)/(2n), i.e., µ(Hi+1) ≤ µ(Hi)(1 + 1/(2n)).
Thus after kn iterations the size is bounded by m(1 + 1/(2n))kn ≤ mek/2, where m :=µ(H0).

For the lower bound, we again use the observation that at every iteration all bases must contain a
violating constraint. Since a basis contains exactly n constraints, by pigeonhole principle we know that after
kn successful iterations there must be a constraint in every basis whose weight has been doubled at least k
times, which implies that µ(B) ≥ 2k.

Q.E.D.

Note that the lower bound is increasing at a faster rate than the upper bound, and for k sufficiently large
will overtake it. In particular, after O(n logm) iterations this is bound to happen, i.e., we would have found
a basis for H. Again, step 2.c takes O(nm) arithmetic operations. Then we have the following:

Lemma 18. If m > n2 then the procedure above computes the optimum with an expected number of O(n2m log n)
arithmetic operations and O(n logm) calls to a subroutine to solve lps with at most O(n2) constraints.

So we have reduced the number of constraints at the expense of making more iterations. Solving the
lps with n2 constraints using brute force or simplex takes nO(n) pivot operations. Therefore, the expected
running time of the algorithm has been reduced to nO(n)mnO(1) arithmetic operations.

7.3 Matousek-Sharir-Welzl Algorithm

Sharir-Welzl developed an algorithm based on Seidel’s algorithm. Their idea was to not throw the information
of v if it violates h and start from scratch as Seidel did. In fact, the constraints defining v are likely to
contribute to the optimal vertex. Therefore, they introduce a new parameter, besides the set of constraints
H, a candidate basis C of constraints is also maintained. This set develops into a basis of H, just as in
the simplex method an initial feasible basis turns into a feasible basis for the optimum; in fact, the initial
candidate basis is a feasible basis in the dual. Their original analysis didn’t yield a subexponential time
algorithm. However, along with Matousek they gave an analysis that yielded a subexponential bound on the
running time of the same algorithm.

30

In this section, we will assume that the canonical form of the lp is the following: minimize 〈c,x〉, where
Ax ≤ b and x ≥ 0, i.e., we add the non-positivity constraints H+ along with the m constraints H given by
rows of A. This set of constraints will be our initial candidate basis. We also introduce the notion of a basis
in a set of constraints G: A subset C ⊆ G of constraints such that −∞ < vC and for all C ′ ⊂ C, vC′ < vC .
Thus, B is a basis of G iff it is a basis in G and vB = vG.

There may be many basis in G but not all are a basis of G; e.g., H+ is a basis in H ∪H+ though it may
not be a basis of that set. The procedure Subexp takes as input a set of constraints G, a candidate basis C
in G and outputs a basis of G. We assume that vC > −∞, that is, the lp is bounded. To solve the original
lp call Subexp(H ∪H+, H+). We now give the details of the procedure:

Subexp(G,C)
Input: A set of m constraints G and a basis C ⊆ G.
Output: The optimum vG and a basis of G.
1. If G = C then return C

else
Choose an h uniformly at random from G \ C.
Let B′ ← Subexp(G− h,C).
If vB′ does not satisfy h then

C ′ ← basis(B′ ∪ h)).
Return Subexp(G,C ′).

else
Return B′.

Here basis(B′ ∪ h) computes a basis of the set B′ ∪ h. Since the set has (n + 1) constraints, this can be
done by brute force by considering all possible subsets of size n and finding the opt for each and choosing
the smallest amongst them; there are exactly n such sets, and finding the opt of each is solving a system of
n equations in n unknowns; so this takes O(n4) time.

We can inductively prove the correctness of the algorithm: if vB′ satisfies h, i.e., h is not violated by B′,
then from Lemma 14(ii) we know that h is not violated by G − h, and hence vG−h = vG; as B′ is a basis
of G − h and h is not extreme, we obtain that B′ is a basis of G. If, however, vB′ does not satisfy h then
the correctness follows by applying induction to vB′ : we claim vB′ < vB′∪h; since B ⊆ G − h, we know
vB ≤ vG−h = vB′ < vB′∪h; the last is a strict inequality because vB′ did not satsify h, i.e., h is extreme in
B′ ∪ h. This argument also shows that there are only fiintely many levels of recursion, since in the first call
we decrease the number of constraints and in the second we increase the value vB of the candidate basis;
since there are only finitely many basis, this increase is bounded.

We now bound the expected running time of the algorithm. What is the probability that we enter the
second recursive call? Recall that h is violated by G − h iff h is extreme in G. Since there are at most
n extreme constraints in G, the probability of picking one in G \ C is bounded by n/(m − n). But this is
too weak for us, since there can be extreme constraints in C, which will not be violated. Suppose there are
at most j extreme constraints outside C (note C is not a basis of G), then the probability is bounded by
j/(m−n) and trivially by min {m− n, j} /(m−n). The key idea is that this probability decreases when we
make the second recursive call.

To understand this probability, we need to understand the deficit that a candidate basis C has from
becoming a basis B of G. What is the relation between the opt of two such basis? Since C ⊆ G, we know
that vC ≤ vG = vB , where the last inequality follows since B is a basis of G. Thus the opt of a candidate
basis does not exceed the opt of a basis of G. So in some sense, we ought to increase this optimum of
the candidate basis, which is precisely what the second recursion does. But when can we say that some
constraints in C must occur in a basis of G? This is captured by the following lemma:

Lemma 19. A constraint h ∈ G satisfies vG−h < vC iff h appears in all bases B in G for which vB ≥ vC .
In particular, h appears in C and is an extreme constraint of G.

Proof. Let us prove left to right by contradiction. Suppose vG−h < vC and B is a basis in G such that
vC ≤ vB , which implies vG−h < vB . We claim that h ∈ B, if not then B ⊆ G − h, and consequently
vB ≤ vG−h giving us a contradiction. Moreover, h is an extreme constraint, since C ⊆ G, we have

31

vG−h < vC ≤ vG. However, not all extreme constraints in C satisfy the property that vG−h < vC ; e.g., in
Figure 1, if G := {1, 2, 3, h}, and C := {3, h} then C is a basis in G, h is extreme in G, but vG−h > vC .

For the converse, we again prove by contradiction: Suppose h appears in all bases B in G for which
vB ≥ vC but vG−h ≥ vC . Now let B′ be a basis of G− h, then we have vB′ = vG−h ≥ vC . Note, however,
that B′ is also a basis in G, which does not contain h, giving us a contradiction. Q.E.D.

Let eG,C be the number of constraints common to all basis B in G such that vB ≥ vC . From the lemma
above we know that eG,C = | {h ∈ G|vG−h < vC} |, i.e., eG,C is a lower bound on the number of extreme
constraints of G in C. The hidden dimension of a basis C wrt to a set G is defined as kG,C :=n− eG,C ,
which is an upper bound on the deficit that we need to complete to make C a basis of G; we say upper
bound, because C may contain extreme constraints not accounted by eG,C . The definition implies that there
are some h1, . . . , hn−kG,C

extreme constraints in C that must be present in all bases of G. These n − kG,C
constraints define a kG,C-dimensional flat, and the overall opt is contained in it. If kG,C = 0, then C is a
basis of G because all the constraints in C are present in a basis of G. However, the converse is not true, i.e.,
if C is a basis of G then kG,C may not be zero, but is exactly n minus the number of extreme constraints in
G; e.g., Figure 1, the two bases of G := {1, 2, 7} are {1, 2} and {1, 7}, the constraint 1 is extreme, and the
hidden dimension of both bases is exactly one.

We next claim that the hidden dimension does not increase in the two recursive calls in the algorithm.
To see this let us enumerate the constraints hi in G in such a way that

vG−h1 ≤ vG−h2 ≤ · · ·vG−hm ,

where m := |G|. Note that the ordering is not unique. Where does the opt of a basis C sit in this ordering?
We know that there are n− kG,C constraints h in C for which vG−h < vC . If we let h1, . . . , hn−kG,C

∈ C be
these constraints in the ordering above then we have

vG−h1 ≤ vG−h2 ≤ · · ·vG−hn−kG,C
< vC ≤ vG−hn−kG,C+1

≤ · · ·vG−h|G|.

The next two claims show that the hidden dimension does not increase in the recursive calls.

Claim 1. Let C ⊆ F ⊆ G, then kF,C ≤ kG,C . This implies that the hidden dimension in the first recursive
call does not increase. Note that h1, . . . , hn−kG,C

∈ C and hence in F . Moreover, as F ⊆ G, for
any constraint h, vF−h ≤ vG−h. Therefore, kF,C cannot exceed kG,C

Claim 2. If h ∈ G−C, B′ and C ′ are as in the algorithm then kG,C′ ≤ kG,C . Since h ∈ G−C, vG−h will
not violate any of the constraints in C. The possiblity of a violation can only come from the
constraints hn−kG,C+1, . . . , hm. But we claim that constraints beyond hn are not extreme in G,
that is, for i > n, vG−hi = vG. Since G− hi ⊆ G, we know vG−hi ≤ vG. So suppose for some
i > n, vG−hi

< vG = vB , where B is a basis of G. Then from Lemma 19 we know that h1, . . . , hi
belong to B, but a basis cannot have more then n constraints, which gives us a contradiction.
Hence, for i > n, vG−hi

= vG. Let’s say h was one of hn−kG,C+i, i ∈ {1, . . . , kG,C}, and a
violation occured by vG−h. How large is kG,C′? We know vB′ = vG−hn−kG,C+i

. Since vB′

violated h, we know that vB′ < vB′∪h. Therefore, vG−hn−kG,C+i
< vC′ and hence kG,C′ ≤

kG,C − i, i.e., it goes down in the second recursive call. This drop in the hidden dimension
is what helps us set up the recursive bound on the number of call to violation test and basis-
computation procedure.

Let T (m, k) be the maximum, over all possible inputs, the expected size of the recursion tree entailed by
a call of Subexp(G,B), where G has m constraints and hidden dimension is at most k. Based on the two
claims above, we know that k also bounds the hidden dimension over all recursive calls. More precisely, k− i
is an upper bound in the second scenario, which occurs with probability 1/(m− n). Therefore, we have the
following expected bound on T (m, k) as a recursion:

T (m, k) ≤ 1 + T (m− 1, k) +
1

m− n

min{m−n,k}∑
i=1

T (m, k − i). (10)

32

The upper bound in the summation is selected since k may be larger than m−n; e.g., k = n and n < m < 2n.
Also note that T (n, k) = 0, for k = 0, . . . , n, since if we have exactly n constraints then they form a basis of
our set, i.e., there will be no recursive calls.5. Also, k is between 0 and n (the latter can occur for a basis
that has no constraint from the basis of G, e.g., it can happen for H+ initially). A simple induction shows
that T (m, k) is bounded by 2k(m − n), which gives the initial exponential bound of Sharir-Welzl. The key
insight in the improvement is that when m is not very large compared to k, then a subexponential bound is
possible. More precsisely, if m ≤ ek/4

√
k then

T (m, k) ≤ (m− n) exp

(
2

(
k ln

m√
k

)1/2

+O(
√
k + lnm)

)
.

The proof uses interesting tools from generatingfunctionology of Wilf. For m = O(n2), as ensured by
Clarkson 2, and k = n, we get the desired subexponential bound. They also show that the bound above is
essentially tight for the recursion in (10).

7.4 LP-type problems – An abstract framework

The algorithms that we have seen above require very few properties. With every subset G of constraints we
associated a unique optimum. Moreover, these opts were totally ordered under ’≤’. The two key properties
were the value of the opt increases when adding more constraint, and if two sets had the same value then a
constraint violated by one is violated by other. If we can axiomatize these properties, then it appears that
the algorithms above apply to a larger class of problems.

We consider following type of optimization problems. Given a pair (H, v), where H is a finite set and
v : 2H → W, such that (W,≤) is a totally odered set that has an element −∞ smaller than every other
element. H is called the set of constraints, as before, and for G ⊆ H, v(G) is the value of (or optimum wrt)
G. The optimization problem is to find a minimal subset B if H with the same value as H. Moreover, the
two key properties correspond to the following:

Monotonicity: If F ⊆ G, then v(F) ≤ v(G), i.e., adding more constraints increases the value.
Locality: If F ⊆ G such that −∞ < v(F) = v(G) then for all h ∈ H if v(G) < v(G ∪ h) then

v(F) < v(F ∪ h), i.e., if F and G take the same value and h is violated by G then
h is violated by F as well.

Such problems are called LP-type problems. It is clear that linear programming satisfies the two axioms
above (see Lemma 14(i, ii)); recall that the two axioms were required to prove the correctness of the algorithm.
We can now define the notion of basis B as a set of constraints such that for all B′ ⊂ B, v(B′) < v(B); note
that the definition implies minimality of B. Again, a basis of G is a basis in B such that v(B) = v(G). A
constraint h is violated by G if v(G) < v(G ∪ h). A constraint h is extreme in G, if h is violated in G− h.
What is the analogue of n in this setting? Recall that n was the size of any basis in the lp. Therefore, it is
natural to define the combinatorial dimension dim(H,w) of the problem corresponding to the pair (H,w)
as the maximum cardinality of any basis in H. As was the case in Lemma 15 where n played a crucial role,
this parameters is crucial in measuring the running time of the algorithms. The algorithms also need the
following three sub-routines:

Violation test: Given a constraint h and a basis B, test whether h is violated by B.
Basis Computation: Given a constraint h and a basis B, compute a basis for B ∪ h.

Initial Basis: Compute an initial basis of (H,w).

Given these sub-routines, we can now apply the algorithms above to solve the optimization problem corre-
sponding to (H,w). But can we claim the subexponential running time as we did earlier? Not quite. Implicit
in the analysis of the subexp algorithm is that we do not make any recursive calls when we had exactly n
constraints since then the candidate basis is also a basis of G (this showed in the analysis of the recursion
(10) where T (n, k) = 0, for k = 0, . . . , n). However, now this may not be true, as bases have different sizes;
it is possible that the size of the candidate basis is dim(H,w), whereas the size of a basis of H is a constant.
If, however, all the basis have the same size, namely the combinatorial dimension, then we have a subexp
time algorithm. This property is called the basis-regularity property. If this property is not true, then the

5This point will be crucial later when we study LP-type problems

33

single exponential running time analysis still holds, giving us an algorithm that makes 2dim(H,w) expected
calls to the two tests, violation and basis computation.

7.4.1 Examples of LP-type problems

An example of an LP-type problem is to find the smallest ball containing a given set of m points H in Rn.
Let us verify that this is indeed an LP-type problem. What is our v? For any subset G ⊆ H, let v(G) be
the smallest radius amongst all balls containing G. Our first claim is that v : G → R≥0 is a function, i.e.,
the smallest radius is uniquely defined, which follows if we show that the smallest ball containing the points
is unique.

34

8 Fundamental Theorem of Linear Inequalities

When does a system of linear equations Ax = b has a solution? It is clear that there is a solution iff b
belongs to the linear subspace L generated by the columns of A. Consider a vector y that is orthogonal to
the columns of A. If b ∈ L then it follows that 〈y,b〉 = 0. Is the converse true, i.e., for all y orthogonal to
the columns of A if 〈y,b〉 = 0 then Ax = b has a solution? Let C be a set of lid vectors such that CA = 0;
thus the rows of C span the space orthogonal to L. By assumption, it follows that Cb = 0, and hence b
belongs to L. Thus we have the following theorem:

Theorem 20 (Fundamental Theorem of Linear Algebra). The system Ax = b has a solution iff 〈y,b〉 = 0
for all y such that ytA = 0.

There are many ways to state the theorem. However, this form has the advantage that it states that
either b belongs to the columns-space of A or gives a vector y orthogonal to the column space that witnesses
b not being in the column space. So we could have stated the theorem as either Ax = b has a solution or
there exists a y orthogonal to the columns of A such that 〈y,b〉 6= 0. Is there a corresponding theorem for
linear inequalities? For instance, consider the standard form for lps. When can we say that the feasible set
is not empty? The fundamental theorem of linear inequalities, gives us the analogous characterization:

Theorem 21 (Fundamental Theorem of Linear Inequalities). Let A be a matrix in Rm×n, ai be its n columns,
and b ∈ Rm. Then either

(I) Ax = b has a non-negative solution

or

(II) there exists a hyperplane h through the origin such that ai’s are on one side of h and b is
strictly on the other side, i.e., there exists a y ∈ Rm such that 〈y,ai〉 ≥ 0, for i = 1, . . . , n, and
〈y,b〉 < 0.

To understand the geometric import of this theorem, we introduce the following concept: the cone
generated by vectors a1, . . . ,an is the set of all non-negative linear combinations of these vectors. This
is clearly a convex set; moreover, it is the convex hull of the n rays {tai, t ≥ 0}, i = 1, . . . , n. Note that
the origin always belongs to the cone. Thus the theorem above states that either b belongs to the cone C
generated by ai’s, or there is a hyperplane h through the origin that separates b from C. Before we proceed
with the proof of this theorem and its various equivalent formulations, let us observe that the two conditions
(I) and (II) cannot hold simultaneously: if ytA ≥ 0 then ytAx ≥ 0 (as x is non-negative), whereas ytb < 0,
which is a contradiction.

We see various proofs of Theorem 21. The first one is constructive, and similar to something that we
have seen earlier.

8.1 Proof 1 – Constructive

Recall that in the standard form we have rank(A) = m; thus ai’s span Rm.

Input: The set a1, . . . ,an, and b.
Output: Either (I) of (II).
1. Let B ⊆ [n] be a set of indices corresponding to lid set of vectors from a1, . . . ,an.
2. do
3. Find λi’s such that b =

∑
i∈B λiai; thus ABλB = b.

4. If λi’s are non-negative return (I). / Obtain a solution from λi’s by introducing zeros
5. Let j be the smallest index such that λj < 0.
6. Consider the linear space spanned by the (m− 1) lid vectors in B − {j}.

Let y be a vector orthogonal to this hyperplane, normalized such that 〈y,aj〉 = 1.
/ Thus 〈y,b〉 = λj < 0 .

7. If 〈y,ai〉 ≥ 0, for i = 1, . . . , n, then return (II). / y is the witness vector in Theorem 21
8. Else find the smallest index k ∈ [n] such that 〈y,ak〉 < 0.
9. B ← (B \ {j}) ∪ {k}, i.e., replace j by k in B.

/ Note that B still contains m lid vectors, as ak is outside the hyperplane defined by y.

35

The procedure above is similar to simplex method with Bland’s rule. We argue that it terminates. Let
Bi denote the set B at the ith iteration. If the procedure does not terminate then there is a sequence of
iterations such that Bp = Bq, where p < q. Again consider all the indices that leave in this sequence. Let
` be the index of the largest such hyperplane, and suppose that it leaves at some iteration s and enters (or
entered) at some iteration t; note that there is no ordering between t and s; e.g., t will be smaller than s, if
` was not present in the initial basis Bp, but it will be larger otherwise. Thus indices larger than ` that are
present in Bp are present throughout the cycle, in particular

Bs ∩ {a`+1, . . . ,an} = Bt ∩ {a`+1, . . . ,an} . (11)

Let yi be the vector in step 6 at the ith iteration. Let λj,s be the value of λjs in the sth iteration. We have
the following claims:

C1. λj,s ≥ 0, for all j < `; since ` is the smallest index picked in step 5 in the sth iteration, this is obvious
for j ∈ Bs that are smaller than `; for the indices outside Bs, we have λj = 0.

C2. λ`,s < 0; again by step 5.

C3. 〈yt,aj〉 ≥ 0, for j < `, and 〈yt,a`〉 < 0; because, in step 8 in the tth iteration ` is the smallest index.

C4. 〈yt,aj〉 = 0, for j ∈ Bs and j > `; from (11), we know that these indices are also contained in the set
Bt − {`}; the claim then follows from the construction of yt in step 6.

Now at the tth iteration we know that 〈yt,b〉 < 0. But at the sth iteration we have

〈yt,b〉 =
∑
j∈Bs

λj,s〈yt,aj〉 =
∑

j∈Bs,j<`

λj,s〈yt,aj〉+ λ`,s〈yt,a`〉+
∑

j∈Bs,j>`

λj〈yt,aj〉.

From C1 and C3 it follows that the first summation is non-negative; from C2 and C3, that the second term
is positive; from C4 that the last summation is zero. Thus 〈yt,b〉 > 0, which gives us a contradiction. So
the procedure has to terminate. Note that just picking Bs or Bt is not sufficient, since C3 does not apply to
the ys in the sth iteration, and the λ’s in the tth iteration do not satisfy C1 and C2.

Remark:

1. Note that if b belongs to the cone generated by a1, . . . ,an then the algorithm actually finds a set of
m lid vectors whose cone contains b.

2. Similarly the separating hyperplane through origin contains (m− 1) lid vectors, or more precisely, one
less than the rank of a1, . . . ,an,b.

8.2 Applications

A polytope can be defined in two ways: either as the bounded intersection of finitely many halfspaces, or
as the convex hull of a set of points. Let the first definition be called an H-polytope and the second a
V -polytope. Both definitions have their advantages and disadvantages; e.g., to show that intersection of a
polytope with a polyhedra is a polytope the first definition is useful; whereas, to show that a projection of a
polytope is also a polytope, the second definition is handy. Why are the two definitions equivalent? The fact
that they are is the fundamental theorem of polytope theory. To prove it we will show an analogous result
for polyhedra;since polytopes are bounded polyhedra, the theorem for polytopes follows easily. We already
know that polyhedra are intersection of finitely many halfspaces, let such sets be called H-polyhedra. How
can we define V -polyhedra? For that we need the following concepts.

A (convex) cone is a set C of points in euclidean space such that if x,y ∈ C then so is αx + βy, for all
α, β ≥ 0. Note that the origin always belongs to the cone. Analogous to the definition of convex hull, we can
define a cone as a set that is closed under non-negative linear combinations. For an arbitrary set S ⊆ Rn its
conical hull C(S) is the intersection of all the cones containing S, or the smallest cone containing S. Egs,
conical hulls of polygons and disc with origin on its boundary. A cone is polyhedral if it can be represented

36

as the intersection of finitely many linear halfspaces (that is, those containing the origin), or equivalently as
the set {y : ytA ≥ 0}. A cone C is said to be finitely generated if there are vectors p1, . . . ,p` such that
C = C(p1, . . . ,p`).

Note the definition of cone, and conical hull is analogous to convex and convex hull or linear space and
linear hull. The role of convex combinations (or linear combinations) is replaced by non-negative linear
combinations. Therefore, it lies somewhere in between a convex set and a linear subspace.

Are all cones finitely generated? Not really – the standard ice-cream cone in 3-d is not. How do finitely
generated cones look like? Can it be that a cone is polyhedral but not finitely generated? See Figure 3
illustrating these definitions and a cone in 2-d that is not finitely generated. There are two ways of generating
a cone, either as a set generated by non-negative linear combinations of finitely many points, or as a finite
set of inequalities (similar to the definition of V -polytopes and H-polytopes). The next theorem states that
the two notions are equivalent.

Figure 2: Cones – Examples

Theorem 22 (Farkas-Minkowski-Weyl). A convex cone is polyhedral iff it is finitely generated.

Proof. Suppose the column vectors a1, . . . ,an ∈ Rm generate C. Further suppose that they span the
euclidean space Rm; otherwise apply the theorem in their linear span, and lift the half spaces in the linear
span to half spaces in Rm (this lift is not unique); express the linear span as the intersection of finitely many

37

halfspaces in Rm; these halfspaces along with the lifted halfspaces give us the polyhedral representation of C;
see Figure 3 for an example in the plane. What are our candidate halfspaces in the polyhedral representation?
Let H be the set of all the linear halfspaces that contain all ai’s and the corresponding hyperplane is spanned
by exactly m− 1 of the ai’s; note that the hyperplane contains the origin. We claim that C is equal to the
intersection of these finitely many halfspaces. This follows from Theorem 21: clearly, the cone is contained
in these halfspaces; moreover, any b that is not in C is outside a halfspace in H. Thus C is equal to the
intersection of the halfspaces in H.

The proof idea is demonstrated in Figure 3. Suppose C is a polyhedral cone, i.e., the intersection of all
the halfspaces {x : 〈ai,x〉 ≥ 0}, for i = 1, . . . , n, where ai ∈ Rm and we assume that they span the whole
space (otherwise, work in their linear span). Consider the cone generated by a1, . . . ,an. By the first part
we know that every finitely generated cone is polyhedral, i.e, there exists b1, . . . ,b` such that

C(a1, . . . ,am) = {x : 〈bi,x〉 ≥ 0, i = 1, . . . , `} . (12)

We claim that C = C(b1, . . . ,b`).

1. bi ∈ C, for i = 1, . . . , `. Since C(a1, . . . ,am) = {y : ytB ≥ 0}, and clearly ai ∈ C(a1, . . . ,am), it follows
that 〈bi,aj〉 ≥ 0, for i = 1, . . . , ` and j = 1, . . . ,m. Since inner product is commutative, it follows that
b ∈ C.

2. Thus for any non-negative linear combination b of the bi’s we have 〈aj ,b〉 ≥ 0, for j = 1, . . . ,m, and
hence C(b1, . . . ,b`) ⊆ C.

3. To show that inclusion the other way consider a y ∈ C but not in C(b1, . . . ,b`). Then by Theorem 21(II)
we know that there is a vector w such that 〈bi,w〉 ≥ 0, for i = 1, . . . , `, and 〈w,y〉 < 0; but the
condition on 〈bi,w〉 and (12) imply that w ∈ C(a1, . . . ,am), i.e., w =

∑
i λiai, where λi ≥ 0. Thus

〈w,y〉 =

n∑
i=1

λi〈ai,y〉 ≥ 0,

where in the last inequality we use the fact that y ∈ C and hence 〈y,ai〉 ≥ 0, for i = 1, . . . , n. But this
is a contradiction since 〈w,y〉 < 0.

Q.E.D.

Figure 3: Demonstrating the proof of the sufficiency part of Theorem 22

To define the notion of V -polyhedra we also need the following concept: The Minkowski sum (or vector
sum) of two sets A,B is the set

A+B := {v + w : v ∈ A and w ∈ B} . (13)

38

See Figure 4 for illustration; we assume that the circle and the two rays are hinged at origin. We already
know that an H-polyhedra is the intersection of finitely many halfspaces. Given two finite point sets Q,R
in euclidean space, a V -polyhedra is defined as the Minkowski sum of the convex hull of Q and the cone
generated by R. The next theorem is the fundamental theorem of polyhedral theory, namely the concept of
H-polyhedra is the same as V -polyhedra. The proof will reduce it to the case of cones.

Figure 4: Minkowski Sum

Theorem 23 (Decomposition Theorem of Polyhedra). A set P of euclidean space is an H-polyhedron iff it
is a V -polyhedron.

Proof. Let P = {x : Ax ≤ b} be the H-polyhedra. The idea to get the decomposition is to homoge-
nize/projectivize P ; this expresses P as a system of homogeneous inequalities, i.e., as a polyhedral cone,
which we know is finitely generated; the generators of this cone come in two sets – those that are at infinity
and those that are finite; the former points give us the cone part of P and the latter the polytope part, and
hence the V -polyhedra formulation of P .

Homogenizing the system of inequalities Ax ≤ b, we get a system A′(x, y)t ≤ 0, where A′ is obtained
from A by adding an extra column −b. From Theorem 22 we know that the polyhedral cone in Rn+1 defined
by C := {(x, y)t : A′(x, y)t ≤ 0 and y ≥ 0} is finitely generated by say the vectors (xi, yi)

t, for i = 1, . . . , k;
the non-negativity constraint on y is required to ensure that Ax ≤ b holds and we do not flip the sign
of b. Moreover, as scaling the vectors (xi, yi)

t by a positive quantity does not change their satisfying the
inequalities, we may assume that for those vectors with yi non-zero (hence positive) is actually 1. Thus C
is generated by vectors of the form (xi, 1)t, i = 1, . . . , j, and (xi, 0)t, for i = j + 1, . . . , k. The former are
the finite part of the homogenized version of P , so let Q be the convex hull of x1, . . . ,xj ; the latter are the
points at infinity so let C := C(xj+1, . . . ,xk). Now x ∈ P iff (x, 1)t, which is equivalent to(

x
1

)
=

j∑
i=1

ti

(
xi
1

)
+

k∑
i=j+1

ti

(
xi
0

)
,

where ti ≥ 0. This instead is equivalent to

x =

j∑
i=1

tixi +

k∑
i=j+1

tixi, and

j∑
i=1

ti = 1.

The first sum on the RHS clearly belongs to Q and the second sum to C.
For the converse, suppose Q = {x1, . . . ,xj} and R = {xj+1, . . . ,xk}. Then v ∈ CH(Q) + C(R) iff there

exists non-negative t1, . . . , tk such that

v =

k∑
i=1

tixi,

j∑
i=1

ti = 1.

39

This is equivalent to stating that(
v
1

)
=

j∑
i=1

ti

(
xi
1

)
+

k∑
i=j+1

ti

(
xi
0

)
,

which is the same as saying that (v, 1) belongs to the cone generated by (xi, 1), for i = 1, . . . , j, and (xi, 0),
i = j + 1, . . . , k. Since any finitely generated cone is also polyhedral it follows that there is a matrix A′

such that (v, 1) ∈ {x′ : A′x′ ≤ 0}. If A′ = (A b) then this implies that Av ≤ −b, i.e., v is in the polyhedra
{x : Ax ≤ −b}.

Q.E.D.

As a consequence we have the finite basis theorem of polytope theory: A set P is a polytope iff it is a
bounded polyhedron.

Our second application is the following theorem of Caratheodory, which follows as a consequence of the
first remark following the proof of Theorem 21:

Theorem 24 (Caratheodory’s Theorem). If S ⊆ Rm is a finite point set and p ∈ C(S), then p is in the
cone of at most m lid vectors from S.

Using this we can easily prove Theorem 11: If p belongs to the convex hull of a set S then it belongs to the
convex hull of somem+1 affinely independent points in S. To see this consider the set T := {(x, 1)t : x ∈ S} ⊆
Rm+1. Now p ∈ CH(S) iff (p, 1)t ∈ C(T). From the theorem above we know that there are (m + 1) lid
vectors (x0, 1)t, . . . , (xm, 1)t in T such that (p, 1)t is in their cone. Again, this implies that p is in the convex
hull of x0, . . . ,xm ∈ S. Moreover, these points are affinely independent as (x0, 1)t, . . . , (xm, 1)t are lid.

8.3 Variants – Farkas’s Lemma

The theorem Theorem 21 is actually about a system of equations have a non-negative solution.

Corollary 25 (Farkas’s Lemma). Let A be a matrix and b a vector. Then there exists a vector x ≥ 0 with
Ax = b iff 〈y,b〉 ≥ 0 for all vectors y such that ytA ≥ 0.

Proof. The necessary part is easy: if there exists a non-negative solution to Ax = b then for all vectors
y such that ytA ≥ 0, we have

〈y,b〉 = ytAx ≥ 0

since x ≥ 0. For the sufficiency part, suppose there is no x ≥ 0 such that Ax = b, i.e., b is not in the cone
generated by the columns of A, then from II we know that there is vector y such that ytb < 0 and ytA ≥ 0,
which would be a contradiction. Q.E.D.

Geometrically, if b is in the cone generated by the columns of A then we know that for any halfspace
that contains all the columns of A also contains its cone, and hence b.

The variants above all talk about equations having a non-negative solution. Is it possible to say something
about inequalities?

Corollary 26 (Variant 2). The system Ax ≤ b has a non-negative solution iff 〈y,b〉 ≥ 0 for each non-
negative vector y such that ytA ≥ 0.

Proof. After adding slack variables z, we know that Ax ≤ b has a non-negative solution iff [A I](x, z)t =
Ax + z = b has a non-negative solution in (x, z). Applying Corollary 25 to this system we obtain that it
has a non-negative solution iff for all vectors y such that yt[A I] ≥ 0 implies 〈y,b〉 ≥ 0. But yt[A I] ≥ 0 iff
ytA ≥ 0 and y ≥ 0. Q.E.D.

Note the strengthening of the condition on y.

Corollary 27 (Variant 3). The system Ax ≤ b has a solution iff 〈y,b〉 ≥ 0 for each non-negative vector y
such that ytA = 0.

Proof. The proof is applying Farkas lemma to the system obtained by adding slack variables and rep-
resenting each variable as a difference of two non-negative variables. The result is obtained by applying
Farkas’s lemma to the system [I A − A]x′ = b; note that the condition yt[I A − A] ≥ 0 is equivalent to
y ≥ 0 and yTA = 0. Q.E.D.

40

9 Duality in Linear Programming

One of the most fundamental concepts of LP is the notion of duality. This notion already occurs in linear
algebra where a point in Rn is the dual of a hyperplane through the origin; we have seen glimpses of this
while going through the proof of equivalence of polyhedral cones and finitely generated cones, Theorem 22.
In this section, we extend this concept to LP.6

On October 30, 1947, the year Dantzig proposed the simplex method, he decided to meet John Von
Neumann, considered the leading mathematician of that time, to gain insight into the problem. This is how
Dantzig decribes the meeting:

I remember trying to describe to von Neumann (as I would to an ordinary mortal) the Air Force
problem. I began with the formulation of the linear programming model in terms of activities
and items, etc. He did something which I believe was uncharacteristic of him. “Get to the
point,” he snapped at me impatiently. Having at times a somewhat low kindling point, I said
to myself, “OK, if he wants a quickie, then thats what hell get.” In under one minute I slapped
on the blackboard a geometric and algebraic version of the problem. Von Neumann stood up
and said, “Oh that!” Then, for the next hour and a half, he proceeded to give me a lecture on
the mathematical theory of linear programs. At one point, seeing me sitting there with my eyes
pop- ping and my mouth open (after all I had searched the literature and found nothing), von
Neumann said: “I dont want you to think I am pulling all this out of my sleeve on the spur of
the moment like a magician. I have recently completed a book with Oscar Morgenstern on the
theory of games. What I am doing is conjecturing that the two problems are equivalent. The
theory that I am outlining is an analogue to the one we have developed for games.” Thus I
learned about Farkas’ Lemma, and about Duality for the first time.

The term Primal was introduced around 1954. This is how Dantzig describes it:

It came about this way: W. Orchard-Hays, who is responsible for the first commercial grade
L.P. software, said to me at RAND one day around 1954: “We need a word that stands for
’the original problem of which this is the dual’.” I, in turn, asked my father, Tobias Dantzig,
mathematician and author, well known for his books popularizing the history of mathematics.
He knew his Greek and Latin. Whenever I tried to bring up the subject of linear programming,
Toby (as he was affec- tionately known) became bored and yawned. But on this occasion he did
give the matter some thought and several days later suggested Primal as the natural antonym
since both primal and dual derive from the Latin. It was Toby’s one and only contribution to
linear programming...

9.1 Duality – Algebraic Viewpoint

The example in Figure 5 and Figure 6 show us the idea behind the algebraic approach. The input LP is
called the primal LP and the LP obtained after doing the reduction suggested in the example is called the
dual LP. Thus given a primal LP in the canonical form

maximize 〈c,x〉 s.t. Ax ≤ b, x ≥ 0

we have the corresponding dual form:

minimize 〈b,y〉 s.t. Aty ≥ c, y ≥ 0.

The construction illustrated in the examples only handle the case when the constraints are of the form
“≤”. In general lp we can have “≥” and equality constraints. What should we do then? It is clear that
if a constraint is an equality then the multiplying variable y can take any value (positive/negative/zero);
similarly if a constraint is “≥” then the multiplying variable is taken to be non-positive. The constraints in
the dual are governed by the sign of the corresponding variable in the objective function. Suppose the linear
combination ytA is expressed as

∑n
i=1 dixi, where di depends on y. Then we want that 〈c,x〉 ≤

∑
i dixi, i.e.,

6Dantzig meets Von Neumann.

41

∑
i(di−ci)xi ≥ 0. This can be ensured by making each term positive. Thus if xi ≥ 0 in then primal then the

corresponding constraint in the dual is “di ≥ ci”; similarly, if xi ≤ 0 in the primal then the corresponding
constraint in the dual is “di ≤ ci”; and, if xi ∈ R in the primal then the corresponding constraint in the dual
is di = ci. Also note the change in the number of variables in the dual, where it equals the dimension of b
(i.e., number of rows in A), and the number of inequalities, which now equals the number of variables; this
observation can be used to choose the appropriate form for an algorithm that performs faster depending on
the smaller of the two quantities. It can be verified that the dual of the dual is the primal itself.

Figure 5

By the construction we have the following:

Lemma 28 (Weak Duality). For all feasible solutions y of the dual and for all feasible solutions x of the
primal we have

〈c,x〉 ≤ 〈b,y〉.

In particular, if primal is unbounded then the dual is infeasible, and if the dual is unbounded then the primal
is infeasible.

42

Figure 6

Dual
Infeasible Unbounded Opt-exists

Primal
Infeasible ? ? ?

Unbounded X NA NA
Opt-exists (feasible and bounded) ? ? ?

Table 1: Dependence of the Dual on the Primal implied by Weak Duality

Proof. Suppose x is feasible solution for primal and y for dual; then we know that Aty ≥ c. Therefore,

〈c,x〉 = ctx ≤ ytAx ≤ ytb = 〈y,b〉.

Thus OPTPrimal ≤ OPTDual. Q.E.D.

An LP can be exactly one of infeasible, unbounded and optimum-exists. The corresponding relations
implied by the weak duality between the primal and dual are given in Table 1; basically, we only know the
relation when primal is unbounded. The entries marked with questions need to be resolved. The following
examples resolve the first row.

1. maximize x1 + x2 such that x1 + x2 ≤ −1, x1, x2 ≥ 0; the corresponding dual is minimize −y, such
that y ≥ 1; it is clear that the primal is infeasible and the dual is unbounded.

2. maximize x1 + x2 such that x2 ≥ 1 and x1 ≤ −1, x ≥ 0. The dual is minimize −y1 − y2 such that
y1 ≤ −1 and y2 ≥ 1. But observe that this is the primal lp. This example is interesting because it is
self-dual. This happens exactly when A is skew-symmetric, i.e., At = −A, and b = −c.

The remaining entries in Table 1 will be resolved by the strong duality theorem. The stronger version of the
duality theorem state that in the last row only the last column has to be check marked, i.e., if the primal has
an optimum then so does the dual and vice versa. We give two proofs – one based on the Simplex method
and another on Farkas’s Lemma.

The statement of the strong duality is the following:

43

Dual

Infeasible Unbounded Opt-exists

Primal
Infeasible X X NA

Unbounded X NA NA
Opt-exists (feasible and bounded) NA NA X

Table 2: Dependence of the Dual on the Primal implied by Strong Duality. Exactly one of Xoccurs.

Theorem 29 (Strong Duality). Given a primal LP and its dual exactly one of the following situation holds:

1. Both primal and dual are infeasible.

2. Primal is infeasible and dual is unbounded.

3. If primal is unbounded then dual is infeasible (by weak duality).

4. If primal is feasible and bounded then dual is also feasible and bounded. Moreover, OPTPrimal =
OPTDual.

The relations are shown in Table 2. The theorem states that exactly one of the checkmarks takes place.
The first two conditions imply the entries in the first row, and the last condition implies the entries in the
last row.

¶1. Strong Duality via Simplex Method We will show the following: if the simplex method returns
an optimum solution for the primal then from the associated simplex tableau we will be able to construct an
optimum solution for the dual. First observe that the primal is not in the equational form. We bring it into
the equational form by adding slack variables. Let the resulting form be maximize 〈c,x〉 s.t. Ax = b and
x ≥ 0, where x is an (m+ n)-dimensional vector, c is c followed by m zeros, and A = (A Im). Assume that
we have an optimum solution x∗ to this equational form. Let B ⊆ [m + n] be the feasible basis associated

with the final tableaux. Then from Lemma 12 we know that xB = A
−1

B b and

OPTPrimal = 〈c,x〉 = 〈cB , A
−1

B b〉 = ctB(A
−1

B b) = (ctBA
−1

B) · b.

Therefore, it makes sense to define y∗ := (ctBA
−1

B)t. Then it is clear from above that OPTPrimal = 〈y∗,b〉,
and since for any other dual-feasible solution the value of the objective function is at least OPTPrimal, to
show dual-optimality of y∗ it suffices to show that y∗ is indeed dual-feasible, i.e, Aty∗ ≥ c and y∗ ≥ 0. Note

that y∗ is an m-dimensional vector, and hence these two constraints are implied if we show that A
t
y∗ ≥ c.

From the definition of y∗ we have

w :=A
t
y∗ = A

t
(ctBA

−1

B)t = (ctBA
−1

B A)t

The vector w is an (m + n) dimensional vector. We consider its entries corresponding to the feasible basis
B, represented by wB and its entries corresponding to the nonbasic indices, represented by wN . From the
preceding equation we have that the basic entries of w correspond to picking the basic columns in A, i.e.,

wB = (ctBA
−1

B AB)t = cB .

Doing the same for the non-basic entries we have

wN = (ctBA
−1

B AN)t = (A
−1

B AN)tcB ,

which from Lemma 12 we know is equal to cN − r. But as x∗ was the optimum we know that r ≤ 0, and

hence wN ≥ cN . Thus we have shown that w = A
t
y∗ ≥ c as desired.

44

¶2. Strong Duality via Farkas’s Lemma Again assume that the primal LP has an optimum and that
γ is OPTPrimal. We will show that the dual has an optimum and the objective value is the same as γ. Since
the primal is feasible we know that the following system of inequalities has a non-negative solution:

Ax ≤ b and 〈c,x〉 ≥ γ. (14)

Moreover, as γ = OPTPrimal, for any ε > 0 the following system has no non-negative solution:

Ax ≤ b and 〈c,x〉 ≥ γ + ε. (15)

Adding slack variables to (14), we define

A′ :=

[
A Im
−ct 0

]
and b′ε :=

(
b

−γ − ε

)
.

Then (14) implies that b′0 belongs to the cone generated by the columns of A′ and (15) implies that b′ε does
not belong to the cone, for all ε > 0. This is possible iff b′0 is on the boundary of the cone. Therefore, there
exists a non-negative y = (u w)t, namely the normal corresponding to a face of the cone containing b′0, such
that

1. ytA′ ≥ 0,

2. 〈y,b′ε〉 < 0, for all ε > 0, and

3. 〈y,b′0〉 = 0.

The conditions above are equivalent to

Atu ≥ wc, wγ = 〈u,b〉 < w(γ + ε).

The bounds on 〈u,b〉 imply that wε > 0, and since ε > 0, it follows that w > 0. Therefore, if we consider
the vector v := u/w, then we have

Atv ≥ c and 〈b,v〉 = γ.

That is, v is a feasible solution for the dual, and its objective value is OPTPrimal as desired. Moreover,
v ≥ 0, as u ≥ 0 and w was positive. Thus v is an optimum for the dual, since from the weak duality we
know that the objective value of any dual feasible solution is at least γ.

9.2 Duality – Geometric Viewpoint

Suppose the polyhedron P := {x : Ax ≤ b} is not empty. Consider moving the hyperplane orthogonal to c
across P in the direction of c. If P is bounded in that direction, then we must reach a scenario as illustrated
in Figure 7. That is, there must be at least n constraints ai indexed by I, such that the solution x∗ to the
equation AIx = bI attains the maximum for the objective function. For this to happen, the vector c must be
in the cone generated by ai’s, i.e., there exists non-negative y∗ such that ct =

∑
i∈I y∗i ai, i.e., ct = (y∗I)

tAI ,

or equivalently (y∗I)
t = ctA−1

I ; note c is a column vector whereas ai’s are row vectors, and y∗ is zero outside
I. Therefore,

〈c,x∗〉 = 〈c, A−1
I bI〉 = (ctA−1

I)bI = 〈y∗I ,bI〉 = 〈y∗,b〉.
Thus y∗ is the solution to the system {y : Aty = c, y ≥ 0}, which minimizes 〈y,b〉 (the minimization follows
from weak duality); note the equality in Aty = c, this is because we started with the weaker condition Ax ≤ b
(since non-negativity of x is missing, the optimum x∗ is a vertex of the polyhedron defined by Ax ≤ b). The
geometric insight also shows us that if y∗i is positive, then the ith constraint 〈ai,x〉 ≤ bi is actually satisfied
as an equality by x∗. Algebraically, this can be stated as follows:

(〈ai,x∗〉 − bi) · y∗i = 0, for i = 1, . . . ,m,

i.e., either the constraint 〈ai,x∗〉 = bi or y∗i = 0 is satisfied as equality (no slack) by x∗ and y∗. Since
〈ai,x〉 ≤ bi, and y∗ ≥ 0, the above set of equations is equivalent to the following succinct form:

〈y∗, Ax∗ − b〉 = 0. (16)

This condition is called complementary slackness and is an equivalent formulation of strong duality:

45

Lemma 30 (Complementary Slackness iff strong duality). If x∗ is an optimum for the primal and y∗ for the
dual then 〈y∗, Ax∗ − b〉 = 0 iff 〈c,x∗〉 = 〈b,y∗〉.

Proof.
Since y∗ is the dual optimum we know that Aty∗ = c. Therefore,

〈c,x∗〉 = 〈Aty∗,x∗〉 = (y∗)tAx∗ = 〈y∗, Ax∗〉 ≤ 〈y∗,b〉,

since Ax∗ ≤ b. It is clear that 〈c,x∗〉 = 〈y∗,b〉 iff the last inequality holds as an equality, i.e., iff 〈y∗, Ax∗〉 =
〈y∗,b〉. Q.E.D.

Remark: Note that complementary slackness does not claim that the only constraints satisfied as
equalities by x∗ are those corresponding to positive entries of y∗ (see (16)). There can be constraints with
corresponding entry in y∗ as zero that are satisfied as equality by x∗. This is illustrated, e.g., when c

coincides with ai, in which case a complete facet can be optimum.
In fact, we can say something more: The constraints corresponding to the positive entries of y∗ are linearly

independent. This is because if c ∈ C(a1, . . . ,am) then we know from the algorithm from Theorem 21 that
c is in the cone generated by some lid vectors ai’s. Clearly, the constraints corresponding to positive entries
of this linear combination are lid.

Figure 7

46

9.3 Applications

As applications we will show that various minimax theorems follow from strong duality. We show this for
two theorems, namely max-flow min-cut and König’s theorem.

9.4 Max-flow min-cut theorem

Recall the LP for maximizing flow in a network. Let G = (V,E) be a directed graph with a capacity function
c : E → R≥0 and two distinguished vertices, a source vertex s and a target vertex t. For every vertex v, let
I(v) denote the set of edges directed to v and similarly define O(v). A flow in G is a function f : E → R
satisfying the following conditions:

1. Non-negativity: for all e ∈ E, f(e) ≥ 0,

2. Capacity constraints: for all e ∈ E, f(e) ≤ c(e), and

3. Flow conservation: for all v ∈ V \ {s, t},
∑
e∈I(v) f(e) =

∑
e∈O(v) f(e).

The size of the flow is defined as
∑
e∈O(s) f(e) −

∑
e∈I(s) f(e), which measures the gradient of flow across

the source node. The optimization problem is to obtain an f that maximizes the flow for G.
An s-t cut is a subset W of vertices such that s ∈ W , t 6∈ W . Let I(W) denote the set of edges from

W to W ; similarly, define O(W) as the set of edges going from W to W . The capacity of an s − t cut is∑
e∈O(W) ce. The minimum capacity of G is the minimum capacity over all s− t cuts in G.
The max-flow min-cut theorem of Ford-Fulkerson states that the maximum flow in a directed graph is

equal to its minimum capacity. We will prove this as a consequence of strong duality.
To get the LP corresponding to the flow problem, we introduce a variable xe for every edge e. Then

the set of constraints is of the form: for all e ∈ E, 0 ≤ xe ≤ c(e), for all v except s and t we have∑
e∈I(v) xe =

∑
e∈O(v) xe. The optimization function is simply

∑
e∈O(s) xe −

∑
e∈I(s) xe, which is clearly

linear. Thus there is a constraint for every vertex, except s and t, and every edge. Let us write the primal
in a more structured manner:

maximize
∑

e∈O(s)

xe −
∑
e∈I(s)

xe

s.t. for all v ∈ V \ {s, t}
∑
e∈I(v)

xe −
∑

e∈O(v)

xe = 0,

0 ≤ xe ≤ ce.

(17)

For every vertex u ∈ V except s, t we introduce a variable pu in the dual; since the constraints for vertices
are equalities pu ∈ R. For every edge e ∈ E, we introduce a dual variable de; since the constraints for edges
are xe ≤ ce, these variables take non-negative values, i.e., de ≥ 0. We now take a linear combination of
the constraints in (17) wrt these variables and construct the dual. For every edge (uv) ∈ E except those in
I(s) ∪O(s), we have the following constraint:

pv − pu + duv ≥ 0.

For an edge sv ∈ O(s) we have the constraint pv + dsv − 1 ≥ 0, and for an edge us ∈ I(s), we have the
constraint −pu + dus ≤ 1, i.e., 1 + pu− dus ≥ 0. The objective function clearly is

∑
e∈E dece. To summarize,

the dual is the following:

minimize
∑
e∈E

dece

s.t. for all uv ∈ E \ (I(s) ∪O(s)), duv ≥ pu − pv,
for sv ∈ O(s), pv + dsv − 1 ≥ 0,

for us ∈ I(s), 1 + pu − dus ≥ 0,

de ≥ 0, pv ∈ R.

(18)

47

We claim that all s−t cuts are feasible for this dual. We will then show an s−t cut whose minimum capacity
is equal to the maximum flow. The interpretation is that pu is the potential stored at a vertex and duv is an
upper bound on the drop in the potential as we move from u to v.

Consider an s− t cut W . Let pu = 1, for all u ∈W and zero otherwise. Similarly, let duv = 1, if u ∈W
and v ∈ W ; otherwise, if both u, v ∈ W or both are in W we set it to zero. It is easy to verify that these
choices satisfy the constraints in (18). The value of the objective function in the dual is clearly the capacity
of the cut. Thus by weak duality we have shown that maximum flow in a graph is smaller than its minimum
capacity. Why are we not done? Suppose x∗ is an optimum solution to the primal and (p∗,d∗) is an optimal
solution to the dual. Then as pv are arbitrary reals, it is not immediately clear what is the cut defined by
this optimum. Let define our s − t cut W ∗ := {u ∈ V : p∗u ≥ 1} ∪ {s}; clearly it cannot be empty. Even
then, as d∗e may take values greater than one, it is not clear why

∑
e∈E d

∗
ece should be the capacity of W ∗.

That is precisely what we show next. Then we will be done, because we would have shown that OPTDual is
the capacity of W ∗, and by strong duality we know OPTDual = OPTPrimal, i.e., the capacity of W ∗ is the
maximum flow in the graph. By weak duality, it then follows that the capacity of W ∗ is also the minimum
capacity of G.

Lemma 31. We show that OPTDual =
∑
e∈E d

∗
ece =

∑
e∈O(W∗) ce.

Proof. We know by strong duality that∑
e∈E

d∗ece =
∑

e∈O(s)

x∗e −
∑
e∈I(s)

x∗e.

We will in fact show that the quantity on the RHS equals the capacity of W ∗.
If e = uv ∈ O(W ∗) then we know that pu ≥ 1 > pv. Therefore, duv ≥ pu − pv > 0, and it follows from

complementary slackness that the corresponding constraint in the primal is satisfied as equality by x∗, i.e.,
x∗e = ce. Now consider an edge e = uv ∈ I(W ∗); again, we know from the choice of W ∗ that pv ≥ 1 > pu.
We claim that x∗e = 0; if not, then from complementary slackness we know that 0 ≤ duv = pu − pv < 0,
which is a contradiction. For the edges in O(s) ∪ I(s) a similar argument shows that x∗e = ce, for e ∈ O(s),
and x∗e = 0, for e ∈ I(s). To summarize, we have shown that x∗e = ce, for e ∈ O(W ∗), and x∗e = 0, for
e ∈ I(W ∗).

Consider the value of the flow given by x∗:

OPTPrimal =
∑

e∈O(s)

xe −
∑
e∈I(s)

xe.

Since for all other vertices v ∈W ∗ this difference vanishes, the quantity above is equal to

∑
v∈W∗

 ∑
e∈O(v)

xe −
∑
e∈I(v)

xe

 .

For any edge e with both its vertices in W ∗ the term xe is counted once as an outgoing edge and once as an
incoming edge, and hence disappears from the sum above. Thus, the sum above is equal to∑

e∈O(W∗)

xe −
∑

e∈I(W∗)

xe.

Since x∗e = ce, for e ∈ O(W ∗), and x∗e = 0, for e ∈ I(W ∗), it follows that the sum above is equal to∑
e∈O(W∗) ce, which is the capacity of W ∗. Thus we have shown that the capacity of W ∗ is OPTPrimal, and

by weak duality it follows that W ∗ is also optimum. Q.E.D.

9.5 König’s Theorem

Given a bipartite graph G = (X ∪ Y,E), König’s theorem states that the size of the maximum matching is
equal to the minimum vertex cover. How can we formulate matching as an LP? Let’s associate a variable xe

48

with each edge e, which can take value in {0, 1}. For every vertex v, exactly one of the xe is equal to one
amongst the edges e incident on v; this can be captured as

∑
e∈I(v) xe = 1. Thus our LP is:

maximize
∑
e∈E

xe

s.t. for all v ∈ X ∪ Y ,
∑
e∈I(v)

xe ≤ 1,

and for all e ∈ E, xe ∈ {0, 1} .

(19)

A more succinct way to express this is to use the vertex-edge incidence matrix A = [aij], where aij = 1 iff
vi is an endpoint of ej . Thus every column of A has exactly two entries as 1. Using the incidence matrix,
the LP above can be written as

maximize
∑
e∈E

xe s.t. Ax ≤ 1, and for all e ∈ E, xe ∈ {0, 1} .

Instead of restricting xe to {0, 1} we allow it to take values as positive integers, since the constraint corre-
sponding to a vertex will imply that xe is either 0 or 1. Thus we finally get the following LP for finding the
maximum matching:

maximize
∑
e∈E

xe s.t. Ax ≤ 1, x ∈ Zm≥0. (20)

The LP above is called an integer linear program since the variable takes integral values. Note that so
far we haven’t used the fact that G is a bipartite graph crucially; the derivation above actually applies to
any graph. However, the incidence matrix of a bipartite graph has a nice property that allows us to work
with the LP above by relaxing the integrality condition by allowing the xe’s to vary over R, or what is called
the LP-relaxation of the ilp. Overlooking the integrality part, the corresponding dual would be

minimize
∑

v∈X∪Y
yv s.t. Aty ≥ 1, y ∈ Zn≥0. (21)

This not entirely correct, since strictly speaking y ∈ Rn≥0. The rows of the constraint Aty ≥ 1 are of the form
yu + yv ≥ 1, for an edge uv ∈ E, and from the integrality of y it follows that at least one of the endpoints of
an edge is picked by the optimum, i.e., one yu of yv is greater than 1. Note that since the yu’s are positive
integers and we are minimizing their sum, we can assume that actually yu ∈ {0, 1}, since any larger value
could be reduced while satisfying the constraints and decreasing the objective value. Thus all vertex covers
are feasible for this lp, and the value of the objective function is the size of the vertex cover.

It is clear that the LP-relaxations of the two lps above are dual of each other. Suppose x∗ and y∗ are the
optimum for the relaxed primal and dual lps. Can we recover Konig’s theorem by applying strong duality?
But now it is not clear what the value of the objective function means for two lps as we x∗e’s and y∗u’s can
take fractional values. For the dual we can take the set V := {v : yv ≥ 1/2} as our vertex cover, but the
value of the objective function is not the size of V . This idea of using LP-relaxation apparently seems to
fail. But so far we have not used bipartitness anywhere. We will now show that the vertices of the polyhedra
defined by the constraints in (53) and (54) have integer coordinates, which means that the optimum for the
LP-relaxations are integer vectors and are in fact solutions to the corresponding integral lps.

The special property that the incidence matrix A of a bipartite graph has is that it is totally unimod-
ular, i.e., the determinant of any submatrix of A is in {−1, 0, 1}. In particular, the 1 × 1 determinants,
namely the entries of A, are 0, 1, or −1. Such matrices have the following property:

Lemma 32. Given a m× n tum A and b ∈ Zn, the polyhedra P := {x : Ax ≤ b,x ≥ 0} is integral, i.e., the
vertices of the polyhedra are in Zn.

Proof. Assume m > n (otherwise?). We know that the vertices of P are obtained as some n lid constraints
being satisfied as equalities. Suppose I ⊆ [m], |I| = n, is such a set of lid constraints and AI the corresponding
submatrix of A. Then the corresponding vertex is the solution to the equation AIxI = b. From Cramer’s
rule we know that the solution to this equation is of the form det(A′I)/ det(AI), where A′I is obtained by

49

replacing some column of AI by b. Since A is tum, and AI is a non-singular submatrix of A we know that
det(AI) = ±1. Q.E.D.

We next prove by induction that the incidence matrix of A is tum; the base case is obvious as all entries
are 0, 1. Let Q be an k × k submatrix of A. There are three cases to consider:

1. Q has a column that is all zero.

2. Q has a column that has exactly one 1.

3. All columns of Q have exactly two 1’s. Partition the rows of Q into two sets: those corresponding
to vertices in X and those in Y . Consider the k-dimensional vector v that has all 1’s at the indices
corresponding to vertices of X and −1’s elsewhere. Then since every column has exactly two ones, it
is easy to verify that the product vtQ = 0, which implies that the rows of Q are linearly dependent,
i.e., det(Q) = 0.

50

10 The Ellipsoid Method

We have seen that optimization version of LP, or LP-opt for short, can be solved in exponential time using
simplex method. The decision version of LP-opt is defined as

LP-Decision := {(A,b, c, λ) : there exists a x s.t. Ax ≤ b and 〈c,x〉 ≥ λ} .

Then it is clear that LP-decision is in NP, since given (A,b, c, λ) and a witness x we can easily verify whether
the constraints hold in polynomial time and hence if (A,b, c, λ) ∈ LP-Decision. How about deciding if
(A,b, c, λ) 6∈ LP-Decision? If an instance (A,b, c, λ) not in LP-Decision then it means that max〈c,x〉 < λ
for all x satisfying Ax ≤ b. But then from duality we know that there must exists a y such that 〈b,y〉 < λ,
where y satisfies Aty ≥ c. Thus if an instance does not belong to LP-Decision, then this is witnessed by the
dual. Hence LP-Decision is in co-NP.

We have seen that LP can be solved in exponential time using simplex method. For a long time people
tried various modifications of simplex-type algorithms to obtain a polynomial time algorithm for solving lps.
However, it was Khachiyan in 1979, who gave an extension of an earlier algorithm of Shor-Yudin-Nemirovskii
for non-linear programming, and obtained the first poly-time algorithm for solving lps. A fascinating account
of Khachiyan’s discovery in the west and its portrayal in the media is given in Lawler’s article, “The Great
Mathematical Sputnik of 1979.”

The algorithm proposed by Khachiyan is actually an algorithm to check if a system of linear inequalities
is feasible or not. We know that using such a feasibility-test we can solve for the optimum. Let us see how
to do that.

¶3. Using Feasibility to Solve Optimality: Suppose we want to solve the LP in equational form
maximize 〈c,x〉 over the set {x : Ax = b,x ≥ 0}. given a solver for testing feasibility or non-emptiness of
a polyhedron {x′ : A′x′ ≤ b′}. Moreover, assume that the input of the LP (i.e., the entries of A,b, c) are
integers of bit-length L. Then we know from Theorem 5 that if there is an optimum then a bfs attains that
optimum. From Cramer’s rule we can derive upper bounds on the abolute value of the rationals involved in
a bfs in terms of the dimensions of A and L; suppose R is such an upper bound (basically an upper bound
on subdeterminants of A with b using Hadamard’s bound). Then we do the following:

1. To test if the original LP is feasible is straightforward using the feasibility-test.

2. To check if the original LP is bounded, we can call the feasibility-test on {x : Ax = b,x ≥ R · 1}. How-
ever, if this set is non-empty then it only means that the polyhedron in the original LP is unbounded,
the LP itself may be bounded. To test boundedness, we need to know how large 〈c,x〉 can be over
all bfs’s. But as we know upper and lower bounds on the size of a bfs, we know an upper bound on
the absolute value of the objective function over all bfs’s; let R′ be this upper bound (something like
n2LR), i.e., if v is a bfs of Ax = b,x ≥ 0, then |〈c,v〉| ≤ R′. Thus to test boundedness we call the
feasibility-test on {x : Ax = b,x ≥ 0, 〈c,x〉 > R′} and {x : Ax = b,x ≥ 0, 〈c,x〉 < −R′}; if the test re-
turns feasible, we know that the original lp is unbounded; otherwise, the lp is bounded and hence has
an optimum.

3. Now we show how to find the optimum using feasibility-test. The basic idea is to do a binary search
on the interval [−R′, R′]. We first call the feasibility-test on {x : Ax = b,x ≥ 0, 0 ≤ 〈c,x〉 ≤ R′}. If
it returns non-empty then we call the feasibility-test on the interval [R′/2, R′]; otherwise, we call the
feasibility-test on [−R′, 0]. In this way, we can narrow down the maximum value of the objective
function on the polyhedron. When do we stop? Suppose δ is the maximum value of the objective
function on the feasible region; from the bound R on the rationals in a bfs and the bound on the
entries of c, we can derive upper bound on the size of the numerator and denominator of δ, say this
bound is R′′ (basically, n times an upper bound on the lcm of the denominators, so something like
nRn). The idea is that we are trying to minimize |〈c,x〉 − δ|, where x has rational coordinates bounded
by R in absolute value. If this quantity is not zero then it is at least some quantity dependent on R′′

(more precisely, 1/(R′′)2), say it is greater than 2−τ , where τ > 0. After i iterations, we have narrowed
our estimate of δ to an interval of width 2−i+1R′, that is we have an x such that |〈x, c〉 − δ| ≤ 2R′/2i.
Thus, if i is sufficiently large, say i > 2 + τ + logR′, then we are sure that the unique rational number,
with numerator and denominarotr bounded by R′′, closest to 〈c,x〉 is the value δ.

51

4. Though the binary search yields the value of the objective function, we still have to find the optimum.
Since the optimum is a bfs, we only have to figure out which of the m columns of A give us a bfs such
that the value of the objective function at v is δ. The idea is to drop one variable, say starting from
xn, at a time and solve the lower dimensional lp. If the value of the objective function remains the
same, then the corresponding column n can be dropped from A; otherwise, the index n forms part of
a feasible basis, so we keep it and proceed recursively on the remaining set of columns; we stop when
no more columns can be dropped from A; the resulting set of indices forms a feasible basis and the
corresponding bfs attains the value δ.

The approach above is a bit ugly, since it depends on the bit-lengths of the numbers. A better approach is
to use duality. From strong duality we know that if the primal has an optimum then the dual also has an
optimum; moreover, the objective function for the two take the same value. That is, if there exists an x∗ ≥ 0
such that Ax∗ ≤ b, and a y∗ ≥ 0 such that Aty∗ ≥ c, and 〈c,x∗〉 = 〈b,y∗〉 then x∗ and y∗ are the optimum
for the respective primal and dual lp. Thus given a feasibility-test we can give it all these constraints:

Ax ≤ b, Aty ≥ c, x ≥ 0,y ≥ 0, 〈c,x〉 = 〈b,y〉.

If we have a feasible solution (x∗,y∗) to this system, then we clearly have an optimum solution to the original
LP. So the question of finding an optimal solution to an lp reduces to checking the feasibility of a system of
inequalities P := {x : Ax ≤ b} ⊆ Rn. How do we do that?

The main idea behind Khachiyan’s algorithm is a geometric form of binary search. Suppose we know
that P is bounded and is contained in a hypercube B. Our aim is to either find a point inside P or declare
that P is empty. Suppose we know an ε such that if P 6= ∅ then Vol(P) ≥ 2−ε. The algorithm proceeds as
follows: we first check if the center of B is contained in P ; if it is then we know that P 6= ∅; otherwise, we
know that the center violates a hyperplane h of P ; then P ⊆ B ∩ h and we construct a hyper-rectangale B′
containing this intersection and proceed recursively on it. We terminate when we either find a point inside
P or the volume of the set containing P is smaller than 2−ε, in which case we declare that P = ∅. Well this
is the outline of the algorithm. The actual algorithm differs in many ways, one of which is that instead of
hyper-rectangles the algorithm works with ellipsoids, and hence is also called the ellipsoid algorithm. The
overview also has a drawback: If the affine dimension of P is smaller than n the dimension of the ambient
space then Vol(P) = 0, even though P 6= ∅. Thus from now on we will make the following two assumptions:

A1. P is bounded, i.e., it is contained in B(0, R) the hypersphere centered at origin with radius R < ∞,
and

A2. P is full-dimensional, i.e., its affine dimension is n.

We will later see how to get rid of these assumptions. Even with these assumptions, we still need to find
a lower bound on Vol(P) if it is not empty. We first start with the requisite background for working with
ellipsoids. What are ellipsoids?

10.1 Ellipsoids – some fundamentals

An ellipsoid is an affine transformation of the unit ball B(0, 1) in Rn, i.e.,

E := {Ax + t : 〈x,x〉 ≤ 1, t ∈ Rn, and A is non-singular} . (22)

The point t is called the center of E . There are many ways to define E . If y ∈ Rn, then we know that there
is a unique x ∈ Rn such that y = Ax + t, which is equivalent to saying that x = A−1(y − t). Now, this
x is in the unit ball iff the norm of A−1(y − t) does not exceed one. Thus an equivalent description of an
ellipsoid is

E :=
{
y ∈ Rn : 〈A−1(y − t), A−1(y − t)〉 ≤ 1, t ∈ Rn, and A is non-singular

}
. (23)

Opening the inner product notation, we obtain that

E :=
{
y ∈ Rn : (y − t)t(A−1)tA−1(y − t) ≤ 1, t ∈ Rn, and A is non-singular

}
. (24)

Note that the matrix Q :=AtA is a real symmetric matrix. Moreover, it is positive definite, i.e., all its
eigenvalues are positive. There are other equivalent ways to define a positive definite matrix:

52

Theorem 33. The following three statements are equivalent for a real symmetric matrix Q.

1. Q is psd.

2. Q = BtB for some matrix B.

3. For all x ∈ Rn, the quadratic form xtQx ≥ 0.

If Q is positive definite then B in part (ii) is non-singular and the quadratic form in (iii) vanishes only at
origin.

Proof. Since Q is real symmetric, we know that its set of eigenvectors form an orthonormal set U , and
that Q = UDU t, where D is a diagonal matrix containing eigenvalues of Q.

1. (1 =⇒ 2) Since D has non-negative entries, we can define the diagonal matrix
√
D = [

√
λi]i uniquely.

Therefore, Q = U
√
D(
√
D)tU t = U

√
D(U

√
D)t. Note U

√
D is non-singular iff no eigenvalue is zero,

i.e., Q is positive definite.

2. (2 =⇒ 3) If Q = BtB then for all x, the quadratic form

xtQx = xtBtBx = ‖Bx‖2 ≥ 0.

3. (3 =⇒ 1) Express x in terms of the eigenvectors of U ; i.e., let x = Uy. Then we get

xtQx = ytU tQUy = ytDy =

n∑
i=1

λiy
2
i .

In particular, if x is an eigenvector corresponding to λi then y is the vector with all zeros except a 1
at the ith place. In which case, xtQx = λi ≥ 0.

The last proof actually reveals the principal axes of the ellipsoid, namely the columns of U . Representing x
as Uy is the same as transforming the standard axis by U , i.e., performing a sort of rotation that makes the
ellipsoid axis-aligned and then we have the standard quadratic form equation of the ellipsoid with no mixed
terms. Note that the length of the principal axes is the inverse of the square-root of the eigenvalues of Q.

Q.E.D.

In particular, (24) can be modified to the following definition:

E :=
{
y ∈ Rn : (y − t)tQ−1(y − t) ≤ 1, t ∈ Rn, and Q is positive definite

}
. (25)

According to this definition an ellipsoid is uniquely determined by its center t and the associated positive
definite matrix Q and will be represented as E(t, Q). What is the volume of this ellipsoid? We claim the
following:

Vol(E(t, Q)) =
√

det(Q)Vol(B(0, 1)) = |det(A)|Vol(B(0, 1)),

where A is the non-singular map that takes the unit ball to the ellipsoid (note that translation does not
affect the volume), or equivalently the square-root of Q. This follows from the observation that A takes
the unit hypercube to the parallelepiped formed by the columns of A; hence the unit volume element is
scaled by |det(A)| under the linear transformation by A. Note that this claim generalizes the observation in
two and three dimensions: the area of the ellipse x2/a2 + y2/b2 ≤ 1 is πab and the volume of the ellipsoid
x2/a2 + y2/b2 + z2/c2 ≤ 1 is (4/3)πabc. In general, if two sets X,Y ⊆ R2 are such that Y = AX, for
some non-singular transformation A, then their volumes (if they are measurable) are related by Vol(Y) =
|det(A)|Vol(X). Modulo some technical details, we are now in a position to describe the ellipsoid algorithm
in some technical detail.

The algorithm maintains a sequence of ellipsoids Ei := E(ti, Qi), with the invariant that P ⊆ Ei; initially,
since P is bounded, E0 = B(0, R). At the ith step we do the following: If ti ∈ P then we output feasible;
otherwise, we know that there must be a constraint 〈aj ,x〉 ≤ bj that is violated by ti; Ei+1 is the ellipsoid
with the smallest volume containing Ei ∩ {x : 〈aj ,x〉 ≤ 〈aj , ti〉}. We claim that the volume of Ei+1 is a
certain fraction smaller than Ei. Hence after i-steps the volume has gone down geometrically. If we know a
lower bound on Vol(P), assuming it is non-empty, and if at any iteration volume of Ei is smaller than this
bound then we know that P = ∅. Thus the algorithm either finds a point inside P or detects that P is
empty. We need some more technical results to give the full details. How do we construct the next ellipsoid?
What is a lower bound on Vol(P)? Let us start with the latter.

53

¶4. Lower bound on volume By assumption A2, we know that P is full-dimensional, i.e., its dimension
is n. This means that there must be n + 1 affinely independent points in P ; moreover, we can takes these
points to be vertices of P . Suppose p0, . . . ,pn are n+ 1 such points. Then we claim the following:

Lemma 34. Given n+ 1 affinely independent points p0, . . . ,pn the volume of their convex hull is

Vol(CH(p0, . . . ,pn)) =
1

n!
det
[

p1 − p0 p2 − p0 · · · pn − p0

]
=

1

n!
det

[
1 1 · · · 1
p0 p1 · · · pn

]
.

Proof. The proof is actually a combinatorial argument at heart. We know that the convex hull of the
n+ 1 points is a simplex. Moreover, this simplex is obtained by the linear transformation T that maps the
identity matrix to the vectors pi − p0, i = 1, . . . , n, followed by a translation by p0. Since translations do
not affect the volume, and the n vectors pi − p0 are linearly independent, we obtain that

Vol(CH(p0, . . . ,pn)) = Vol(∆) · det
[

p1 − p0 p2 − p0 · · · pn − p0

]
where ∆ is the simplex with the origin and ei’s as its vertices. What is the volume of ∆? Consider the n+ 1
affinely independent points

(0, (1, 0, 0, . . . , 0), (1, 1, 0, . . . , 0), (1, 1, 1, . . . , 0), . . . , (1, 1, 1, . . . , 1)).

Then it is clear that the simplex ∆′ corresponding to them is obtained from ∆ by the non-singular linear
transformation:

∆′ = ∆ ·

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

...
0 0 0 · · · 1

.

Therefore, Vol(∆) = Vol(∆′). We now claim that the latter volume is 1/n!. A point x ∈ ∆′ is a convex
combination of the n+ 1 points, say the combination is given by α0, . . . , αn. Then it follows that

x1 =

n∑
i=1

αi, x2 =

n∑
i=2

αi, , . . . , xn = αn.

This implies that
1 ≥ x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn ≥ 0,

i.e., the coordinates of x have a certain ordering on them. The converse is also true, namely, any x that
has the ordering above belongs to ∆′; take αn :=xn, αn−1 :=xn−1 − xn and so on α1 = x1 − x2, and
α0 := 1 −

∑n
i=1 αi. Thus ∆′ is uniquely associated with an ordering on the coordinates of x. Clearly, ∆′

belongs to the unit hypercube {x : 0 ≤ xi ≤ 1}. Moreover, every point of the unit hypercube has some
ordering on its coordinates and hence belongs to a simplex congruent to ∆′. Since there are n! orderings on
the coordinates, there are n! many copies of ∆′ in the unit hypercube, which implies that Vol(∆′) = 1/n!.

Q.E.D.

We now come to the most important ingredient of the algorithm: constructing the (i+ 1)th ellipsoid at
the i-th iteration. Recall that the problem is the following: given E(t, Q) and a vector a, we wanted to find
an ellipse that contains the intersection of E(t, Q) with the halfspace {x : 〈a,x− t〉 ≤ 0}. The hyperplane
passes through the center t and bisects the ellipsoid into two halves. We are interested in constructing an
ellipsoid containing one such half. We will start with a simpler setting where we work with the unit ball and
the half plane xn ≥ 0, and then reduce the general case to this simpler case.

Suppose we are given the unit ball B :=B(0, 1) and we want to find an ellipsoid E := E(t, Q) with the
least volume that contains the half-ball H :=B∩{x : xn ≥ 0}. Notice the shape of H – it is symmetric about
the xn-axis, so the center should be some point on the xn axis, and compared to the ball it is squeezed along
this axis, and relatively wide orthogonal to the axis. So the idea is to lift the unit ball to some point on the

54

xn-axis and try to stretch or squeeze it to contain H. More precisely, suppose t := (0, 0, 0, . . . , τ) and Q−1

is the diagonal matrix that scales xn by 1/β and all the remaining coordinates by 1/α. Our aim is to find
appropriate values of τ, α, β such that det(Q) = αn−1β is minimized, while ensuring that H ∈ E(t, Q). To
ensure this last constraint, we must ensure that the vector en = (0, 0, . . . , 1) must be in E ; moreover, it must
be on the boundary of E , i.e., it should satisfy the following

(en − t)tQ−1(en − t) = 1,

which is equivalent to (1 − τ)2 = β. Similarly, the points on the intersection of the hyperplane xn = 0 and
B must also be on the boundary of E . If (x, 0) is such a point (i.e., ‖x‖ = 1) then we must have

((x, 0)− t)tQ−1((x, 0)− t) = 1,

which is equivalent to

[
x −τ

]

1/α 0 0 · · · 0
0 1/α 0 · · · 0
...

...
...

...
...

0 0 · · · 1/α 0
0 0 0 · · · 1/β

[

x
−τ

]
= 1.

But as ‖x‖ = 1 this means that
1

α
+
τ2

β
= 1.

Substituting β = (1− τ)2, we obtain that α = (1− τ)2/(1− 2τ). Now our aim is to minimize

F (τ) :=αn−1β =

(
(1− τ)2

(1− 2τ)

)n−1

(1− τ)2 =
(1− τ)2n

(1− 2τ)n−1
.

Differentiating wrt τ we obtain that

F ′(τ) = (−2n(1− 2τ) + 2(1− τ)(n− 1))
(1− τ)2n−1

(1− 2τ)n
.

Solving for F ′(τ) = 0 we get that τ = 1/(n+ 1), which gives us that α = n2/(n2 − 1) and β = n2/(n+ 1)2.
Thus

det(Q) = αn−1β =

(
1 +

1

n2 − 1

)n−1(
1− 1

(n+ 1)

)2

.

Using the inequality that 1 + x ≤ ex, for all x ∈ R, it follows that

det(Q) ≤ e
1

n+1 e
−2
n+1 = e

−1
n+1 .

Therefore,

Vol(E) =
√

det(Q)Vol(B) ≤ e
−1

2(n+1) Vol(B). (26)

To summarize, we have shown that the half-ball H obtained by intersecting B with the halfspace {x : xn ≥ 0}
is contained in the ellipsoid E(en/(n + 1), Q), where Q is a diagonal matrix with the first (n − 1) diagonal
entries as n2/(n2 − 1), and the last diagonal entry as (n/(n+ 1))2.

As mentioned earlier, the general case can be reduced to the special setting above. Let E = E(t, Q) and a
vector a, we wanted to find an ellipse that contains the intersection of E with the halfspace {x : 〈−a,y − t〉 ≥ 0}.
Let this convex set be denoted by E−. We know that E is obtained from B by the affine transformation
Ax + t, where Q = AtA. So the idea is to take the inverse of this transformation, go back to the unit ball,
use the results derived above, and come back to the ellipsoid. When we take the inverse, E− is mapped
to some half-ball obtained from B by cutting it with a hyperplane h through the origin. This hyperplane
corresponds to {y : 〈−a,y − t〉 = 0} in the original setting. We have to figure the vector defining h. Note

55

that y − t = Ax, for some vector x in the domain of the affine transformation (we use x’s for the domain
and y’s for the range). Thus

0 = 〈−a,y − t〉 = 〈−a, Ax〉 = 〈−Ata,x〉,

Thus the vector defining the hyperplane h is the unit vector in the direction −Ata, i.e., z := − Ata/‖Ata‖
and the halfspace corresponding to xn ≥ 0 is {x : 〈−Ata,x〉 ≥ 0}. So the center has to move a fraction
1/(n+ 1) in the direction of this unit vector, and then we apply the affine transformation to get the center
for E ′, namely

t′ := t +
1

n+ 1
Az = t− 1

n+ 1

Qta

|atQa|
.

The corresponding matrix Q′ can be obtained similarly. What is crucial is the following:

Vol(E ′) =
√

det(Q)Vol(E ′′)

where E ′′ is the ellipsoid containing the half ball. From (26) we know that Vol(E ′′) ≤ e−1/(2n+2)Vol(B).
Therefore,

Vol(E ′) ≤
√

det(Q)e−1/(2n+2)Vol(B).

But Vol(E) =
√

det(Q)Vol(B). Therefore,

Vol(E ′)
Vol(E)

≤ e−1/(2n+2). (27)

To summarize, we have shown the following:

Lemma 35. Given E(t, Q) and a halfspace {x : 〈a,y − t〉 ≤ 0} their intersection is contained in the ellipsoid
E(t′, Q′) where

t′ := t− 1

n+ 1
v,

Q′ :=
n2

n2 − 1

(
Q− 2

n+ 1
(v · vt)

)
,

and v :=Qa/‖atQa‖.

We can now describe the algorithm in some more detail, and analyze its running time.

EM(E , P)
Input: An ellipsoid E(Q, t) containing the polyhedron P given by its inequalities.
Output: Either a point in P or that P is empty.
1. If Vol(E) is smaller than the lower bound in Lemma 34 then return P = ∅.
2. Else if t ∈ P return t.
3. Else

Let 〈a,x〉 = b be a hyperplane violated by t.
Construct the ellipsoid E ′ containing E(Q, t) ∩ {x : 〈a,x〉 ≤ 〈a, t〉},
i.e., the ellipsoid corresponding to the central-cut, as given in Lemma 35.
Return EM(E ′).

Testing whether the center is in P takes O(mn) time. The depth of the recursion tree is bounded as
follows: After i iterations the volume of Ei is smaller than e−2in times the volume of the initial ball, which is
bounded by the volume of the cube of edge length 2R containing it, namely (2R)n. If the volume falls below
the bound given in Lemma 34 then we can terminate. It can be shown that the number of iterations are
bounded by roughly O(n2 logR). The construction of the ellipsoid takes O(n2) time. Therefore, the overall
complexity is O(mn3 logR) in the real ram model. Note the dependency of the running time on the size of
the input. This dependence makes the ellipsoid method weakly polynomial time. However, there is one more
problem with our description of the algorithm: the computation involves working with irrational numbers. In
the Turing machine model this is not possible – we have to determine the exact precision requirements from
the intermediate computations. This means that the center of the ellispsoids are approximate by rational

56

vectors and to account for this perturbation the resulting ellipsoids are enlarged to ensure that the the
containement of the smaller regions is still maintained. The resulting algorithm is called the central-cut
ellipsoid method (central because the cut passes through the center of the ellipsoid, unlike the deep-cut
or shallow cut). In the framework of Turing machine model, or finite precision arithmetic, the output of the
algorithm is as follows. We describe it more generally in terms of a separating oracle for a compact convex
set K:

Theorem 36. The central-cut ellipsoid method solves the following problem. The input to the problem is a
rational number ε > 0 and a set convex set K contained in B(0, R) given by a separation oracle SepK that
takes as input a y ∈ Qn and a positive rational number δ and either asserts that y ∈ K+δ or finds a vector c
of unit norm such that 〈c,x〉 ≤ 〈c,y〉+ δ, for all x ∈ K. The output of the algorithm is one of the following:

1. either a vector a ∈ K + ε, or

2. An ellispod E(Q, t) such that K ⊆ E(Q, t) and Vol(E(Q, t)) < ε.

10.2 Removing the assumptions

Let A,b have integral entries. Consider the augmented matrix [A b] and let ∆ be the maximum absolute
value of the determinant over all submatrices of this matrix. To achieve boundedness, we know that all bfs
of Ax ≤ b have infinity norm smaller than ∆. Thus to achieve boundedness we can consider the hypercube
{x : |xi| ≤ ∆, i = 1, . . . , n}.

The following lemma tells us how to ensure full-dimensionality.

Lemma 37. Given A ∈ Qm×n and b ∈ Qm, let R be an upper bound on the size of the corresponding bfs’s.
Let P := {x : Ax ≤ b} and Pε := {x : Ax < b + ε · 1}. Then there exists an ε > 0 such that P = ∅ iff Pε = ∅.

Proof. Since P ⊂ Pε, for all ε > 0, one direction is easy, namely if Pε = ∅ then P = ∅.
For the converse, we will use Corollary 27: If P = ∅ then we know that there is a y ≥ 0 such that ytA = 0

but 〈y,b〉 < 0; let’s us scale y such that 〈y,b〉 = −1. Intuitively, we know that there is a small enough ε
perturbation of b such that 〈y,b + ε · 1〉 < 0. Q.E.D.

11 Weak problems and their reductions

The introdcution of errors in our computation forces us to revise the definition of our optimization problems.
In this section, we would like to optimize a linear function over a closed compace convex set K. There is
another reason to do so – the ellipsoid method revelas that if we have an oracle that answers a separation
query for K, i.e., given y either says y ∈ K or provides a separating hyperplane (of poly bit-size in the input)
then we can solve the linear optimization problem over K. In this section, we consider similar reductions.
However, as K is an arbitarry convex set we have to relax our assumptions on the oracles representing it
(basically our queries are never exact near the boundary of K and there is a certain margin of error). We
denote this by blowing the boundary of K: given ε > 0, a point y ∈ K+ ε if it is within ε distance of a point
in K, and a point y ∈ K− ε if it is in the interior of K and there is no boundary point at a distance ε from y.

Consider the following three problems, which are weak versions of corresponding strong problems:

Weak Optimization Problem (WOPT)
Input: A vectpr c ∈ Qn and ε ∈ Q>0.
Output:
1. Either find a vector y ∈ Qn such that y ∈ K + ε and

for all x ∈ K − ε, 〈c,x〉 ≤ 〈c,y〉+ ε, or
2. assert that K − ε is empty.

57

Weak Violation Problem (WVIOL)
Input: A vector c ∈ Qn, γ ∈ Q and ε ∈ Q>0.
Output:
1. Either assert that for all x ∈ K − ε, 〈c,x〉 ≤ γ + ε, or
2. find a vector y ∈ Qn such that y ∈ K + ε and

〈c,y〉 ≥ γ − ε.

Weak Separation Problem (WSEP)
Input: A vector y ∈ Qn, and δ ∈ Q>0.
Output:
1. Either assert that y ∈ K + δ, or
2. find a vector c ∈ Qn such that ‖c‖ = 1 and for all x ∈ K − δ,

〈c,x〉 ≤ 〈c,y〉+ δ.

Weak Membership Problem (WMEM)
Input: A vector y ∈ Qn and ε ∈ Q>0.
Output:
1. Either assert that y ∈ K + ε or
2. assert that y 6∈ K − ε.

One of the most surprising results is that WOPT can be solved in poly time using an oracle for WMEM,
i.e., just by querying polynomially many points for membership it is possible to find the opt. However, we
start witht another intersting result, namely, that WVIOL can be solved in poly time using an oracle for
WSEP (along with an upper bound R on a ball containing K).

11.1 Solving Weak Violation given Weak Separation

58

12 Interior Point Methods (IPM)

So far we have seen two algorithms for solving LPs. The simplex method walks on the boundary of the feasible
region until it reaches the optimum. The ellipsoid algorithm starts with an upper and lower bound on the
feasible region, and up until the very end the algorithm is checking points outside the feasible region. As the
name suggests, the interior point methods take a different approach – they always work with points inside the
feasible region, and try to approach the optimum solution from within the polyhedra, and only at the very
end do they move from the interior to the boundary. The history of interior point methods is very interesting.
Although interior-point techniques, primarily in the form of barrier methods, were widely used during the
1960s for problems with nonlinear constraints, their use for the fundamental problem of linear programming
was unthinkable because of the total dominance of the simplex method. During the 1970s, barrier methods
were superseded, nearly to the point of oblivion, by newly emerging and seemingly more efficient alternatives
such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier
methods were almost universally regarded as a closed chapter in the history of optimization. This picture
changed dramatically in 1984, when Narendra Karmarkar announced a fast polynomial-time interior method
for linear programming; in 1985, a formal connection was established between his method and classical
barrier methods. Since then, interior methods have continued to transform both the theory and practice of
constrained optimization. At least, they give a uniform lens to view both linear and non-linear programs,
overcoming a bias that was long entrenched in the optimization community, where linear programming was
invariably dominated by the simplex method. IPMs is a vast family of algorithms, and we will only see one
of these in the context of linear programs. The following quote of M. Wright sums the perspective on ipm:
“The interior-point revolution, like many other revolutions, includes old ideas that are rediscovered or seen
in a different light, along with genuinely new ideas.”

There are three key ingredients that we need for ipm:

1. a way to ensure that we always stay inside the feasible region,

2. a way to capture the objective function, and

3. a way to move inside the interior of the feasible region while trying to minimize the objective function.

We will figure out these details one at a time. Let P be the polyhedron given by Ax ≤ b, and suppose it
is not empty. Let f(x) := 〈c,x〉 be the objective function that we want to maximize. In order to ensure
that we stay inside the feasible region, we will construct a barrier along the boundary of P that prevents
us from leaving the feasible region. How do we do this? If ai is the ith row of A, then the i-th constraint
is 〈ai,x〉 ≤ bi. Consider the function ln(bi − 〈ai,x〉). This function tends to −∞ as x approaches the
hyperplane corresponding to the ith constraint. If along with f(x), we are trying to maximize this function
as well then it is clear that the maximum will not be near the hyperplane. Doing this for all the constraints,
we get the following barrier function corresponding to P :

m∑
i=1

ln(bi − 〈ai,x〉). (28)

If we try to maximize this function over P , then it is clear that the optimum is far away from the boundary
of P and somewhere in its interior. Thus the first ingredient is attained by introducing maximizing the
barrier function. However, we are interested in maximizing the original objective function f(x). To combine
both these optimizations into one, we introduce a new objective function that combines a good measure of
the barrier function and the objective function:

fµ(x) := f(x) + µ

m∑
i=1

ln(bi − 〈ai,x〉), (29)

where µ ∈ R≥0. Note that if µ = 0 then this is the original objective function; otherwise, there is a component
of the barrier function. If P is bounded then we can claim the following:

Lemma 38. If P is a polytope then the function fµ attains a unique optimum in the interior of P .

59

Proof. Intuitively this is because fµ is a strictly concave function. Since P by assumption is bounded
and fµ is continuous, we know that it must have a maximum on the set. To see uniqueness, we first show
that fµ is concave. This is not hard to see, since f(x) is linear and ln is a strictly concave function. More
formally, from (29) we have

fµ(tx + (1− t)y) = f(tx + (1− t)y) + µ

m∑
i=1

ln(bi − (t〈ai,x〉+ (1− t)〈ai,y〉)).

From the linearity of f , we obtain that

fµ(tx + (1− t)y) = tf(x) + (1− t)f(y) + µ

m∑
i=1

ln(bi − (t〈ai,x〉+ (1− t)〈ai,y〉)).

Writing bi = tbi + (1− t)bi, we further obtain that

fµ(tx + (1− t)y) = tf(x) + (1− t)f(y) + µ

m∑
i=1

ln((t(bi − 〈ai,x〉) + (1− t)(bi − 〈ai,y〉)) .

The concavity of ln implies the concavity of fµ. This instead implies that if there are two distinct maxima
x,y ∈ P , then all points on the line segment joining x and y are also maxima. As ln is a strictly concave
function, this possible iff bi − 〈ai,x〉 = bi − 〈ai,y〉, i.e., iff Ax = Ay. Thus x − y belongs to the null space
of A, and hence P contains the line {x + t · (x− y)}, which is a contradiction to the boundedness of P . We
have basically shown that a strictly concave function has a unique maxima on a convex set. Q.E.D.

The unique maxima x∗µ is called the analytic center of P . If µ is large the analytic center is away from
the boundary, but as µ decreases it starts moving in the direction of the objective function f . The idea
of interior point methods is to approximate the trajectory of x∗µ, also called the central path, towards an
optimum for the LP; and when it has reached sufficiently close to the boundary, it rounds the solution to
the optimum. We now describe in some more detail a slightly different approach. Instead of working with
the LP in the canonical form, we will consider the equational form, just as we did for the simplex method.

12.1 Constrained Optimization Problems

A general constrained optimization problem is to maximize an objective function f : Rn → R subject to
some constraints. The constraints may contains inequalities of the form gi(x) ≥ ci, where gi : Rn → R, but
using slack variables we can always convert them to equalities and non-negativity constraints of the form
x ≥ 0. Therefore, we will assume wlog that a general constraint optimization problem is of the following
form: maximize f(x) subject to gi(x) = 0, x ≥ 0. If f and gi’s are all linear functions, then this is just linear
programming. However, we will be interested in solving the more general problem of nonlinear programming,
with the aim of specializing this approach to linear programing. Our goal is to show that all these problems,
in one way or another, are related to solving a system of equations.

Consider the special case of unconstrained optimization to maximize f(x), where x is unbounded. For
instance, maximize f(x) := 2 − x2; it is clear that the maximum is attained at the origin; but to get the
maximum formally, we take the derivative f ′(x) = −2x and the solution of the equation f ′(x) = 0; such
points are stationary points, or extreme points; it is clear, in this particular case, that the derivative vanishes
at the origin. Let us consider the bivariate case f(x, y) := 2− x2 − y2, where (x, y) ∈ R2. Again, it is clear
that the maximum is attained at the origin, which in this case is the solution to gradient vanishing, i.e.,
∇f(x, y) = 0. Assuming that the maximum is well defined, why should the gradient vanish at the maximum?
Intuitively, the gradient gives the first order approximation to f(x) in the neighborhood of a point, i.e.,
f(y) ∼ f(x) + ∇f(x) · (x − y), for y close enough to x. So, if the gradient is non-zero, there is always a
direction from x in which f(y) increases and a direction in which it decreases; in fact, the maximum increase
is obtained along the unit vector from x in the direction of the gradient, and the maximum decrease in the
opposite direction. Thus the gradient at a point gives us the direction of maximum increase from that point.
Now it is clear that for a (local) maximum or a minimum the gradient has to vanish. It is clear that if f(x)
is a concave (convex) function, then the vanishing of the gradient is a necessary and sufficient condition for

60

a point to be a maximum (resp., minimum). Thus finding the maximum can be reduced to solving a system
of n equations in n unknowns.

Now let us add some constraints, starting from the univariate case. How about if maximizing 2 − x2

where we also have a constraint, say x = 1? In the univariate case, this can be solved easily. Suppose we
want to maximize 2 − (x2 + y2), s.t. x + y = 1. The aim is to reduce this problem to an unconstrained
optimization one. The idea is the following: consider the level sets or contours of x2 + y2 in increasing order
(or imagine concentric ripples from the origin). The first time such a contour meets the line is when the
maximum is attained. Since for any large contour, the circle intersects the line at two places, and at both
the places we can slide along the line to increase the value of the contour. Notice that the first time the
contour meets the line, the latter is a tangent to the former. Thus the point where the maximum is attained
is such that it is on the line, and the normal to the circle at that point is proportional to the normal of the
line, i.e., a point (x, y) such that x+ y = 1 and 2(x, y) = λ(1, 1). Clearly, the solution is x = y = 1/2. If we
define f(x, y) := 2− (x2 + y2) and g(x, y) :=x+ y − 1, then these conditions are equivalent to

g(x, y) = 0 and ∇f = λ∇g

where ∇ is the gradient operator. Both these conditions can be succinctly captured by the Lagrangian:

Λ(x, y, λ) := f(x, y) + λg(x, y).

Maximizing the Lagrangian is an unconstrained optimization problem and the stationary points are the
solution to the system ∇Λ = 0. But the vanishing of the partial derivatives of Λ wrt x and y is the system
∇f = λ∇g, and the partial derivative wrt λ vanishing is equivalent to g(x, y) = 0. Clearly, the approach
works in higher dimensions as well. The scalar λ is called a Lagrange multiplier.

What if we had more than one constraint? Let us first reinterpret the derivation above. For any contour,
the gradient is normal to it and at any point gives us the direction of increase. For the curve g = 0, the
direction orthogonal to the gradient are the possible directions along with we can move slightly while still
satisfying the constraint. Thus if ∇f has a component in the direction orthogonal to ∇g then at that point
it is possible to increase the value of f by moving along the constraint. This interpretation generalizes to
the setting of more than one constraint, namely, if ∇f has a component in the space orthogonal to the space
spanned by ∇gi, for the m constraints, then it is possible to increase f while satisfying the constraints. Thus
at the point which attains the maximum ∇f must be in the span of ∇gi, i.e., there exists λi, not all zero,
such that

∇f(x) =

m∑
i=1

λi∇gi(x)

and gi(x) = 0, for i = 1, . . . ,m. Again, all these conditions can be succinctly captured by maximizing the
Lagrangian

Λ(x, λ) := f(x) +

m∑
i=1

λigi(x).

Taking the partial derivative wrt the n+m variables, we get the following system of n+m equations:

gi(x) = 0, for i = 1, . . . ,m, and ∇f(x) =

m∑
i=1

λi∇gi(x).

This is called the method of Lagrangian multipliers.
Now let us add the non-negativity constraints x ≥ 0 to our optimization problem to consider the general

setting of constrained optimization problems. In this setting, we will not be able to reduce the problem to a
single unconstrained optimization problem, but a family of them parametrized by a parameter µ ≥ 0. The
idea is to introduce a function along with the objective function such that maximizing that function ensures
that the inequalities are always satisfied strictly, or in other words, that we are always in the interior of the
feasible region. One such choice is the logarithmic barrier function

∑n
i=1 log xi. Since this function goes

to −∞ if any xi approaches zero, it is clear that maximizing this function means we always stay inside the
positive orthant. However, our aim is to maximize the objective function f(x), which may actually achieve

61

an optimum on the boundary of the feasible region. Therefore, we take a combination of the barrier function
with the objective function parameterized by µ ∈ R≥0:

fµ(x) := f(x) + µ

n∑
i=1

log xi.

So our constrained optimization problem maximize f(x) subject to gi(x) = 0, i = 1, . . . ,m, and x ≥ 0
reduces to the following: given a µ, maximize fµ(x) subject to gi(x) = 0. For every choice of µ, we use the
Lagrangian multiplier approach to solve this constrained optimization problem. Under some restrictions on
fµ it can be shown that the optimum is unique x∗µ, and is continuously dependent on µ. So as µ approaches
zero, the optimum x∗µ traces a path, called the central path, converging to the optimum of the original
constrained optimization problem.

So far we have seen that a constrained optimization problem with inequalities reduces to a family of
constrained optimization problem, which can be solved using the Lagrangian multiplier approach. The latter
approach reduces to solving a system of some n nonlinear equations fi(w), i = 1, . . . , n, in n unknowns.
How do we solve such a system? We use Newton iteration starting from a sufficiently good approximation
to a solution, to ensure quadratic convergence. How is a Newton step done? Given an iterate wk, we take a
first order approximation to F (w) := (f1(w), . . . , fn(w)) and equate it to zero, i.e., F (w) ∼ F (wk) +J(wk) ·
(wk+1 −wk) = 0, where J(wk) is the jacobian matrix evaluated at wk. Thus

wk+1 = wk − J(wk)−1F (wk), (30)

assuming that the jacobian is non-singular. We will now apply this approach to solving constrained opti-
mization problems with non-negativity constraints to our setting of linear programs.

12.2 Primal-Dual Central Path

Consider the equational form of LP:

maximize 〈c,x〉 subject to Ax = b and x ≥ 0,

where A is an m × n matrix of rank m. Since the barrier function is meant to prevent us from violating
inequalities, in this setting it has the form

∑n
i=1 lnxi and the corresponding modification of the objective

function is

fµ(x) := f(x) + µ

n∑
i=1

lnxi. (31)

We will now consider the following optimization problem: Given a µ > 0,

maximize fµ(x) subject to Ax = b, (32)

i.e., in the interior of the positive orthant. Applying the Lagrangian multiplier approach to (32), we get that
the optimum satisfies

Ax = b and ∇fµ(x) =

m∑
i=1

yi∇〈ai,x〉,

where fµ(x) is given by (31). Thus

∇fµ(x) = c + µ

(
1

x1
, . . . ,

1

xn

)
.

Moreover, ∇〈ai,x〉 = ai. Therefore, we obtain that the optimum satisfies

Ax = b and c + µ

(
1

x1
, . . . ,

1

xn

)
=

m∑
i=1

yiai = Aty.

62

We simplify this further by defining

s :=µ

(
1

x1
, . . . ,

1

xn

)
.

This is equivalent to saying that (s1x1, s2x2, . . . , snxn) = µ1. Since x > 0 and µ > 0, it follows that s > 0.
Let X and S be the diagonal matrices with entries xi and si respectively. Then this condition can be
succinctly stated as XS1 = µ1. Thus an optimum of (32) must satisfy the following constraints: for µ > 0

Ax = b

Aty − s = c

XS1 = µ1

x > 0.

(33)

This system of conditions is called the Karush-Kuhn-Tucker system. Note that we have reintroduced x > 0;
since µ > 0, from the third equation we could equivalently have stated that s > 0, but we need at least one
of these inequalities, as our claim would be to show that any solution of this system is an optimum for (32).
Note that apart from the third constraint, this is a system of linear equations. The third constraint will only
be satisfied partially (basically its linear part), and the error term will play a crucial role. Our problem is
now reduced to solving the system of equations above, with the additional non-negativity constraints. This
will be done using Newton’s method, but before we do that let us understand what this system of equations
means.

We want that when µ = 0 the x-coordinate of the solution of this system of equations must be the
optimum for the lp. But if µ = 0, then sixi = 0, for i = 1, . . . , n, and since both are non-negative vectors
this is equivalent to the statement that 〈s,x〉 = 0. Now

0 = 〈s,x〉 = 〈Aty − c,x〉 = 〈y, Ax〉 − 〈c,x〉 = 〈y,b〉 − 〈c,x〉,

i.e., 〈c,x〉 = 〈b,y〉. But note that this is the equality of the objective functions for the primal and dual linear
programs, or equivalently, the complementary slackness condition. Indeed the dual of maximizing 〈c,x〉 s.t.
Ax = b, x ≥ 0, is minimizing 〈b,y〉 s.t. Aty ≥ c, y ∈ Rm. And what does s stand for? They are the set of
slack variables for the dual. So for µ = 0, the solution of (33) actually contains the optimum for the dual
and the primal. In fact, we can prove the strong duality from properties of the solution (we will show that
there is a unique solution) w∗µ := (x∗µ,y

∗
µ, s
∗
µ) of (33). The duality gap of a point w∗µ is defined as

γ(w∗µ) := 〈c,x∗µ〉 − 〈b,y∗µ〉.

Substituting the equation c = Aty∗µ − s∗µ above, we obtain that γ(w∗µ) = 〈s∗µ,x∗µ〉 = nµ. Thus as µ tends to
zero the duality gap tends to zero and hence w∗µ approaches the primal-dual optimum, i.e., x∗µ approaches a
primal optimum and (y∗µ, s

∗
µ) approaches the dual optimum. The algorithm will, therefore, try to trace the

path w∗µ as µ approaches zero. However, before we do that, we need to show that this path actually exists,
i.e., for a given µ, the solution of (33) is well-defined and actually unique (well, under certain assumptions).
We will often need the following set

W := {(x,y, s) : x is feasible in the primal, and (y, s) is feasible in the dual} . (34)

Lemma 39. Suppose the primal and dual of an lp are both feasible, i.e., W 6= ∅ and the matrix A is full
row-rank. Then for every µ > 0 the system of equations (33) has a unique solution (x∗µ,y

∗
µ, s
∗
µ) ∈ Rn+m+n

and the solution attains the maximum for the lp in (32).

Proof. We will first show that (33) has a solution, and then that this solution is unique.
To show the existence, we will show that there is a unique maximum of (32), and as a maximum of the

lp is a solution of the system of equations, the existence follows. Let x be a feasible point in the primal and
(y, s) be a feasible point in the dual (we are not assuming that x and s are related). We claim that the set

Q := {x : Ax = b,x ≥ 0, fµ(x) ≥ fµ(x)}

63

is a closed and bounded set. Since fµ is continuous on this set, it attains a maximum as well. Therefore,
the lp (32) has an optimum, and hence this optimum is a solution of(33). This will gives us the existence of
a solution.

For x ∈ Q, consider

fµ(x) = 〈c,x〉+ µ

n∑
j=1

lnxj .

As given above, the objective looks unbounded. However, we know that the linear part in the function
cannot be unbounded because the dual is feasible, i.e., 〈c,x〉 < 〈b,y〉. Therefore, we express the objective
function as a deficit from the dual value 〈b,y〉. To do this substitute c = Aty − s on the rhs to obtain

fµ(x) = 〈yAt,x〉 − 〈s,x〉+ µ

n∑
j=1

lnxj .

Using the definition of inner product and the fact that x is feasible we get 〈yAt,x〉 = 〈y, Ax〉 = 〈y,b〉, and
hence

fµ(x) = 〈y,b〉 − 〈s,x〉+ µ
n∑
j=1

lnxj ,

which is equivalent to

fµ(x) = 〈y,b〉+

n∑
j=1

(µ lnxj − sjxj). (35)

Thus for an x in the primal feasible region, fµ(x) can be expressed as a constant term plus terms that are
obtained by evaluating univariate functions of the form hα(x) :=µ lnx− αx (for x > 0 these functions take
negative value). The function hα(x) is strictly concave and attains its unique maximum at µ/α. Moreover,
from the graph of hα(x) it is easy to see that the set {x > 0 : hα(x) > const.} is a bounded interval.

Now from (35) it follows that

Q =

x > 0 : Ax = b,

n∑
j=1

hsj (xj) ≥ fµ(x)− 〈b,y〉

 ,

which is contained in the set x > 0 :

n∑
j=1

hsj (xj) ≥ fµ(x)− 〈y,b〉

 ,

where the RHS of the inequality above is a constant. But this set is contained in the following set

n∏
j=1

x : hsj (x) ≥ const.−
∑
i 6=j

maxhsi(x)

 .

Again the RHS of the inequality is a constant. But from our observation earlier, we know that each set in
the cartesian product above is a bounded interval. Therefore, Q is a bounded set.

We now show the uniqueness of the solution. Suppose (x,y, s) is a solution to (33). As fµ(x) is strictly
concave, its maximum is unique on the set Q. We will show that fµ(x) attains its maximum at x, which
establishes the uniqueness of x. Once we have the uniqueness of x, then s is uniquely defined as the solution
to XS1 = µ1, where µ is fixed. The uniqueness of y then follows, since it is a solution to the system
Aty = c − s, and A is full-rank. Why does fµ(x) attain its maximum at x? From (35) it is clear that the
maximum value of fµ(x) on Q is attained if xj = µ/sj , which is precisely x. Therefore, x is the unique
solution of (32).

Basically, we have shown that the opt of (32) is a solution of (33), and conversely the solution of the
latter is an opt of the former. Therefore, getting a good approximation to the solution of the system suffices.

Q.E.D.

64

The set of solutions to (33)

Π :=
{(

x∗µ,y
∗
µ, s
∗
µ

)
∈ Rn+m+n : µ > 0

}
. (36)

is called the primal-dual central path of the linear program. The algorithm will actually approximate
this path by using Newton-Raphson method. Let us begin by understanding one step of Newton’s method.
Clearly, Π ⊂ W.

12.3 The Algorithm

The algorithm will generate a sequence of points wk = (xk,yk, sk), starting from an initial point w0. Each
point wk corresponds to a given µk > 0. The initial point w0 is chosen sufficiently close to the path Π; how
we measure proximity will be discussed later. Given a current iterate w we will apply Newton’s method to
(33) to get the next iterate w′. Let F (w) be the system of equations in (33), and J(w) be its jacobian.
Then we know that the newton step ∆w := (∆x,∆y,∆s) is the solution to the equation

J(w) ·∆w = F (w)

and w′ := w −∆w (see (30)). But what is the jacobian of F (w)? It is not hard to see that

J(w) =

 A 0 0
0 At −I
S 0 X

 .
What is F (w)? Note that the first two equations are actually linear equations, so w satisfies them exactly,
i.e., Aw = b and Aty−s = c. So the first two coordinates of F (w) are actually zero. It is the last coordinate
that is interesting, and its value is XS1−µ′1, where µ′ > 0. Therefore, the newton step ∆w = (∆x,∆y,∆s)
satisfies the following equations:

A∆x = 0

At∆y = ∆s

S∆x +X∆s = XS1− µ′1.
(37)

Note that ∆w depends only on the x, s from the previous iteration and µ′, which is an update of the µ from
the previous iteration. Multiplying the last equation by S−1 and substituting the second eqaution for ∆s,
we obtain that

∆y =
((
AS−1XAt

)−1
AS−1

)
(XS1− µ′1). (38)

Substituting this in the second equation of (37) gives us

∆s =
(
At
(
AS−1XAt

)−1
AS−1

)
(XS1− µ′1), (39)

and substituting this in the last equation of (37) we obtain

∆x =
(
S−1 − S−1XAt

(
AS−1XAt

)−1
AS−1

)
(XS1− µ′1). (40)

It is clear from the equations above that the most expensive step is the computation of the inverse of
(AS−1XAt). We can now describe the algorithm in some detail.

The input to the algorithm is an initial starting point w0 = (x0,y0, s0), such that x0 is feasible for the
primal and (y0, s0) for the dual. We are also given three constants, θ, δ and ε in (0, 1]. The constant δ is
the factor that controls the decrement of µ in each iteration, and ε is the tolerance for the duality gap, i.e.,
the algorithm stops when the duality gap falls below ε. The role of θ is to measure how close the iterates
are to the path Π. In particular, the starting point w0 satisfies the following property

dist(w0,Π) :=
‖X0S01− µ01‖2

µ0
≤ θ, (41)

where µ0 := 〈x0, s0〉/n. We will later explain why the LHS is a good measure of distance. The algorithm is
as follows:

65

Input: A,b, c, w0, θ, δ, ε.
Output: w∗ such that γ(w∗) ≤ ε.
1. Set k ← 0.
2. If γ(wk) = 〈xk, sk〉 ≤ ε then return wk.
3. Let µk+1 ← µk (1− δ).
4. Calculate ∆wk as in (38), (58) and (40).
5. Set wk+1 ← wk −∆wk, k ← k + 1 and go to step 2.

We will show that the number of iterations are bounded by O(δ−1 log (nµ0/ε)). We will also show that
the max is upper bounded by L, the input size of the lp:

L := log max(the largest absolute value over all the sub-determinants of A, ‖b‖∞, ‖c‖∞, m+ n). (42)

Moreover, δ would be chosen such that 1/δ = O(
√
n). Therefore, along with the observation that step 4

requires O(n3) time, we get the desired bound of O(n3.5L) for the algebraic cost of the algorithm.

12.4 Convergence

Here we prove the main result about the correctness of the algorithm: If an iterate w ∈ W is sufficiently
close to Π, a newton step, as given above, gives us a new iterate w′ ∈ W such that it is close to Π, and the
duality gap decreases. More formally, we will show the following claim:

Theorem 40. Let δ, θ < 1 be the parameters in the algorithm and w = (x,y, s) ∈ W be such that

dist(w,Π) :=
‖XS1− µ1‖

µ
≤ θ, (43)

where µ := 〈x, s〉/n. If µ′ :=µ(1 − δ) and w′ := w −∆w, where ∆w is the newton step given by (38), (58)
and (40), then w′ satisfies the following:

1. w′ ∈ W,

2. dist(w′,Π) ≤ θ, and

3. γ(w′) = 〈x′, s′〉 = nµ′.

Let us first understand the purport of this theorem, starting from why dist(w,Π) makes sense as a
measure of distance of a point w from Π. Consider the map

h(w) := (x1s1, . . . , xnsn) = XS1 (44)

that maps Rn+m+n to Rn. Then from (33) we know that the path Π is mapped to the “diagonal” µ1 in
Rn. The w corresponding to the primal and dual optimum solution for the lp is mapped to the origin. For
any other vector w ∈ W, the map h(w) takes w to some vector in Rn. If the vector h(w) is close to the
diagonal, then in some sense we can say that w is close to Π. Thus we are not measuring closeness of w and
Π directly, but by measuring the distance between their images in the “complementary slackness space”.
What is the point closest to h(w) on the diagonal? It is the projection of h(w) along the unit vector in the
direction of 1, i.e., the point

〈h(w),
1√
n
〉 · 1√

n
=
〈x, s〉
n

1 = µ1.

Therefore, the distance function dist(w,Π) measures the relative closeness of h(w) to the diagonal (relative,
because the distance is measured wrt µ). The points that are “θ-close” to the diagonal form a cone centered
at origin and symmetric around the diagonal; the angle of the cone is governed by the error parameter θ.

As a consequence of Theorem 40 we have the following claim:

Corollary 41. The sequence of points wk, k > 0, generated by the algorithm satisfies the following:

66

1. wk ∈ W,

2. dist(wk,Π) ≤ θ, and

3. γ(wk) = nµk, where µk :=µ0(1− δ)k.

From this corollary, we can now upper bound the iterations required by the algorithm. The iteration
stops at k when the duality gap γ(wk) falls below ε, the tolerance. But from the corollary above γ(wk) =
nµ0(1− δ)k. Therefore, if

(1− δ)−k ≥ nµ0

ε

then the iteration stops. Taking natural-log on both sides, along with the observation that − ln(1− x) > x,
for x < 1, we have the following:

Lemma 42. The algorithm stops when

k > δ−1 ln
nµ0

ε
.

We will now prove Theorem 40 starting with the following:

Lemma 43. Let w ∈ W, µ′ > 0 and ∆w be the solution to (37) corresponding to w and µ′. If w′ := w−∆w
then we have

1. The ith component of h(w′) is µ′ + ∆xi∆si,

2. the vector ∆x is orthogonal to ∆s, and

3. the duality gap γ(w′) = nµ′.

Proof.

1. The first result captures the fact that w′ is close to the diagonal (which is the first part of Theorem 40).
The proof is straightforward: the i-th component of h(w′) is x′is

′
i = (xi − ∆xi)(si − ∆si). Opening

the product we obtain that the ith component is [xisi− (xi∆si + si∆xi)] + ∆xi∆si. But from the last
equation of (37), the first part is equal to µ′.

2. From second equation in (37) we get that 〈∆x,∆s〉 = 〈∆x, At∆y〉, which from the definition of inner
product is equal to 〈A∆x,∆y〉. But this is clearly zero from the first eqaution in (37).

3. From the definition of duality gap we know that γ(w′) =
∑n
i=1 x

′
is
′
i =

∑
i[h(w′)]i. Substituting the

first result of the lemma, we obtain that

γ(w′) = nµ′ +

n∑
i=1

∆xi∆si = nµ′ + 〈∆x,∆s〉 = nµ′,

where the last step follows from the second result. This already proves the third claim of Theorem 40.

Q.E.D.

We will now prove the first and the second part of Theorem 40. The crucial part is the second part; the
proof of first part, namely w′ ∈ W, will follow from its proof. So let us start with the second part, i.e.,
dist(w′,Π) ≤ θ, given dist(w,Π) ≤ θ and w′ is obtained from w by a newton step (37) applied at w and µ′.
From the definition of the distance function we have

dist(w′,Π) =
‖h(w′)− µ′1‖

µ′
,

where µ′ :=µ(1 − δ). From the lemma above we know that ‖h(w′) − µ′1| = ‖(∆xi∆si)‖. Our aim will
be to bound this error in terms of the error at the previous iteration, i.e., ‖h(w) − µ1‖. First step is to
bound ‖(∆xi∆si)‖ in terms of something more manageable. From the last equation in (37) we know that

67

X∆s + S∆x = h(w)− µ′1. Multiplying both sides by (SX)−1/2, and using the commutativity of diagonal
matrices, we obtain that(

S−1X
)1/2

∆s +
(
SX−1

)−1/2
∆x = (SX)−1/2(h(w)− µ′1).

Let T :=
(
S−1X

)1/2
, then the equation above can be succinctly written as

T∆s + T−1∆x = (SX)−1/2(h(w)− µ′1).

Note that T is invertible as s,x > 0. Moreover, the two vectors T∆s and T−1∆x are orthogonal as
〈T∆s, T−1∆x〉 = 〈∆s,∆x〉 = 0. Also, the coordinate-wise product of the two vectors is the vector (∆xi∆si).
Stepping back, we have two orthogonal vectors a, b such that a+b is related to h(w)−µ′ and their coordinate-
wise product is the vector (∆xi∆si). If we can relate the norm of ‖(aibi)‖ with ‖a + b‖ then we will have
some relation. Since a and b are orthogonal, it follows from Pythagoras theorem that ‖a‖2+‖b‖2 = ‖a+b‖2.
Moreover, (‖a‖ − ‖b‖)2 ≥ 0, which is equivalent to saying that

2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2 = ‖a + b‖2.

But it is easy to verify that (‖a‖‖b‖)2 ≥
∑n
i=1(aibi)

2. Therefore, we have shown the claim that

‖(aibi)‖ ≤
‖a + b‖2

2
.

Substituting a :=T∆s and b :=T−1∆x, we obtain that

‖(∆xi∆yi)‖ ≤
1

2
‖T∆s + T−1∆x‖2 =

1

2
‖(SX)−1 (h(w)− µ′1) ‖2 ≤ 1

2

‖h(w)− µ′1‖2

‖h(w)‖−∞
,

where ‖h(w)‖−∞ := mini(sixi). To summarize, we have shown the following:

Lemma 44. Let w ∈ W, µ′ > 0 and ∆w be the solution to (37) corresponding to w and µ′. If w′ := w−∆w
then we have

‖h(w′)− µ′1‖ ≤ 1

2

‖h(w)− µ′1‖2

‖h(w)‖−∞
.

Note that so far we haven’t used the fact that µ′ = µ(1 − δ). We now show that for appropriate choice
of θ and δ, ‖h(w′) − µ′1‖ ≤ θµ′. This will follow if RHS of the inequality above is smaller than θµ′. From
the definition of µ′, we know that

‖h(w)− µ′1‖2 ≤ ‖h(w)− µ1‖2 + (µδ)2‖1‖2 = ‖h(w)− µ1‖2 + (µδ)2n.

But recall from (43) that dist(w,Π) ≤ θ, i.e, ‖h(w)− µ1‖ ≤ θµ. Therefore,

‖h(w)− µ′1‖2 ≤ (θµ)2 + (µδ)2n.

But (43) also implies that |µ− sixi| ≤ θµ, or sixi ≥ (1− θ)µ, for all i. Therefore,

1

2

‖h(w)− µ′1‖2

‖h(w)‖−∞
≤ θ2 + δ2n

2(1− θ)
µ.

Now, if θ and δ are such that the RHS above is smaller than θµ′ = θ(1− δ)µ then we will be done, but this
follows if

θ2 + δ2n

2(1− θ)
≤ θ(1− δ).

It is clear that for the LHS to be smaller than one, δ ≤ 1/
√
n, so τ := δ ·

√
n. Then the above inequality

follows if
θ2 + τ2

2(1− θ)
≤ θ(1− τ√

n
). (45)

68

If we choose θ and τ to satisfy this inequality then we have that dist(w′,Π) ≤ θ.
We now show that w′ ∈ W. Note that x′ and (y′, s′) are primal feasible and dual feasible respectively,

since
Ax′ = Ax +A∆x = Ax = b

and similarly Aty′ + s′ = c (this follows directly from (37)). What remains to show is that x′, s′ > 0.
We will prove it by contradiction. Suppose there is an index i such that xi < ∆xi or si < ∆si. Since
‖h(w′) − µ′1‖ ≤ θµ′, we know that s′ix

′
i ≥ (1 − θ)µ′ > 0. Thus if s′i is negative then so is x′i and vice

versa. If both are negative then xi < ∆xi and si < ∆si implies sixi ≤ ∆xi∆si. But we also know that
h(w′)− µ′1 = (∆xi∆si) and hence the latter quantity is smaller than θµ′. Therefore, we have the following
inequalities

sixi ≤ ∆xi∆si ≤ θµ′ ≤ θµ.

But as ‖h(w)−µ1‖ ≤ µθ, we also know that sixi ≥ (1− θ)µ. Therefore, we have shown that θµ ≥ (1− θ)µ,
which hold iff θ ≥ 1/2. So to avoid this scenario we take θ < 1/2.

To summarize, the algorithm picks constants θ < 1/2 and τ satisfying (45), and it does the following:

Input: A,b, c, w0.
Output: w∗ such that γ(w∗) ≤ ε.
1. Set k ← 0.
2. If γ(wk) = 〈xk, sk〉 ≤ ε then return wk.
3. Let µk+1 ← µk (1− τ/

√
n).

4. Calculate ∆wk as in (38), (58) and (40).
5. Set wk+1 ← wk −∆wk, k ← k + 1 and go to step 2.

The parameter ε can be chosen as 2−2L as in the feasibility reduction. We will next show that a starting
point w0 exists with µ0 ≤ 2L. Substituting these bounds in Lemma 42, we get that O(

√
nL) iterations suffice

for the duality gap to fall below ε. As mentioned earlier, the most expensive step is Step 4, which involves
inverting a matrix and hence takes O(nω). The presence of bit-size in the algebraic cost of the algorithm
means that interior point methods are weakly polynomial time. In the next section, we focus on getting an
initial starting point. The approach is similar to simplex method: construct an auxiliary lp, and apply ipm
to it to get a feasible point (if any), or detect infeasibility or unboundedness.

12.5 Getting the Initial Point

We will set up an auxiliary LP that will have the following properties:

P(1)1. It is always feasible and bounded so that the ipm approach works for it.

P(2)2. The optimum attained by the ipm method will either tell us something about the primal-dual optimum
of the original lp, or show that it is infeasible or unbounded.

Consider the canonical form of lp.

maximize 〈c,x〉 subject to Ax ≤ b (46)

We have seen that weak duality implies that this lp has an optimum iff the following system has a feasible
solution:

Ax ≤ b, Aty ≥ c, 〈c,x〉 ≥ 〈b,y〉,x,y ≥ 0.

Homogenizing this system of equations by a positive variable τ > 0 gives us the Goldman-Tucker system:

Ax ≤ bτ, Aty ≥ cτ,

〈b,y〉−〈c,x〉+ ρ = 0,

x,y ≥ 0, τ, ρ ≥ 0.

(47)

This system is always feasible as origin is a trivial solution. We will be interested in non-trivial solutions.
It is clear that if the system above has a solution with τ > 0 then x/τ and y/τ are the primal and dual

69

optimum, respectively. It is clear that if a solution of gts has ρ > 0 then the original lp has no optimum.
These two scenarios cannot happen at the same time because of weak duality, and that is roughly the import
of the next result:

Lemma 45. No solution of (47) can have both τ and ρ non-zero, i.e., for every solution of gts τρ = 0.
Moreover, the following two cases take place:

1. If in a solution (x,y, τ, ρ), τ > 0 then (x/τ,y/tau) is a primal-dual optimum pair.

2. If in a solution (x,y, τ, ρ), ρ > 0 then either the primal is either infeasible or unbounded.

Proof. If
0 < τρ = τ(〈c,x〉 − 〈b,y〉) = (〈τc,x〉 − 〈τb,y〉) ≤ 〈Aty,x〉 − 〈Ax,y〉 = 0

giving us a contradiction. Therefore, exactly one of τ or ρ is non-zero.
By weak duality any solution with τ > 0 must have ρ = 0. Conversely, any primal-dual optimum pair

is a solution of gts with τ = 1 and ρ = 0 by strong duality. Therefore, if ρ > 0 then τ = 0, and either the
primal or the dual has to be infeasible.

Now we will show that if the primal or the dual is infeasible then there is a solution of the system with
ρ > 0. Suppose the primal is infeasible, i.e., Ax ≤ b, x ≥ 0, has no solution. Then from Farkas’s lemma
Corollary 26 there must be a y ≥ 0 such that Aty ≥ 0 and 〈y,b〉 < 0. Then setting x = 0, y = y, τ = 0
and ρ = −〈b,y〉 > 0 is a solution of (47). Q.E.D.

Thus solutions of gts gives us a way of answering P1 and P2. Note, however, that we do not have a
feasible solution in the interior (i.e., with strictly positive coordinates) as one of τ or ρ is always zero, and
hence on the boundary. But to apply ipm we need feasible points in the interior. We will overcome this by
forcing 1 to be a solution. Let us rewrite (47) in the form M0u ≤ 0, where

M0 :=

 0 A −b
−At 0 c
bt −ct 0

and u = (y,x, τ). Note that M0 is skew-symmetric, i.e., M t

0 = −M0, and if A was m× n then M0 is k × k,
where k :=m + n + 1. But we still don’t have our lp with 1 as a feasible point. To do that consider, let
r := 1 +M01 and define the following (k + 1)× (k + 1) extended matrix

M :=

[
M0 −r
rt 0

]
.

Note that M is also skew-symmetric. Let q := (0, 0, , . . . , , 0, k + 1) and v := (u, σ) = (y,x, τ, σ) as the new
set of variables. Then our desired lp is the following:

maximize − 〈q,v〉 subject to Mv ≤ q, v ≥ 0. (48)

We claim that the all ones vector of dimension (k+ 1) is feasible for this lp, i.e., M1 ≤ q. This would follow
if M01− r ≤ 0 and 〈r,1〉 ≤ k + 1; the former follows from the definition of r; for the latter, observe that

〈r,1〉 = k + 1 + 〈M01,1〉 = 〈1,M t
01〉 = 〈1,−M01〉 = 〈1,1− r〉,

were the second last equation uses the skew-symmetric nature of M0; moving −〈r,1〉 to the LHS, we obtain
that 2〈r,1〉 = 2(k + 1). This lp is even more interesting than it first appears. Let us consider its dual:

minimize 〈q,w〉 subject to M tw ≥ −q, w ≥ 0. (49)

But as M is skew-symmetric M t = −M , therefore, the above is equivalent to

minimize 〈q,w〉 subject to Mw ≤ q, w ≥ 0.

But minimizing 〈q,w〉 is the same as maximizing −〈q,w〉, and hence the dual above is the same as the
primal, i.e., the lp (48) is self-dual.

Let z be the set of slack variables for (48), i.e., z = q−Mv. Consider the equational form of (48). Then
a solution (v, z) of the equational form is called strictly complementary if for all j = 1, . . . , k + 1 either
vj > 0 or zj > 0. This key notion is required because of the following:

70

Lemma 46. The lp (48) has the following properties:

1. It is feasible and bounded.

2. Every optimum solution (u∗, σ∗) has σ∗ = 0, and hence u∗ is a solution of gts.

3. Every strictly complementary optimum solution gives a solution of gts with either τ > 0 or ρ > 0.

Proof.

1. Note that 0 is always a solution of (48) and since it is self-dual, also of its dual. Therefore, the primal
is feasible and bounded.

2. In fact 0 is an optimum as the value of the primal and the dual objective function is the same, namely
zero. If the σ-component is not zero in an optimum solution then the primal objective function is
strictly positive, so in all optimum solutions the σ-component is zero. Once the σ-component is zero,
it is clear that M0u ≤ 0 implies u is a solution of gts.

3. Note that the third component of v is τ and the corresponding slack variable is ρ. So strict comple-
mentarity implies that either τ > 0 or ρ > 0.

Q.E.D.

Hence to solve the original lp we need a strict complementary solution of (48). The claim that ipm
starting from a suitable point will converge to such a solution. We won’t see the full proof. Let us look at
the ef form of (48)

maximize − 〈q,v〉 subject to Mv + z = q, w, z ≥ 0.

We will consider the solutions to the equivalent form of (33) to this system. It is clear that A = [M |Ik+1],
b = q, c = (−q,0) and x = (v, z). Let v′ stand for y and (z′, z′′) for s. Then the equivalent form of (33) for
the lp above can be derived as follows. The system Ax = b is clearly Mv + z = q. The system of equations
Aty − s = c gives us two systems: M tv′ − z′ = −q and v′ = z′′; using the skew-symmetric property, the
first one is Mv′ + z′ = q, and for the second z′′ can be discarded and replaced with the constraint v′ ≥ 0.
The constraints sjxj = µ are vjz

′
j = µ and zjz

′′
j = zjv

′
j = µ. Thus the optimum of (48) is a solution to the

following system for µ > 0:

Mv + z = q

Mv′ + z′ = q

vjz
′
j = v′jzj = µ, for all j = 1, . . . , k + 1

v,v′, z, z′ > 0.

(50)

What is a solution to this system? We have already seen that 1 satisfies the first equation; the same argument
works for the second; thus, v = v′ = z = z′ = 1 is a solution to this system for µ = 1. Hence we have
an initial point on the primal dual central path for the system above. The system above can be further
simplified. Since it has a unique solution (v, z,v′, z′) for a given µ, and interchanging (v, z) and (v′, z′) also
gives us a system, it suffices to find the solutions of the following simpler system:

Mv + z = q

vjz
′
j = µ, for all j = 1, . . . , k + 1

v, z > 0.

(51)

To complete the proof we should show that the path converges to a strictly complementary solution of (48).
Can the convergence analysis given earlier be used to show that?

71

13 Combinatorial Optimization

A typical combinatorial optimization problem is of the following form: maximize a linear objective function
〈c,x〉 over a finite set S. Egs, are minimum weight spanning trees, shortest paths in graphs, maximum weight
matching. Generally, S is large so a brute force enumeration is not good enough. Our aim is to find a poly
time algorithm for the optimization problem. A key idea is to reduce it to an lp. But how do we do that?
Since the objective function is linear, we know that the maximum is attained on the boundary of the convex
hull of CH(S). This is the classical approach to combinatorial optimization proposed by Edmonds, Ford-
Fulkerson and others. How does this give us an lp? The CH(S) is bounded and hence a polytope. Therefore,
if it can be represented by a system of inequalities Ax ≤ b then we have that the maximizing 〈c,x〉 on S is
equivalent to maximizing 〈c,x〉 on the set {x : Ax ≤ b}, which is a linear programming problem. If the size
of A is polynomially bounded then any standard poly time lp solver gives us a solution poly time algorithm
for combinatorial optimization. We will see some examples where this approach has proven beneficial.

13.1 Matchings

Let G = (V,E) be an undirected graph. A matching M of G is a subset of edges such that no two edges
in M share a vertex. A matching M is called perfect if every vertex in V is incident on some edge in
M . Suppose that every edge has a weight associated with it, i.e., there is a function w : E → R≥0. Then
with a matching M we can associate a weight w(M) defined as the sum of the weights of all the edges in
M . A natural optimization problem is to find a maximum weight matching in a graph G. We will start by
formulating this as an LP.

Let’s associate a variable xe with each edge e, which can take value in {0, 1}. For every vertex v, at
most one of the variables xe is equal to one amongst the edges e incident on v; this can be captured as∑
e∈I(v) xe ≤ 1. Thus our LP is:

maximize
∑
e∈E

wexe

s.t. for all v ∈ X ∪ Y ,
∑
e∈I(v)

xe ≤ 1,

and for all e ∈ E, xe ∈ {0, 1} .

(52)

A more succinct way to express this is to use the vertex-edge incidence matrix A = [aij], where aij = 1 iff
vi is an endpoint of ej . Thus every column of A has exactly two entries as 1. Using the incidence matrix,
the LP above can be written as

maximize
∑
e∈E

wexe s.t. Ax ≤ 1, and for all e ∈ E, xe ∈ {0, 1} .

Instead of restricting xe to {0, 1} we allow it to take values as positive integers, since the constraint corre-
sponding to a vertex will imply that xe is either 0 or 1. Thus we finally get the following LP for finding the
maximum matching:

maximize
∑
e∈E

wexe s.t. Ax ≤ 1, x ∈ Zm≥0. (53)

The LP above is called an integer linear program since the variable takes integral values. Note that
so far we haven’t used the fact that G is a bipartite graph crucially; the derivation above actually applies
to any graph. Note that every matching satisfies these inequalities. Our set S is the set of all matchings.

With every matching M , we associate its characteristic vector χM ∈ {0, 1}|E|. The set S is the collection of
these characteristic vectors, and its convex hull is called the matching polytope. What we have stated is
that χM belong to the feasible set, i.e., χM ∈ {x : Ax ≤ 1}. Can it be that this set is matching polytope?
Consider a triangle 4. Then the characteristic vectors of the matchings are (1, 0, 0), (0, 1, 0) and (0, 0, 1),
i.e., the three standard unit vectors. However, the vectors (1/2) · 1 also satisfies the constraints Ax ≤ 1,
x ≥ 0, but it is clearly not in the matching polytope. This argument fails for an even cycle, because (1/2) ·1
is a convex combination of the two matchings formed by either picking the even numbered or odd numbered

72

edges. But recall that a graph with only even cycles is a bipartite graph. So perhaps the polytope defined
by the incidence matrix is a matching polytope for bipartite graphs. We next show that this is indeed the
case.

The special property that the incidence matrix A of a bipartite graph has is that it is totally unimod-
ular, i.e., the determinant of any submatrix of A is in {−1, 0, 1}. In particular, the 1 × 1 determinants,
namely the entries of A, are 0, 1, or −1. Such matrices have the following property:

Lemma 47. Given a m× n tum A and b ∈ Zn, the polyhedra P := {x : Ax ≤ b,x ≥ 0} is integral, i.e., the
vertices of the polyhedra are in Zn.

Proof. Assume m > n (otherwise?). We know that the vertices of P are obtained as some n lid constraints
being satisfied as equalities. Suppose I ⊆ [m], |I| = n, is such a set of lid constraints and AI the corresponding
submatrix of A. Then the corresponding vertex is the solution to the equation AIxI = b. From Cramer’s
rule we know that the solution to this equation is of the form det(A′I)/ det(AI), where A′I is obtained by
replacing some column of AI by b. Since A is tum, and AI is a non-singular submatrix of A we know that
det(AI) = ±1. Q.E.D.

Theorem 48. The incidence matrix of a bipartite graph is totally unimodular.

Proof. The proof is by induction; the base case is obvious as all entries are 0, 1. Let Q be an k × k
submatrix of A. There are three cases to consider:

1. Q has a column that is all zero.

2. Q has a column that has exactly one 1.

3. All columns of Q have exactly two 1’s. Partition the rows of Q into two sets: those corresponding to
vertices in X and those in Y . Consider the k-dimensional vector v that has all 1’s at the indices corre-
sponding to vertices of X. The product vtQ has all 1’s, because if we only add the rows corresponding
to vertices in X, every column has exactly one 1. Similarly for the rows corresponding to vertices in
Y . Thus there are two distinct vectors v and w such that vtQ = wtQ, which implies that the rows of
Q are linearly dependent, i.e., det(Q) = 0.

Q.E.D.

In particular, the vertices of the polyhedra {x : Ax ≤ 1,x ≥ 0} are all vectors of the form {0, 1}m, and
each such vector corresponds to a matching. Thus we have shown the following:

Lemma 49. Given a bipartite graph G, if A is its incidence matrix, then the matching polytope of G is the
set {x : Ax ≤ 1,x ≥ 0}.

Using this insight, we can actually prove König’s theorem for bipartite graphs: size of maximum matching
is equal to the size of the minimum vertex cover. Consider the dual of the LP-relaxation of the ilp (53)
where the weights are all ones:

minimize
∑

v∈X∪Y
yv s.t. Aty ≥ 1, y ≥ 0. (54)

Since At is also tum, it follows that the vertices of this polytope are also vectors in {0, 1}n. The rows of the
constraint Aty ≥ 1 are of the form yu + yv ≥ 1, for an edge uv ∈ E, and since y ∈ {0, 1}n it follows that
at least one of the endpoints of an edge is picked by a feasible solution, i.e., one yu of yv is greater than
1. Thus all vertex covers are feasible for this lp, and the value of the objective function is the size of the
vertex cover. The strong duality says that the minimum value of this objective function, i.e., the minimum
vertex cover, is equal to the maximum value of the primal objective function, which would be the size of the
maximum matching.

What can we say about the matching polytope for non-bipartite graphs? As we have shown, the polytope
defined by the incidence matrix alone is not sufficient as it contains extraneous points. But perhaps there is
a way of adding some extra constraints and cutting this polytope to get the matching polytope. Edmonds
showed that this is indeed possible in his celebrated and pioneering work on matchings.

73

13.2 Perfect Matching and Matching Polytope for Non-bipartite Graphs

In this section, we first consider perfect matchings for our graph. It is clear that G has a perfect matching iff
number of vertices are even. If A is the incidence matrix of G, then we have seen earlier that every perfect
matching satisfies the following system:

Ax = 1 and x ≥ 0.

However, as observed earlier, this set still contains points that do not belong to the matching polytope. We
will impose additional constraint to get the perfect matching polytope. What kind of constraints? For a
subset W ⊂ V , let δ(W) denote the edges going from W to W :=V −W , and E(W) be the edges with both
endpoints in W . Observe that if W has odd size then any perfect matching M has to match a vertex of W
with a vertex in W , i.e., a matching has to pick an edge in δ(W). Edmonds showed that this property along
with the earlier constraints are enough to define the perfect matching polytope:

Theorem 50 (Edmond’s Perfect Matching Polytope). The perfect matching polytope P(G) of a graph G =
(V,E) is defined by the following constraints:

1. Non-negativity: xe ≥ 0, for all e ∈ E,

2. Vertex constraints: x(δ(v)) :=
∑
e∈δ(v) xe = 1, and

3. Odd-cut constraints: x(δ(W)) :=
∑
e∈δ(W) xe ≥ 1, for all odd sized sets W ⊆ V .

Wlog we can assume that |V | ≥ 6, since |V | is even and for the odd-cut constraints to be different from
the vertex constraints we want |W |, |W | ≥ 3 (note that if either one of them has size one then the constraint
is not an odd-cut constraint but a vertex constraint).

Let Q(G) be the polytope (why is it bounded) defined by the three constraints above and P(G) be
the perfect matching (pm) polytope. As argued before, P(G) ⊆ Q. Edmond’s key result was to show the
converse. The proof is via induction. The idea is to show that all the vertices of Q(G) can be expressed as
a convex combination of incidence vectors of perfect matchings. Suppose the claim is true for all graphs G′

that have fewer edges or vertices that G, i.e., Q(G′) = P(G′). Let x∗ be a vertex of Q(G). The following
claim tells us the interesting vertices of Q(G) and some properties that G can be assumed to satisfy:

Lemma 51. Wlog we can assume the following about G and x∗:

1. For all e ∈ E, 0 < x∗e < 1, and

2. The vertices in G have degree ≥ 2, and there exists a vertex with degree > 2.

Proof. We show if either of the above assumptions fail then either x∗ ∈ P(G) or Q(G) ⊆ P(G).

1. If x∗e = 0, for some edge e, then let x′ be the vector obtained from x∗ by dropping the entry corre-
sponding to e and G′ = G− e. We first claim that x′ ∈ Q(G′): the non-negativity constraint trivially
holds; if v is a vertex with e incident on it then the second constraint is true because x∗e = 0; similarly,
the contribution of e to any set of cut edges is also zero, and hence the third constraint is true for all
odd-sized subsets. Now as G′ is smaller than G, by induction hypothesis Q(G′) = P(G′), and hence
x′ is a convex combination of matchings of G′. Re-introducing the component corresponding to e in
the incidence vectors of these matchings, we get that x∗ ∈ P(G).

2. If x∗e = 1, for some edge e, then let x′ be the projection of x∗ obtained by dropping e, the endpoints
of e, and edges incident on these endpoints from G; let G′ be the resulting graph. We again claim
that x′ ∈ Q(G′). Observe that dropping the edges incident on the endpoints of e = (v, w) does not
matter because as

∑
e′∈δ(v) x

∗
e′ = x∗e +

∑
e′∈δ(v)−e x

∗
e′ = 1 implies that x∗e′ = 0 for all other edges e′

incident on v (similarly for w). Therefore, these edges do not contribute in the third constraint for
any odd-sized set. Hence x′ ∈ Q(G′), but Q(G′) = P(G′), as G′ is smaller than G and applying the
induction hypothesis. Thus x′ can be expressed as a convex combination of matchings in G′; add
the component corresponding to e in these matchings, and we get that x∗ is a convex combination of
matchings in G, which implies x∗ ∈ P(G).

74

3. If G has a degree one vertex then for the incident edge e, x∗e = 1, but from the argument above we
know that in this case x∗ ∈ P(G).

4. If all vertices have degree exactly two, then G is a cycle. It cannot be an odd-cycle as we have an even
number of vertices. Therefore, it must be an even cycle and hence a bipartite graph. Since we have
only added more constraints, Q(G) ⊆ {x|Ax = 1,x ≥ 0} = P(G), where A is the incidence matrix of
G, and the second equality follows from earlier results.

Q.E.D.

Since 2|E| =
∑
v∈V deg(v), and by our assumptions on G above we know that the average degree is

> 2, it follows that |E| > |V |. Now the vertex x∗ of Q(G) is a bfs that has no zero entry, therefore, it
must satisfy |E| lid constraints from the vertex and odd-cut constraints as equalities. But there are only |V |
vertex-constraints, so there must exists an odd-sized set W such that

∑
e∈δ(W) x

∗
e = 1.

Let G′ be the graph obtained by contracting W to a single vertex u′, and G′′ be the graph obtained by
contracting W to a single vertex u′′; note that contraction might introduce parallel edges, but we keep all of
them. Let x′ be the projection of x∗ wrt G′, i.e., the vector obtained by removing the entries corresponding
to contracted edges; similarly, define x′′ wrt G′′.

Claim 1. The vector x′ ∈ Q(G′) and x′′ ∈ Q(G′′).
Proof. We only show the claim for x′; the claim for x′′ follows similarly, along with the observation that W
is also odd.

The non-negativity constraint is trivially satisfied by x′. The vertex-constraint is clearly satisfied for all
vertices in W ; for u′, it follows from the following:∑

e∈δ(u′)

x′e =
∑

e∈δ(W)

x∗e = 1.

For the third constraint, consider an odd-sized subset U of G′; if U does not contain u′ then x′(δ(U)) =
x∗(δ(U)) ≥ 1. Otherwise, the set δ(U) is the same as the set δ((U − u′) ∪W), and since (U − u′) ∪W is an
odd-sized subset of V , x′(U) = x∗((U − u′) ∪W) ≥ 1. Q.E.D.

As G′ and G′′ are smaller graphs than G, it follows that x′ ∈ P(G′) and x′′ ∈ P(G′′). We will use this
observation to express x∗ as a convex combination of some matchings of G. Let the convex combinations for
x′ and x′′ be given by x′ =

∑
M ′ λ

′
M ′χM ′ and x′′ =

∑
M ′′ λ

′′
M ′′χM ′′ . We will massage this combination into

something more amenable. Note that x∗ has rational entries (follows from Cramer’s rule); this also applies
to the entries of x′ and x′′. Since the λ′s and λ′′s are solutions to linear equations with rational entries,
they are also rational numbers; moreover, by appropriate scaling we can assume that denominator of these
rational numbers is the same number D. Thus λ′M ′ = aM ′/D and λ′′M ′′ = bM ′′/D, where aM ′ , bM ′′ ∈ N.
Since

∑
M ′ λ

′
M ′ =

∑
M ′′ λ

′′
M ′′ = 1, it follows that

∑
M ′ aM ′ =

∑
M ′′ bM ′′ = D. Therefore,

x′ =
1

D

∑
M ′

aM ′χM ′ =
1

D

D∑
i=1

χ′i (55)

where S′ := {χ′i, i = 1, . . . , D} is a multiset of incidence vectors χM ′ such that χM ′ has aM ′ copies in the
set. Similarly, we can express

x′′ =
1

D

∑
M ′′

bM ′′χM ′ =
1

D

D∑
i=1

χ′′i , (56)

where S′′ := {χ′′i , i = 1, . . . , D} is a multiset of incidence vectors χM ′′ such that χM ′′ has bM ′′ copies in the
set. Note, however, that x′ and x′′ share the entries corresponding to δ(W) in x∗.

Consider an e ∈ δ(W). How many M ′s are there that contain e? Comparing the e-th coordinate on both
sides of (55) we have

Dx′e =
∑
M ′

aM ′ [e ∈M ′] = |{M ′ ∈ S′ : e ∈M ′}| ,

i.e., the number of pms in S′ containing e is Dx′e. Similarly, the number of pms in S′′ containing e is Dx′′e .
But x′e = x′′e = x∗e, and hence the number of pms in S′ containing e is the same as the number of pms in S′′

75

containing e. Number the edges in δ(W) from e1, . . . , ek, where k := |δ(W)|. Then write the D matchings of
S′ and S′′ in two columns such that the first Dx∗e1 entries all contain e1, the next Dx∗e2 contain e2 and so
on; see Figure 8. Note that D

∑
e∈δ(W) x

∗
e = D, therefore, the above procedure exhausts all the matchings

on both sides. If Mi :=M ′i ∪M ′′i then clearly it is a pm in G. Now we claim the following:

Claim 2. The vector x∗ is a convex combination of Mi’s, i.e., x∗ =
∑D
i=1 χMi

/D.
Proof. For coordinates of x∗ not in δ(W), the claim follows directly from (55) and (56). Consider the entry
x∗e1 , where e1 is the first edge of δ(W) in the ordering chosen earlier. We know that this entry can only come
from the pms M1, . . . ,MDx∗e1

, and clearly

x∗e1 =

Dx∗e1∑
i=1

[χMi]e1
D

=

D∑
i=1

[χMi
]e1

D
.

This is also evident from Figure 8. Q.E.D.

The claim shows that all vertices x∗ of Q(G) are in P(G), therefore, Q(G) ⊆ P(G) as desired.

Figure 8: Matchings of G constructed from matchings of G′ and G′′

How about matchings in general? The matching polytope of G is defined as the convex hull of all the
characteristic vectors of matchings of G. Consider an odd-sized subset W of V . Given a matching M of G,
how many edges can we have in M with both their endpoints in W? Since each such edge will pick a distinct
pair of vertices, it is clear that 2|M ∩ E(W)| ≤ |W |, or in other words, |M ∩ E(W)| ≤ b|W |/2c. As is the
case, the necessary condition also turns out to be sufficient.

76

Theorem 52 (Edmond’s Matching Polytope). The matching polytope of a graph G = (V,E) is defined by
the following constraints:

1. xe ≥ 0, for all e ∈ E,

2.
∑
e∈δ(v) xe ≤ 1, and

3. Blossom-inequalities:
∑
e∈E(W) xe ≤ b|W |/2c, for all odd-sized sets W ⊆ V .

13.3 Approximation Algorithms – Vertex Cover

Sometimes lp relaxation of integer programs for combinatorial optimization problems doesn’t give us the
exact solution but a good enough approximation, especially for computationally hard problems, such as the
one in this section. Let’s consider the case of minimum vertex cover. As an ilp it can be formulated as
follows:

minimize
∑
v∈V

xv s.t. xu + xv ≥ 1 for all edges e = (u, v), xv ∈ {0, 1} , for all v ∈ V . (57)

It is known that finding the minimum vertex cover is an NP-hard problem. However, using the lp-relaxation
of the integer program above we can easily get a 2-approximation algorithm. What does it mean? We can
get a vertex cover whose size is not more than twice the size of the smallest vertex cover. Pretty good! Let’s
see how. Suppose x∗ is an optimum solution to the lp-relaxation:

minimize
∑
v∈V

xv s.t. xu + xv ≥ 1 for all edges e = (u, v), 0 ≤ xv ≤ 1, for all v ∈ V .

Define S := {v : x∗v ≥ 1/2}. We claim that S forms a vertex cover. This is because for each edge uv,
x∗u + x∗v ≥ 1 implies that either x∗u ≥ 1/2 or x∗v ≥ 1/2 (note that both endpoints can be in S). Let x be a
vector that achieves the optimum for the ip given by (57), and let SOPT := {v : xv = 1} be the corresponding
vertex cover. Our claim is that |S| ≤ 2|SOPT|. First note that as x∗ is an optimum over a larger set we have∑

v∈V
x∗v ≤

∑
v∈V

xv.

Moreover,

|S| ≤ 2
∑
v∈S

x∗v ≤ 2
∑
v∈V

x∗v,

but from the inequality above it follows that

|S| ≤ 2
∑
v∈V

x∗v ≤ 2
∑

v∈SOPT

x∗v = 2|SOPT|.

13.4 Approximation Algorithms – Max Cut

Given an undirected graph G = (V,E), a cut is a pair (W,W), where W ⊆ V . The edge set of the cut is
the set δ(W). The size of the cut is |δ(W)|. The problem of maximum cut is to find a largest sized cut in a
graph G. Let OPTCUT(G) be the size of a maximum cut for G.

We start with a randomized algorithm, that too a most naive one: pick a set S of vertices, where each
vertex is included in S with probability half and independently of all the other vertices. Our claim is that the
expected size of the cut is at least half the size of the optimum value, OPTCUT(G). The size of the cut |δ(S)|
induced by S is a random variable. We want to bound its expectation E[|δ(S)|]. By linearity of expectation
(and using indicator variables for each edge) it follows that this is the same as

∑
e∈E Pr{e ∈ δ(S)}. The

probability that e = (u, v) is in δ(S) is if either u ∈ S and v 6∈ S, which happens with probability 1/4, and
the symmetric situation that v ∈ S and u 6∈ S, which also happens with probability 1/4; thus the probability
that e ∈ δ(S) is 1/4 + 1/4 = 1/2. Therefore,

E[|δ(S)|] =
∑
e∈E

Pr{e ∈ δ(S)} =
∑
e∈E

1

2
=
|E|
2
.

77

But, clearly, |E| ≥ OPTCUT(G), giving us the desired result.
There is a derandomized version of the algorithm above The next big breakthrough in approximation

algorithms for max cut was Goemans-Williamson randomized algorithm from 1994, which has an approxi-
mation factor of ∼ 0.878. We next see how this was obtained using semidefinite programming (sdp). For
the moment we do not define what sdp’s are, but it suffices to say they are generalizations of lp having
something to do with positive semidefinite matrices, and for the case of max cut we will see the required
sdp.

Let’s try to start with an expressing max cut as a constrained optimization problem. Label the vertices
in V from 1, . . . , n and associate a variable yi with the ith vertex in V . Unlike the cases earlier, we restrict
yi to the set {−1, 1}. For some assignment of variables yi ∈ {−1, 1}, define S := {i : yi = 1}. The reason for
choosing {−1, 1} is because the term

1− yiyj
2

gives us the contribution of an edge {i, j} to |δ(S)|: it vanishes if i, j ∈ S or i, j ∈ S, but is exactly equal to
one when one of them is in S and the other in S. Thus, if we take the sum over all pairs {i, j} we have

|δ(S)| =
∑
{i,j}∈E

1− yiyj
2

. (58)

Using this succinct representation, the max cut problem can be stated as follows:

maximize
∑
{i,j}∈E

1− yiyj
2

, s.t. yi ∈ {−1, 1} , for i = 1, . . . , n. (59)

Now, this is not a lp because the objective function is non-linear. We will relax this problem in a different,
and rather counterintuitive, manner. Note that the set {−1, 1} is the sphere S0 :=

{
x : x2 = 1

}
. So, we can

start generalizing the yi’s as elements of sphere in higher dimensions, i.e., as vectors of unit norm in higher
dimensions. The dimension that just the job for us is n. So we replace each variable yi with a vector ui ∈ Rn
of unit norm, i.e., on the unit sphere Sn−1 in Rn. For instance, if ui := (0, yi), then (58) can be expressed as∑
{i,j}∈E(1− 〈ui,uj〉)/2. So our variables are vectors now and the constraint is that they are unit vectors.

The optimization problem (59) is subsumed by the following vector program:

maximize
∑
{i,j}∈E

1− 〈ui,uj〉
2

, s.t. ui ∈ Sn−1, for i = 1, . . . , n. (60)

The program above is a vector relaxation of the program in (59), and hence has a larger feasible set, and
consequently a large value for the optimum than OPTCUT(G). Why is this objective function bounded?
Note that since the vectors are unit vectors their inner product is the cosine of the angle between them,
which is in [−1, 1]; therefore, the objective function is in [0, 1]. The n2 numbers 〈ui,uj〉 are the entries of
the Gram matrix U tU , where the columns of U are ui, and the diagonal entries are all ones. We know that
a matrix of the form U tU is positive semidefinite. Therefore, we can think of (60) in terms of a variable
which is a positive semidefinite matrix:

maximize
∑
{i,j}∈E

1− xij
2

, s.t. xii = 1, for i = 1, . . . , n, and X � 0, (61)

where X � 0 means that X is positive semidefinite. We have seen that the program (60) is a special
case of the program above, but we claim that it is true the other way round. This is because any psd
matrix X can be factored as U tU ; moreover, as the diagonal entries in X are one, the columns of U are
all unit vectors. Thus the feasible set in the two programs is the same. The program in (61) is called a
semidefinite program (sdp) – the name comes from the fact that the variable is a semidefinite matrix.
Thus the optimum value of the program above SDPOPT(G) for a graph G is greater than OPTCUT(G) for
the program in (59). Amazingly, the ellipsoid and interior point methods generalize to obtain a solution X∗

78

of an sdp in polynomial time. Moreover, we can factorize X∗ = (U∗)tU∗, called the Cholesky factorization,
in polynomial time to obtain the vectors u∗i ’s. Consequently, we have shown that

SDPOPT(G) =
∑
{i,j}∈E

1− 〈u∗i ,u∗j 〉
2

≥ OPTCUT(G). (62)

Now that we have the vectors u∗i ’s, we want to map them to S0 = {−1, 1} to get our cut. Note that these
vectors can be thought of as embedding the vertices of the graph on the unit sphere Sn−1. The vertices
that will maximize SDPOPT are those that are far apart, i.e., the angle between u∗i and u∗j is close to π; the
edges corresponding to such pair of vertices will be our cut edges. Thus to find our cut, we want to find a
hyperplane that separates such pairs of vertices. Now as the angle between such pairs is large, intuitively
a random hyperplane should do our job. For a p ∈ Sn−1, we can partition the set of vectors u∗i into two
disjoint sets depending on which side of the hyperplane they are: a u ∈ Sn−1 is mapped to +1 if 〈u,p〉 ≥ 0
and to −1 if 〈u,p〉 < 0. How do we choose p? We choose it uniformly at random on the unit sphere Sn−1

(sample univariate gaussians in each coordinate). Our claim is that such a p will be able to distinguish
the large and small angles between pairs of vectors u∗i , u∗j , i.e., it will map the pairs with larger angles to
different values. The following result formalizes this intuition:

Lemma 53. If u,w ∈ Sn−1 then the probability that a p chosen uniformly at random from Sn−1 maps u, w
to different values is

1

π
arccos〈u,w〉.

Proof. Let θ be the angle between u and w. What we are claiming is that the probability that p maps u
and w to different values is θ/π. Let us see this claim in two-dimensions. It is easy to see that the hyperplane
defined by p separates u from w iff it lies in the two wedges of angle θ as shown in Figure 9. So the prob
is θ/π, as desired. In higher dimensions, (imagine 3-d) p separates u from w if its image r in the space
spanned by these two vectors is contained in the two wedges. Since p varies uar on Sn−1 the direction of r
is uniformly distributed over [0, 2π] and hence the result from the planar case applies, giving us the desired
probability. See Figure 10 for a 3d-version. Q.E.D.

θ
u

w

θ

r

Figure 9: A a hyperplane defined by p separates u and w if its projection r is in the shaded region.

The result above shows that the expected number of edges in our cut is∑
{i,j}∈E

1

π
arccos〈ui,uj〉.

This quantity, however, does not have any apparent relation to OPTCUT(G). However, it can be shown that
for z ∈ [−1, 1],

arccos(z) ≥ CGW
(

1− z
2

)

79

Figure 10: A a hyperplane defined by p separates u and w if its projection r is in the shaded region.

for some constant

CGW := min
z∈[−1,1]

2 arccos(z)

(1− z)
∼ 0.8785672. (63)

Thus ∑
{i,j}∈E

1

π
arccos〈u∗j ,u∗j 〉 ≥

∑
{i,j}∈E

CGW

(
1− 〈u∗i ,u∗j 〉

2

)
.

But from (62) we know that the RHS above is greater than OPTCUT(G). Therefore, we have the expected
size of the cut is ≥ C ·OPTCUT(G), where C is as defined above.

13.4.1 Tightness of the approximation ratio

There are classes of graphs for which better approximation ratios are known: dense graphs (roughly having
quadratically many edges, graphs with bounded maximum degree, graphs where the max-cut is either “large”
or “small”. The hope of getting an approximation ratio better than CGW in general seems hard: assuming
the unique games conjecture and P being different from NP, there are results that show that there cannot
be a poly-time algorithm obtaining a ratio better than CGW ; assuming only the latter condition, the claim
is that there is no poly-time algorithm with a ratio better than 16/17 ∼ 0.94.

If the value computed by the algorithm is A then the result above actually shows that A
SDPOPT

≥ CGW .
But as OPTCUT ≥ A, we obtain that the integrality gap SDPOPT/OPTCUT is bounded by 1/CGW . Can
it be that there are graphs for which the approximation computed by the algorithm is near to CGW even
when SDPOPT = OPTCUT, i.e., instances where the sdp gives the true optimum but the algorithm fails to
improve on the approximation ratio? It is not hard to come up with graphs where the sdp-opt is the opt;
e.g., for bipartite graphs, the true opt and sdp opt would be |E|, however, for these cases the algorithm also
computes the opt-cut. The following result of Karloff says that there are graphs where the integrality gap is
one but the algorithm nearly attains the approximation ratio:

Theorem 54 (Karloff’99). For every ε > 0, there exists a graph G such that the expected size A of the cut
computed by the algorithm satisfies

CGW ≤
A

OPTCUT
≤ CGW + ε.

80

Let θGW be the angle z that achieves the ratio CGW in (63). The idea of the proof is to construct a
graph G for which the expected size A of the cut is (θGW /π)|E|, the size of the SDPOPT cut is (h/d)|E|, for
two parameters h, d. The size of OPTCUT will be equal to SDPOPT. Moreover, the ratio h/d will tend to
(1− cos θGW)/2, which means that the ratio A/OPTCUT will tend to 2θGW /(1− cos θGW), which is CGW .
To ensure SDPOPT = (h/d)|E|, we ensure that the contribution (1−〈u∗i ,u∗j 〉)/2 of each edge is equal to h/d.

This would follow if 〈u∗i ,u∗j 〉 = (d − 2h)/d. Suppose u∗i and u∗j are in {−1, 1}d and they differ in exactly

h places, then their inner product is (d − 2h). But note that their 2-norm is
√
d, therefore, we make them

unit vectors by dividing by d. So our graph is the Hamming graph with vertex set V = {−1, 1}d and an
edge between two vertices if their hamming distance is exactly h. The associated unit vector with a vertex
v ∈ {−1, 1}d is uv := v/d. These vectors are clearly feasible for the sdp. What is amazing is that they attain
the SDPOPT:

Lemma 55. The set of vectors uv attain the SDP-opt.

The proof of the lemma above is technical. However, assuming the lemma is true the chain of argument
is as follows:

1. As h/d→ (1− cos θGW)/2, the expected size of the cut of the algorithm tends to (θGW /π)|E|.

2. The SDP-opt is attained for the vectors uv and is equal to (h/d)|E|.

3. Consider any coordinate hyperplane xi = 0. What is the number of edges crossing it? An edge cuts
along h such hyperplanes. Therefore, we expect a hyperplane to cut across (h/d)|E| edges. The OPT-
cut is at least as large as this, but it cannot be larger than the SDP-opt. Therefore, OPT-cut is equal
to SDP-opt.

4. Hence, the ratio A/OPTCUT tends to CGW .

We only show the following result as a partial proof of the lemma above.

Lemma 56. Given a graph G, with adjacency matrix A

SDPOPT(G) ≤ 1

2
|E| − λn

4

where λ is the smallest eigenvalue of A.

Proof. Let u∗i be the solution of sdp-opt. Then the contribution of the an edge (i, j) to the opt is
1
2 (aij(1− 〈u∗i ,u∗j 〉)/2); the half is to take into account the double counting that happens because aij = aji.
Therefore, the value of the opt is

SDPOPT =
1

2

n∑
i,j=1

aij
1− 〈u∗i ,u∗j 〉

2

=
1

2
|E| − 1

4

∑
i,j

∑
k

aiju
∗
iku
∗
jk

=
1

2
|E| − 1

4

∑
k

∑
i,j

aiju
∗
iku
∗
jk

=
1

2
|E| −

∑
k

rtkArk
4

,

where rk are the rows of the matrix that has columns as u∗i . The quadratic form is related to the Rayliegh
quotient xtAx/‖x‖2 of the (symmetric) matrix A, which takes the least value at λ. Therefore, rtkArk =
λ‖rk‖2. But

∑
k ‖rk‖2 =

∑
i ‖u∗i |2 = n. This completes the proof. Q.E.D.

Note that equality is attained in the bound above if rk’s are the eigenvectors corresponding to the smallest
eigenvalue. The challenging part is to show that the rows of the adjacency matrix of the Hamming graph
are the eigenvectors corresponding to the smallest eigenvalue. Therefore, the vectors uv defined above do
attain the sdp-opt.

81

14 Semidefinite Programming

The two crucial cooncepts in defining an lp are the underlying vector space Rn, an inner product operator
〈·, ·〉 on this space, and a linear map A : Rn → Rm. These three concepts are essential in defining the problem,
let’s say in its equational form: maximize 〈c,x〉 subject to Ax = b and x ≥ 0. With this perspective, we
can choose other vector spaces, inner product on these vector space, and a linear map on the vector space
to obtain interesting generalizations of lp. One such choice is the following:

1. For the vector space, we take the set SYMn of all n × n symmetric matrices with entries in R. It is
easy to verify that this is a vector space over R.

2. The inner product of two matrices X,Y ∈ SYMn is defined as the standard inner product treating
these matrices as n2-dimensional vectors. To be precise,

X • Y :=

n∑
i=1

n∑
j=1

xijyij . (64)

It is not hard to see that X • Y = Tr(XtY), where Tr(·) is the trace of a matrix, i.e., the sum of its
diagonal entries. Since an inner product defines a corresponding norm, what is the norm associated
with the trace? From the trace definition, it is clear that the inner product operator is symmetric,
linear in its arguments, and positive-definite (i.e., X •X ≥ 0).

3. Our linear map (or operator, to be more precise) is A : SYMn → Rm. It can be described by m
matrices, or linear maps from SYMntoR, forming its components, i.e., A(X) = (A1 •X, . . . , Am •X).

A semidefinite program is a generalization of an lp using the three concepts above:

maximize C •X
subject to

Ai •X = bi, for i = 1, . . . ,m, and

X � 0.

(65)

The similarity with ef of lp is striking, but that is not surprising as that’s how we came up with the
generalization. It is easy to see that any lp can be formulated as an sdp: C is the matrix with diagonal
entries of c, similarly for Ai, and X; note that the psd of X translates to x ≥ 0. We claimed that (61) is an
sdp. Why is that? It is clear that the constraints can be expressed in the form above, but what about the
objective function? The part −

∑
i,j xij/2, can clearly be expressed as a trace, namely −Tr(AtX)/4, where

A is the adjacency matrix of the graph. Then the objective function is |E|/2 − Tr(AtX)/4. Since we have
only added a constant, we can drop it from the objective function and minimize the trace part.

Sdp’s do not share many nice properties of lps. For instance, the objective function can be bounded on
the feasible region, but there may not be any psd matrix achieving it. This is made clear from the following
example:

minimize x

subject to [
x 1
1 y

]
� 0.

A matrix of the form given above is psd iff x ≥ 0 and xy ≥ 1. So x can get arbitrarily close to 0, and hence
the infimum of the objective function on the feasible region is 0, but it cannot be attained for any matrix.
The duality principle still holds, but as the example above suggests, only in the weak form. There are no
extreme bfs, as was the case of lp, mainly because the boundary of the set of sdp matrices inside the set of
symmetric matrices is not polyhedral. The following section elucidates on these details.

The example above can be generalized to consider matrices in PSD2:[
x z
z y

]
� 0.

82

It is not hard to show that this is equivalent to the set

TC :=
{

(x, y, z) : x, y ≥ 0, xy ≥ z2
}
,

which is called the toppled ice cream cone.

14.1 Cone programming and Duality

There is a uniform and general way to treat both the lp and sdp case as a special case of something more
general called cone programming. The observation is that as the positive orthant is a cone in Rn so is
the set PSDn in SYMn:

Lemma 57. The subset of positive semidefinite matrices in SYMn forms a closed convex cone K, i.e., for
all x ∈ K and λ ≥ 0, λx ∈ K, and given x,y ∈ K, x + y ∈ K.

Proof. The proof idea is to use the quadratic form definition of psd matrix. Q.E.D.

Given this similarity between the two optimization problems, we work in the more general setting of
cones. Let K be a closed convex cone in a vector space V , with the inner product given by 〈·, ·〉. We will
start with generalizing Farkas’s lemma, but to do that we need the following notion of a dual cone:

K∗ := {y ∈ V |〈y,x〉 ≥ 0 for all x ∈ K} . (66)

It is easy to prove the convexity and conicity by using the linearity of the inner product. What is the dual
of the positive orthant Rn≥0? It is not hard to verify that it is self-dual.

Recall Farkas’s lemma for linear inequalities: Given A and b, either Ax = b has a non-negative solution
x or there exists a y such that Aty ≥ 0 but 〈b,y〉 < 0. An equivalent way to state it the or-condition is that
there exists a y such that Aty ∈ (Rn≥0)∗ = Rn≥0 but 〈b,y〉 < 0. By analogy, we expect the following variant
of Farkas’s lemma to hold for solution of linear equalities in cones:

Given a linear operator A : V → W , where W is a vector space (take W to be some euclidean
space Rm) a b ∈W and a cone K, either A(x) = b has a solution x ∈ K or there exists a y ∈W
such that At(y) ∈ K∗ but 〈y,b〉 < 0.

There is at least one problem with this formulation: what do we mean by the transpose of a linear operator
A : V → W (consider V = SYMn and W = Rm)? But there is something more fundamental that is wrong:
the set A(K), which is also a convex cone, is not a closed set. Consider the toppled ice cream cone TC in
R3. Let A be the projection operator that maps TC to the xy-plane. Since for a fixed value of z = c, the
projection is the hyperbola xy = c2, the set TC is projected to

{
R2
>0 ∪ 0

}
, which is an open set. If we take

b = (1, 0) then both the equations A(x) = b, for x ∈ TC , and At(y) ∈ K∗ such that 〈y,b〉 < 0 are not
feasible. Note that the projection matrix

A =

[
1 0 0
0 1 0

]
and T ∗C =

{
(x, y, z) : x, y ≥ 0, 4xy ≥ z2

}
, i.e., an elongated version of TC . Since A(TC) is an open set and b

is a boundary point of its closure, there is a sequence of values xk ∈ TC such that in the limit A(xk) tends
to b, and, therefore, there cannot be a hyperplane separating b from A(TC). We remedy the situation by
handling this boundary case: The system A(x) = b, where x ∈ K a closed convex cone, is called limit
feasible if there exists a sequence (xk)k∈N ∈ K such that limk→∞A(xk) = b. Such a sequence (xk) is called
a feasible sequence. Note that we do not require the sequence xk to converge, but only its image.

Now we handle the second technicality: What is At? In the theory of vector spaces, given a linear
operator A : V → W , its adjoint is a linear operator At : W → V such that for all x ∈ V and y ∈ W the
follownig holds:

〈y, A(x)〉 = 〈At(y),x〉.

This can be verified when V,W are the standard euclidean spaces and At is the standard transpose.
The modification of Farkas’s lemma is the following:

83

Lemma 58. Let K ⊆ V be a closed convex cone, A : V →W a linear operator and b ∈W . Then either the
system A(x) = b is limit feasible in K, or the system At(y) ∈ K∗ such that 〈b,y〉 < 0 is feasible, but not
both.

Proof. Suppose A(x) = b is limit feasible in K, and let (xk) be the sequence whose image under A
converges to b. Then we have

〈y,b〉 = lim
k→∞

〈y, Axk〉 = lim
k→∞

〈At(y),xk〉,

where the last step uses the definition of adjoint. Now if At(y) ∈ K∗ then 〈At(y),xk〉 ≥ 0, for all k ∈ N and
hence the limit is also non-negative.

If A(x) = b is not limit feasible then b is not in the closure of the cone A(K). Therefore, there is a
hyperplane separating A(K) from b. Suppose y ∈W is defines the hyperplane, i.e.,

〈y,b〉 < 0 and for all x ∈ K 〈y, A(x)〉 ≥ 0.

Then the latter condition is equivalent to 〈At(y),x〉 ≥ 0, for all x ∈ K, which from duality of cones is
equivalent to At(y) ∈ K∗. Q.E.D.

In the second part of the proof we use the following result for closed convex cones K ′ ⊆ W : If b 6∈ K ′
then there exists y ∈W such that

〈y,x〉 ≥ 0 for all x ∈ K ′ and 〈y,b〉 < 0.

The proof idea is to take a point z ∈ K ′ that is closest to b (since K ′ is closed such a point exists and is
unique). Then y := z− b.

We can now define the following generalization of lp’s and sdp’s: Given two vector spaces V,W a closed
convex cone K ∈ V , c ∈ V , and b ∈W a cone program in equational form is the following

maximize 〈c,x〉
subject to A(x) = b, for x ∈ K.

(67)

The value of the program is supx∈K {〈c,x〉 : A(x) = b}. Note that the program may not be feasible, in
which case the value is not defined, but it may be limit feasible. The limit value of a feasible sequence
(xk) is defined as the lim-sup of 〈c,xk〉. The limit value of a program is the supremum over all limit values.
Clearly, the limit value is at least as large as the value, but can the two be different, even when the program
is feasible? The follow example demonstrates the problem: the example is for the more general form of cone
programs.

The situation can be saved, if we enforce the so called Slater’s constraint qualification, i.e., the
program is not only feasible over K but feasible in the interior of K. Then these exceptional scenarios
disappear:

Theorem 59. If the cone program (67) has an interior feasible point in K then the value equals the limit
value.

Proof. Suppose the limit value is γ, and we are given an ε > 0. The idea is to construct a feasible solution
w∗ such that 〈c,x∗〉 > γ − ε. This implies that there are feasible solutions that take value arbitrarily close
to γ. Hence the value and limit value are equal.

The idea for construction of w∗ is as follows. We take a limit feasible sequence xk ∈ K, i.e., limk A(xk) =
b and lim supk〈c,xk〉 = γ. Using the presence of an interior point x we will get a feasible sequence wk ∈ K
such that

|〈c,wk〉 − 〈c,xk〉| < ε.

Therefore,
lim sup

k
〈c,wk〉 ≥ lim sup

k
〈c,xk〉 − ε = γ − ε,

which implies that there is an index ` for which 〈c,wk〉 > γ − ε, and w∗ = wk.

84

The idea to construct wk is to use xk, but as xk’s are somewhat going towards the boundary of K we
need to pull back; this is done using the interior point x and taking a convex combination with xk. Therefore,
a candidate choice is

wk = (1− λ)xk + λx.

Clearly, it is in K, for λ small enough it is close to xk, but for it to be feasible A(wk) should be b. However,
A(wk) = (1 − λk)A(xk) + λkb. Not A(xk) is tending to b, so we are in the right direction; the deficit is
b−A(xk). The interesting twist is that instead of taking a convex combination of xk and x, we take a nearby
point xk + δk, where δk ∈ V is such that A(δk) = b−A(xk). Why does such a point exists? Note that both
b = A(x) and A(xk) are in the image of V under A; since the latter set is itself a vector space it contains the
difference of the two vectors, and hence an element in V exists that is mapped to the difference b−A(xk).

Define
wk := (1− λk)(xk + δk) + λkx.

Our claim is the following:

1. A(wk) = b by construction.

2. wk is close enough to xk to ensure that |〈c,wk〉 − 〈c,xk〉| < ε. For this a sufficiently small value λk,
and an index k large enough suffices.

3. wk ∈ K. Note that by convexity (1− λ)xk + λx is in the interior of K. Therefore, there is sufficiently
small ball around this point that is also in K. We only need to ensure that ‖(1−λ)δk‖ is smaller than
the radius of this ball. This can be ensured by picking k large enough, since limk A(xk) = b.

Q.E.D.

We are now in a position to state the various forms of duality for cone programs. But first, what is the
dual of (67)? It is not hard see that the generalization of the analogy from lp is the following:

minimize 〈b,y〉
subject to At(y)− c ∈ K∗, y ∈W.

(68)

We start with the almost obvious version of weak duality:

Theorem 60 (Weak Duality for Cone Programs). If the primal program is limit feasible and the dual program
is feasible, then the limit value of primal is smaller than the value of the dual.

Proof. Since At(y)− c ∈ K∗, it follows that for all x ∈ K, we have

0 ≤ 〈At(bfy)− c,x〉 = At(bfy) • x− 〈c,x〉,

which implies that 〈c,x〉 ≤ 〈At(y),x〉, and from the property of the adjoint 〈c,x〉 ≤ 〈y, A(x)〉 = 〈y,b〉.
Therefore, the limit value of the primal is always less than the value of the dual. Q.E.D.

The second result tells us when the primal limit value matches the dual value:

Theorem 61 (Regular Duality for Cone programs). The dual is feasible and has a finite value Dv iff the
primal is limit feasible and has a limit value Plv. Moreover, the two values are equal Dv = Plv.

The strong duality states that if Slater’s condition is met then primal value and limit value are the same
and hence the dual value and primal value coincide:

Theorem 62 (Strong Duality for Cone Programs). If the primal is interior feasible and has a finite value
then the dual is also feasible and has the same value.

85

14.1.1 Duals in SDP

What is the form of the dual when V = SYMn, K = PSDn, and W = Rm? Suppose the component matrices
of A are given by (A1, . . . , Am). Then what is the adjoint At of A? By definition

〈y, A(X)〉 =
∑
i

yi(Ai •X) =
∑
i

(yiAi) •X = (
∑
i

yiAi) •X.

Therefore, it makes sense to define the adjoint At :=
∑
i yiAi. The more interesting question is what is the

dual of PSDn? The claim is the following:

Lemma 63. PSDn is self-dual.

Proof. For this purpose we use the fact that a real symmetric matrix M is unitary diagionalizable,
i.e., M = U tΛU , where U is an orthonormal matrix (whose columns are eigenvectors of M) and Λ is the
diagonal matrix containing eigenvalues. This means that M can be expressed as a sum of rank-one matrices
M =

∑
i λiuiu

t
i, where ui’s are columns of U . Clearly, the rank-one matrices are psd. Now if M � 0 then it

means that M belongs to the cone generated by rank-one matrices.

1. PSDn ⊆ PSD∗n, i.e., given X,Y � 0, X • Y = Tr(XtY) ≥ 0. Express X =
∑
i λiuiu

t
i, where λi ≥ 0.

Then we have
XtY = XY =

∑
i

λiuiu
t
iY.

We now use the fact that trace is a linear map, and that Tr(AB) = Tr(BA). This gives us

Tr(XY) =
∑
i

λiTr(utiY ui).

But as Y is psd and λi ≥ 0 the terms on the rhs are non-negative.

2. PSD∗n ⊆ PSDn, i.e., an M in the dual is always psd. Since M is in the dual we know that for any
rank-one matrix uut we have, M • uut ≥ 0. But

M • uut = Tr(uutM) = Tr(utMu) = utMu.

Therefore, M � 0.

Q.E.D.

Therefore, the primal and dual sdp’s are

maximize C •X
subject to Ai •X = bi, for i = 1, . . . ,m, where X � 0.

(69)

and

minimize 〈b,y〉

subject to
∑
i

yiAi − C � 0,y ∈ Rm. (70)

86

	Intro
	Some interesting examples of LPs

	Two Forms of LP – Canonical and Equational
	Basic Feasible Solutions and A First Algorithm for LP
	Some Geometry Behind Linear Programming
	Some Results from Convex Geometry

	Dantzig and the Simplex Method
	Brief Biography and Buildup to LP
	The Literature on Linear Inequalities before 1947
	The Simplex in the Simplex Method

	The Simplex Method
	Infeasibility and finding a starting bfs
	Termination and Cycling
	Pivoting Rules
	Bland's rule to avoid cycling

	Worst Case Running Time
	Hirsch's conjecture and the Kalai-Kleitman bound

	Randomized Algorithms
	Notation
	Two Algorithms of Clarkson
	Matousek-Sharir-Welzl Algorithm
	LP-type problems – An abstract framework
	Examples of LP-type problems

	Fundamental Theorem of Linear Inequalities
	Proof 1 – Constructive
	Applications
	Variants – Farkas's Lemma

	Duality in Linear Programming
	Duality – Algebraic Viewpoint
	Duality – Geometric Viewpoint
	Applications
	Max-flow min-cut theorem
	König's Theorem

	The Ellipsoid Method
	Ellipsoids – some fundamentals
	Removing the assumptions

	Weak problems and their reductions
	Solving Weak Violation given Weak Separation

	Interior Point Methods (IPM)
	Constrained Optimization Problems
	Primal-Dual Central Path
	The Algorithm
	Convergence
	Getting the Initial Point

	Combinatorial Optimization
	Matchings
	Perfect Matching and Matching Polytope for Non-bipartite Graphs
	Approximation Algorithms – Vertex Cover
	Approximation Algorithms – Max Cut
	Tightness of the approximation ratio

	Semidefinite Programming
	Cone programming and Duality
	Duals in SDP

