¥

A Combinatorial Interpretation of the Quotient-Difference Algorithm

Xavier Gérard Viennot

LaBRI et CNRS, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France viennot@labri.u-bordeaux.fr

1 Introduction

During the last thirty years, a growing interest for *Padé approximants* appeared in many theoretical and applied fields, such as numerical analysis, theoretical physics, chemistry, electronics, ... as shown in the books Baker [1], Baker, Graves-Morris [2], Brezinski [3], Gilewicz [11]. Padé approximants are strongly connected with *continued fractions* (see for example Henrici [16], Jones, Thron [17], Wall [25]) and *orthogonal polynomials* (see for example Brezinski [4, 5], Draux [7], Van Rossum [22], Wynn [26]). The so-called quotient-difference algorithm, or *qd-algorithm*, plays an important role in these theories. It was originated in Steifel [21] and studied by Rutishauser [19], Henrici [16, 15]. (See also Brezinski [5], Gragg [12]).

The general theory of continued fractions and orthogonal polynomials has been lifted at the combinatorial level by Flajolet [8] and Viennot [23, 24]. The basic structures are the so-called weighted Motzkin paths. This paper follows the ideas of [23]. We show that the qd-algorithm can easily be derived from the geometry of the paths, without involving the usual determinant manipulations. Moreover, the Gessel-Viennot [9, 10] methodology, interpretating determinants as configurations of non-crossing paths, gives without calculus the classical expression of the coefficients of the qd-table in terms of Hankel determinants.

A combinatorial theory of Padé approximants, extending the combinatorial theory of orthogonal polynomials exposed in [8] and [23], has been done by E. Roblet in [18]¹.

The qd-algorithm has been used for the enumeration of certain Young tableaux with bounded height (see Desainte-Catherine, Viennot [6]). These Young tableaux are encoded by certain configurations of non-crossing paths. These configurations can be "compressed" into a unique configuration with fractional weights for the paths. These rational numbers are given by the qd-algorithm and this "compression" of paths is at the basis of the present paper. The product of these fractional weights gives a "hook-length" type formula for the number of such Young tableaux.

A preliminary version of this paper has been written as a technical report from LaBRI, Bordeaux University. A short version is exposed as Annexe B of Roblet's thesis [18].

Very recently, this formula, with some extensions, reappeared in some considerations in statistical physics about directed polymers, vicious walkers and watermelons (see Guttmann, Owczarek, Viennot [14] and Guttmann, Krattenthaler, Viennot [13]).

The qd-algorithm has also been used many times in theoretical physics. See for example Sogo [20] for an application of the qd-algorithm to the solution of the Toda molecule equation.

2 Weighted Motzkin and Dyck paths

We briefly recall a few basic definitions and propositions of [8] and [23].

A Motzkin path is a path $w = (s_0, \dots, s_n)$ (i.e. a sequence of points) of $\mathbb{N} \times \mathbb{N}$ such that the starting point is $s_0 = (0,0)$, the ending point is $s_n = (n,0)$ and each "elementary step" (s_i, s_{i+1}) is North-East, East or South-East (see figure 1). The length of w is n and denoted by |w|. A Motzkin path having only North-East or South-East steps is called Dyck path.

Fig. 1. A weighted Motzkin path, $v(w) = b_0 b_1^2 \lambda_1^2 \lambda_2$.

Let K be a field, and let $b = \{b_k\}_{k \geq 0}$, $\lambda = \{\lambda_k\}_{k \geq 1}$ be two sequences of K. Each elementary step (s_i, s_{i+1}) is weighted by b_k (resp. λ_k , resp. 1) iff (s_i, s_{i+1}) is an East (resp. South-East, resp. North-East) step at level k (i.e. $s_i = (i, k)$). The weight (or valuation) v(w) of the path w is the product of the valuations of elementary steps. We define

$$\mu_n = \sum_{|w|=n} v(w),\tag{1}$$

where the summation is over all Motzkin paths of length n. We introduce the generating function of weighted Motzkin paths (according to the valuations b and λ).

$$J(t;b,\lambda) = \sum_{n>0} \mu_n t^n. \tag{2}$$

In the case of Dyck paths (i.e. $b_k = 0$ for every $k \ge 0$) we will use the notation

$$S(t;\lambda) = \sum_{w} v(w) t^{|w|/2}. \tag{3}$$

where the summation is over weighted Dyck paths. Note that

$$J(t;0,\lambda) = S(t^2;\lambda).$$

From direct paths consideration, one can easily see that there exist at most one pair (b,λ) of sequences (resp. a sequence λ) such that $J(t;b,\lambda)$ (resp. $S(t;\lambda)$) is a given generating function $\sum_{n\geq 0} \mu_n t^n$. The coefficients b_k , λ_k can be computed from the paths as soon as $\lambda_1, \dots, \lambda_{k-1}$ are $\neq 0$ (see Viennot [23], Chapitre IV).

The notation J (resp. S) comes from the fact that the corresponding generating function has the following expansion into Jacobi (resp. Stieltjes) type continued fraction (see [8, 23]).

$$J(t;b,\lambda) = \frac{1}{1 - b_0 t - \frac{\lambda_1 t^2}{1 - b_1 t - \frac{\lambda_2 t^2}{1 - b_2 t - \frac{\lambda_3 t^2}{\cdot \cdot \cdot}}}$$
(4)

$$S(t;\lambda) = \frac{1}{1 - \frac{\lambda_1 t}{1 - \frac{\lambda_2 t}{1 - \frac{\lambda_3 t}{1$$

Let $\phi: K[X] \to K$ be the linear functional defined by $\phi(x^n) = \mu_n$, $n \ge 0$. The monic polynomials defined by the recurrence

$$P_{k+1}(x) = (x - b_k)P_k(x) - \lambda_k P_{k-1}(x), \ P_0 = 1, \ P_1 = x - b_0,$$
 (5)

are orthogonal with respect to the scalar product $\phi(PQ)$.

These relations between weighted Motzkin paths and continued fractions and orthogonal polynomials will not be used in this paper. The qd-algorithm can be viewed as an algorithm for computing the expansion into Stieltjes continued fraction (4) of a given generating function $\sum_{n\geq 0} \mu_n t^n = S(t;\lambda)$. For our purpose, it is convenient to introduce a functional defined for almost all sequences. We propose the name "qd-transform".

3 The qd-transform

Let $\gamma = \{\gamma_k\}_{k\geq 1}$ be a sequence of elements of the field K. The *qd-transform* $\gamma' = \{\gamma_k'\}_{k\geq 1}$ is the unique sequence (if such one exists) such that

$$S(t;\gamma) = 1 + \gamma_1 t S(t,\gamma'); \tag{6}$$

In general, such a sequence will exist and will be denoted by $\gamma' = qd(\gamma)$.

Example 1. For $\gamma_k = k$, then γ' is the sequence: $\gamma'_k = k$ if k is even, $\gamma'_k = k + 2$ if k is odd.

Example 2. For $\gamma_k = 1$, then $\gamma'_{2k} = k/(k+1)$, $(k \ge 1)$, $\gamma'_{2k-1} = (k+1)/k$, $(k \ge 1)$, that is $\gamma' = (2, 1/2, 3/2, 2/3, 4/3, 3/4, \cdots)$.

Example 3. Let $\gamma_k = [k/2]$ (smallest integer $\geq k/2$). Then $\gamma_k' = k/2$ if k is even, $\gamma_k' = [k/2] + 1$ if k is odd, that is $\gamma = (1, 1, 2, 2, 3, 3, \cdots)$ and $\gamma' = (2, 1, 3, 2, 4, 3, \cdots)$

Example 4. Let $\gamma = (1, 2, 1, 2, \cdots)$ that is $\gamma_k = 1$ if k is odd, $\gamma_k = 2$ if k is even. Then $\gamma' = (3, 2/3, 7/3, 6/7, 15/7, 14/15, 31/15, \cdots)$ that is $\gamma'_{2k} = \frac{2^{k+1}-2}{2^{k+1}-1}$, $\gamma'_{2k-1} = \frac{2^{k+1}-1}{2^k-1}$ $(k \ge 1)$.

These four examples follow immediately from the

Proposition 5. Let $\gamma = (\gamma_k)_{k \ge 1}$ and $\gamma' = (\gamma'_k)_{k \ge 1}$ be two sequences of K. Then $\gamma' = qd(\gamma)$ iff we have the following relations for every $k \ge 0$:

$$\gamma_{2k+1} + \gamma_{2k+2} = \gamma'_{2k} + \gamma'_{2k+1}, \ \gamma_{2k}\gamma_{2k+1} = \gamma'_{k-1}\gamma'_{2k}. \tag{7}$$

Using this relation, one can compute by recurrence the coefficients of γ' from the sequence γ as soon as $\gamma'_k \neq 0$ for $k \geq 1$. The proof of proposition 5 is based upon contraction of paths.

4 Contraction of paths

The idea, inspired from the renormalisation group in physics, is to "change the scale" of Dyck paths. We follow such paths w by successive jumps of two consecutive elementary steps. We have two types of such contraction, depending upon starting at the first (contraction T) or second (contraction T^+) vertex of the path w.

a) Contraction T

If w is a Dyck path of length 2n, T(w) is a Motzkin path of length n, as shown on figure 2. From the valuation $\gamma = (\gamma_k)_{k \geq 1}$, we define the two valuations b and λ by

$$b_k = \gamma_{2k} + \gamma_{2k+1}, \ \lambda_k = \gamma_{2k-1}\gamma_{2k}.$$
 (8)

Let η be a Motzkin path weighted by the valuations b and λ . We have the following relation (just look at figure 2!)

$$v(\eta) = \sum_{w} v(w), \tag{9}$$

where the summation is over all weighted (according to γ) Dyck paths w such that $T(w) = \eta$. Note that the number of such paths is 2^m where m is the number of East steps of the path η .

Fig. 2. The contraction T.

From (9) we deduce

$$S(t;\gamma) = J(t;b,\lambda). \tag{10}$$

b) Contraction T^+

Starting from the second vertex of the Dyck path w of length 2n, we define the Motzkin path $T^+(w)$ of length n-1, as shown in figure 3.

Fig. 3. The contraction T^+ .

Let b^+ and λ^+ be the valuations defined by

$$b_k^+ = \gamma_{2k+1} + \gamma_{2k+2}, \ \lambda_k^+ = \gamma_{2k}\gamma_{2k+1}. \tag{11}$$

With the analogue summation of (9), we have

$$\gamma_1 v(\eta) = \sum_{w/T^+(w)=n} v(w), \tag{12}$$

which implies

$$S(t;\gamma) = 1 + \gamma_1 t J(t;b^+,\lambda^+). \tag{13}$$

Proof (Proof of Proposition 5). Combining (6), (10) and (13) we deduce that the sequences b', λ' associated to γ' by the relation (8) is the same as the sequences b^+ , λ^+ associated to γ' by (11). We get (7).

5 The qd-algorithm

The "qd-algorithm" is obtained by applying recursively the qd-transform to a sequence γ .

Let $\gamma = \gamma^{\{0\}} = \{\gamma_k\}_{k\geq 1}$ and $S(t;\gamma) = \sum_{n\geq 0} \mu_n t^n$ be the generating function defined by (3). Denoting by $\gamma^{\{m\}} = \{\gamma_k^{\{m\}}\}_{k\geq 1}$ the sequence $\gamma^{(m)} = qd^{(m)}(\gamma)$, we have successively

$$S(t;\gamma) = 1 + \gamma_1^{(0)} t S(t;\gamma^{(1)}),$$

$$S(t;\gamma) = 1 + \gamma_1^{(0)} t + \gamma_1^{(0)} \gamma_1^{(1)} t^2 S(t;\gamma^{(2)}),$$

$$\dots,$$

$$S(t;\gamma) = 1 + \gamma_1^{(0)} t + \dots + \gamma_1^{(0)} \gamma_1^{(1)} \dots \gamma_1^{(n-1)} t^n S(t;\gamma^{(n)}).$$
(14)

385

Thus
$$\mu_n = \gamma_1^{(0)} \gamma_1^{(1)} \cdots \gamma_1^{(n-1)}$$
 and

$$\gamma_1^{(n)} = \mu_{n+1}/\mu_n, \ n \ge 0. \tag{15}$$

From (7), the coefficients $\gamma_k^{(n)}$ are related by the relations

$$\gamma_{2k+1}^{(n)} + \gamma_{2k+2}^{(n)} = \gamma_{2k}^{(n+1)} + \gamma_{2k+1}^{(n+1)}, \ \gamma_{2k}^{(n)} \gamma_{2k+1}^{(n)} = \gamma_{2k-1}^{(n+1)} \gamma_{2k}^{(n+1)}. \tag{16}$$

If the moments μ_n are given, we can construct recursively the whole table from the initial condition (15) (in the case where no division by 0 occurs). This is the classical form of the qd-algorithm. The rules (16) are called the *Rhombus rules*.

Usually the following more convenient notations are used:

$$\gamma_{2k}^{(n)} = e_k^{(n)}, \ \gamma_{2k+1}^{(n)} = q_{k+1}^{(n)}. \tag{17}$$

The Rhombus rule (16) becomes

$$q_{k+1}^{(n)} + e_{k+1}^{(n)} = q_{k+1}^{(n+1)} + e_k^{(n+1)}, \ e_k^{(n)} q_{k+1}^{(n)} = e_k^{(n+1)} q_k^{(n+1)}, \tag{18}$$

with initial conditions

$$e_0^{(n)} = 0, \ q_1^{(n)} = \frac{\mu_{n+1}}{\mu_n} \text{ for every } n \ge 0.$$
 (19)

This is visualized on figure 4, called the qd-table

Fig. 4. The qd-table.

Example 6.

 μ_n Schröder number (generalized bracketing problem)

Fig. 5. (Table 1.)

For the first two examples, the reader will easily guess all the coefficients of the table (which are integers). A general formula for the coefficients corresponding to Catalan numbers will be given below.

Remark 7. The relation (14) can also be written in the following form:

$$\frac{\mu_{n+i}}{\mu_n} = \sum_{|w|=2i} v^{(n)}(w),\tag{20}$$

where the summation is over all Dyck paths of length 2i, weighted by the valuation $\gamma^{(n)}$. This is the "compression" of paths referred to in the introduction: Dyck paths of length 2n + 2i are "compressed" into weighted paths of length 2i.

6 Hankel determinants

Let $\mu = {\{\mu_n\}_{n\geq 1}}$ be a sequence of elements of the field K. For $0 \leq \alpha_1 < \cdots < \alpha_p$ and $0 \leq \beta_1 < \cdots < \beta_p$, the Hankel determinant $H\begin{pmatrix} \alpha_1, \dots, \alpha_p \\ \beta_1, \dots, \beta_p \end{pmatrix}$ is the determinant of the $p \times p$ matrix with general term $\mu_{\alpha_i + \beta_j}$, for $1 \leq i, j \leq p$. From the general methodology of Gessel, Viennot [9, 10] one deduce the following interpretation (see also [23], Ch. IV).

$$H\begin{pmatrix} \alpha_1, \cdots, \alpha_p \\ \beta_1, \cdots, \beta_p \end{pmatrix} = \sum_{(w_1, \cdots, w_p)} v(w_1) \cdots v(w_p), \tag{21}$$

where the summation is over all configurations $\theta = (w_1, \dots, w_p)$ of Dyck paths such that: (i) for any $i, 1 \le i \le p$, the path w_i goes from $A_i = (-2\alpha_i, 0)$ to $\dot{B}_i' = (2\beta_i, 0)$ and (ii) the paths w_i are two by two disjoint (no common vertex).

One of the configurations interpretating the Hankel determinant $H_{(0,1,3)}^{(1,3,4)}$ is displayed in figure 6.

Fig. 6. The Hankel determinant $H_{0,1,3}^{(1,3,4)}$.

Notation. $H_k^{(n)} = H_{n,n+1,\dots,n+k-1}^{(n,n+1,\dots,n+k-1)}$.

If some confusions are possible we will also write $H_k^{(n)}(\mu)$. For $\mu=\{\mu_n\}_{n\geq 0}$, we define $\mu^{(n)}=\{\mu_i^{(n)}\}_{i\geq 0}$ and $\overline{\mu}^{(n)}=\{\overline{\mu}_i^{(n)}\}_{i\geq 0}$ by $\mu_i^{(n)}=\mu_{n+i}$ and $\overline{\mu}_i^{(n)}=\mu_{n+i}/\mu_n$ for $i,n\geq 0$. With (20), we can state the following relations

$$H_k^{(n)}(\mu) = H_k^{(0)}(\mu^{(n)}), \ H_k^{(n+1)}(\mu) = H_k^{(1)}(\mu^{(n)}),$$

$$H_k^{(n)}(\mu) = (\mu_n)^k H_k^{(0)}(\overline{\mu}^{(n)}),$$
 (22)

$$H_k^{(n+1)}(\mu) = (\mu_n)^k H_k^{(1)}(\overline{\mu}^{(n)}). \tag{23}$$

The Hankel determinant of the right-hand side of (22) (resp. (23)) is interpretated by a single configuration of non-crossing paths, as shown on figure 7 (resp. 8). We have thus defined a kind of "compression" of configurations of non-crossing Dyck paths.

Fig. 7. The Hankel determinant $H_k^{(0)}(\lambda)$.

Fig. 8. The Hankel determinant $H_k^{(1)}(\lambda)$.

For any valuation λ , the geometry of the configurations displayed on figures 7 and 8 shows that the ratios $H_k^{(0)}(\lambda)/H_{k-1}^{(0)}(\lambda)$ and $H_k^{(1)}(\lambda)/H_{k-1}^{(1)}(\lambda)$ are respectively the weight of the longest path of each configuration.

With the notations of Section 5, we take $\lambda = \gamma^{(n)}$. Remark that (14) or (20) can also be written: $S(t; \gamma^{(n)}) = \sum_{i \geq 0} \overline{\mu}_i^{(n)} t^i$, for every $n \geq 0$.

With (22) and (23) we deduce

$$\frac{H_k^{(n)}(\mu)}{H_{k-1}^{(n)}(\mu)} = \mu_n \gamma_1^{(n)} \gamma_2^{(n)} \cdots \gamma_{2k-2}^{(n)}, \quad \frac{H_k^{(n+1)}(\mu)}{H_{k-1}^{(n+1)}(\mu)} = \mu_n \gamma_1^{(n)} \gamma_2^{(n)} \cdots \gamma_{2k-1}^{(n)}. \quad (24)$$

With the notations (17) we get back the classical formulae for the coefficients of the qd-table

$$q_k^{(n)} = \frac{H_k^{(n+1)} H_{k-1}^{(n)}}{H_{k-1}^{(n+1)} H_k^{(n)}}, \ e_k^{(n)} = \frac{H_{k+1}^{(n)} H_{k-1}^{(n+1)}}{H_k^{(n)} H_k^{(n+1)}}, \tag{25}$$

We also have the two corollaries (where we suppose $\mu_n \neq 0$):

Corollary 8. Starting from the sequence $\{\mu_n\}_{n\geq 0}$, the qd-algorithm can be performed iff $H_k^{(n)}(\mu) \neq 0$ for every $n, k \geq 0$.

Corollary 9. The qd-transform of the sequence γ exists iff $H_k^{(1)}(\mu)$ and $H_k^{(2)}(\mu)$ are $\neq 0$ for every $k \geq 0$ (with $\mu = (\mu_n)_{n \geq 0}$ defined by (1)).

7 Application to enumeration

This section results from a joined work with M. Desainte-Catherine.

In the Young tableaux enumerative problem of Desainte-Catherine, Viennot [6], we need to compute the qd-table in the case of the Catalan numbers, that is $\mu_n = C_n = \frac{1}{n+1} \binom{2n}{n}$.

Proposition 10. The coefficients of the qd-table corresponding to the Catalan numbers $\mu_n = C_n$ are given by

$$q_k^{(n)} = \frac{(2n+2k-1)(2n+2k)}{(n+2k-1)(n+2k)}, \ e_k^{(n)} = \frac{2k(2k+1)}{(n+2k)(n+2k+1)}. \tag{26}$$

Proof. We just have to check that these numbers satisfy the rhombus rules (18). We have successively

$$\begin{split} e_k^{(n)}q_{k+1}^{(n)} &= \frac{2k(2k+1)(2n+2k+1)(2n+2k+2)}{(n+2k)(n+2k+1)(n+2k+1)(n+2k+2)} = e_k^{(n+1)}q_k^{(n+1)} \,. \\ q_{k+1}^{(n)} + e_{k+1}^{(n)} &= \frac{(2n+2k+1)(2n+2k+2)}{(n+2k+1)(n+2k+2)} + \frac{(2k+2)(2k+3)}{(n+2k+2)(n+2k+3)}, \\ &= \frac{4n^3+n^2(16k+18)+n(24k^2+52k+26)+2(2k+1)(2k+2)(2k+3)}{(n+2k+1)(n+2k+2)(n+2k+3)}, \\ &= \frac{(2n+2k+3)(2n+2k+4)}{(n+2k+2)(n+2k+3)} + \frac{2k(2k+1)}{(n+2k+1)(n+2k+2)}, \\ &= q_{k+1}^{(n+1)} + e_k^{(n+1)} \,. \Box \end{split}$$

Corollary 11. The number of non-crossing configurations of k Dyck paths $\eta = (w_1, w_2, \dots, w_k)$ such that for $i, 1 \le i \le k$, w_i goes from the point (-2i + 2, 0) to the point (2n + 2i - 2, 0) is

$$d_{n,k} = \prod_{1 \le i \le j \le n} \frac{i+j+2k}{i+j}.$$

Proof. From the above considerations, this number is the $k \times k$ Hankel determinant (for $\mu_n = C_n$)

$$H_k^{(n)} = (C_n)^k (q_1^{(n)} e_1^{(n)})^{k-1} (q_2^{(n)} e_2^{(n)})^{k-2} \cdots (q_{k-1}^{(n)} e_{k-1}^{(n)}), \tag{27}$$

with $q_k^{(n)}$ and $e_k^{(n)}$ defined by (26). We have successively

$$C_n q_1^{(n)} e_1^{(n)} q_2^{(n)} e_2^{(n)} \cdots q_{k-1}^{(n)} e_{k-1}^{(n)} = \frac{(2k-1)!(2n+2k-2)!}{(n+2k-1)!(n+2k-2)},$$

$$d_{n,k}/d_{n,k-1}=\frac{(2k+n)(2k+n+1)\cdots(2k+2n-2)}{2k(2k+1)\cdots(2k+n-2)},$$

$$d_{n,k}/d_{n,k-1} = H_k^{(n)}/H_{k-1}^{(n)}, \ (n \ge 1, k \ge 2). \tag{28}$$

With
$$d_{n,1} = C_n = H_1^{(n)} \ (n \ge 1)$$
. We deduce $H_k^{(n)} = d_{n,k}$.

The formula of corollary 11 reappeared in Physics in the context of directed polymers with watermelons topoly in the presence of a wall. Extensions are given in Guttmann, Krattenthaler, Viennot [13]. This work follows Guttmann, Owczarek, Viennot [14].

Acknowledgement. Many thanks to A. Zemmari for the typing of this paper.

References

- 1. G. A. Baker. Essentials of Padé approximants. Academic Press, New York, 1975.
- G. A. Baker and P. Graves-Morris. Padé approximants. (vols 1 and 2). Addison-Wesley, Reading, Mass., 1981. Encyclopedia of Math. and its Applications, vols 13 and 14.

- C. Brezinski. Padé approximants and orthogonal polynomials. In Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), pages 3-14. Academic Press, New York, 1977.
- 4. C. Brezinski. Padé-type approximation and general orthogonal polynomials. Birkhäuser Verlag, Basel, 1980.
- C. Brezinski. Outlines of Padé approximation. In Computational aspects of complex analysis (Braunlage, 1982), pages 1-50. Reidel, Dordrecht, 1983.
- M. de Sainte-Catherine and G. Viennot. Enumeration of certain Young tableaux with bounded height. In Combinatoire énumérative (Montréal, Queébec), 1985, volume 1234 of Lecture Notes in Math., pages 58-67. Springer, Berlin, 1986.
- A. Draux. Polynômes orthogonaux formels. Applications. PhD thesis, Université de Lille, 1981.
- 8. P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.
- I. Gessel and G. Viennot. Binomial determinants, paths, and hook length formulae. Adv. in Math., 58(3):300-321, 1985.
- I. Gessel and G. Viennot. Determinants, paths, and plane partitions. preprint, 1989.
- 11. J. Gilewicz. Approximants de Padé. Lecture Notes in Maths, 667, 1978.
- 12. W. B. Gragg. The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev., 14:1-16, 1972.
- 13. A. J. Guttmann, C. Krattenthaler, and X. G. Viennot. Vicious walkers and Young tableaux II: with walls. in preparation.
- A. J. Guttmann, A. L. Owczarek, and X. G. Viennot. Vicious walkers and Young tableaux I: without walls. J. Phys. A, 31(40):8123-8135, 1998.
- P. Henrici. Applied and computational complex analysis. Wiley-Interscience [John Wiley & Sons], New York. vol 1, 1974 and vol 2, 1976.
- P. Henrici. The quotient-difference algorithm. Nat. Bur. Standards Appl. Math. Ser. no., 49:23-46, 1958.
- W. B. Jones and W. J. Thron. Continued fractions. Analytic theory and applications. Addison-Wesley, Reading, Mass., 1980.
- E. Roblet. Une interprétation combinatoire des approximants de Padé. PhD thesis, Université du Québec à Montréal, 1994. Publications du LaCIM, vol 17.
- H. Rutishauser. Der Quotienten-Differenzen Algorithmus. Birkhäuser Verlag, Basel, 1957.
- K. Sogo. Excited states of Calogero-Sutherland-Moser model—classification by Young diagrams. J. Phys. Soc. Japan, 62(7):2187-2191, 1993.
- E. L. Stiefel. Kernel polynomials in linear algebra and their numerical applications. Nat. Bur. Standards Appl. Math. Ser., 1958(49):1-22, 1958.
- H. Van Rossum. A theory of orthogonal polynomials based on the Padé table. PhD thesis, University of Utrecht, 1953.
- G. Viennot. Une théorie combinatoire des polynômes orthogonaux généraux. Lecture notes, 217p, Université du Québec à Montréal, 1984.
- G. Viennot. A combinatorial theory for general orthogonal polynomials with extensions and applications. In Orthogonal polynomials and applications (Bar-le-Duc, 1984), pages 139-157. Springer, Berlin, 1985.
- 25. H. S. Wall. Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York, N. Y., 1948.
- P. Wynn. A general system of orthogonal polynomials. Quart. J. Math. Oxford Ser. (2), 18:81-96, 1967.