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1 Imtroduction

During the last thirty years, a growing interest for Padé approximaents appeared
in many theoretical and applied fields, such as numerical analysis, theoretical
physics, chemistry, electronics, :-- as shown in the books Baker (1], Baker,
Graves-Morris (2], Brezingki [3], Gilewicz [11]. Padé approximants are strongly
connected with continued fractions (see for example Henrici [16], Jones, Thron
[17]), Wall {25]) and orthogonal polynomiaels (see for example Brezinski [4, 5],
Draux [7], Van Rossum [22], Wynn [26}). The so-called quotient-difference algo-
rithm, or gd-aigorithm, plays an important role in these theories. It was origi-
nated in Steifel [21] and studied by Rutishauser [19], Henrici [16,15]. (See also
Brezinski [5], Gragg [12]).

The general theory of continued fractions and orthogonal polynomials has
been lifted at the combinatorial level by Flajolet [8] and Viennot [23, 24]. The
basic structures are the so-called weighted Motzkin paths. This paper follows the
ideas of [23]. We show that the qd-algorithm can easily be derived from the
geometry of the paths, without involving the usual determinant manipulations.
Moreover, the Gessel-Viennot [9, 10] methodology, interpretating determinants
as configurations of non-crossing paths, gives without calculus the classical ex-
pression of the coefficients of the qd-table in terms of Hankel determinants.

A combinatorial theory of Padé approximants, extending the combinatorial
theory of orthogonal polynomials exposed in [8] and [23], has been done by E.
Roblet in [18]*.

The gd-algorithm has been used for the enumeration of certain Young ta-
bleaux with bounded height (see Desainte-Catherine, Viennot [6]). These Young
tableaux are encoded by certain configurations of non-crossing paths. These
configurations can be “compressed” into a unique configuration with fractional
weights for the paths. These rational numbers are given by the qd-algorithm and
this “compression” of paths is at the basis of the present paper. The product of
these fractional weights gives a “hook-length” type formula for the number of
such Young tableaux.

! A preliminary version of this paper has been written as a technical report from
LaBRI, Bordeaux University. A short version is exposed as Annexe B of Roblet’s
thesis [18].
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Very recently, this formula, with some extensions, reappeared in some consider-
ations in statistical physics about directed polymers, vicious walkers and water-
melons (see Guttmann, Owczarek, Viennot [14] and Guttmann, Krattenthaler,
Viennot [13]).

The qd-algerithm has also been used many times in theoretical physics. See
for example Sogo [20} for an application of the qd-algorithm to the solution of
the Toda molecule equation.

2 Weighted Motzkin and Dyck paths

We briefly recall a few basic definitions and propositions of [8] and [23].

A Motzkin pathis a path w = (s, - - , sa) {i.e. a sequence of points) of Nx N
such that the starting point is s¢ = (0, D), the ending point is s, = (n,0) and
each "elementary step” (s, s;11) is North-East, East or South-East (see figure 1).
The length of w is n and denoted by |w|. A Motzkin path having only North-East
or South-East steps is called Dyck path.

valuation
1
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k
Y Ak
3
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0

Fig.1. A weighted Motzkin path, v{w) = bedIAI 2.

Let K be a field, and let b = {bg}r>0, A = {Ar}4»1 be two sequences of K.
Each elementary step (8;, 8441) is weighted by by (resp. A, resp. 1) iff (s, 5i41)
is an East (resp. South-East, resp. North-East) step at level k& (i.e. 8; = (i, k)).
The weight (or valuation) v(w) of the path w is the product of the valuations of
elementary steps. We define

Hn = Z U{w)u (1}
|lwj=n

where the summation is over all Motzkin paths of length n. We introduce the
generating function of weighted Motzkin paths (according to the valuations b
and A).



in Proc. FPSAC’00, Moscow, D.Krob, A.A Mikhalev and A.V Mikhalev eds, Springer, 2000, pp 379-390

381

J(E6,0) =3 pnt™ : (2)

n>0

In the case of Dyck paths (i.e. b = 0 for every k > 0) we will use the notation

S(t:2) = wiw)thel/2, (3)

wr

where the summation is over weighted Dyck paths. Note that
J(£;0,A) = S(6%; A).

From direct paths consideration, one can easily see that there exist at most
one pair (b, A) of sequences {resp. a sequence A) such that J (t; b, A} (resp. S(t; X))
is a given generating function 37 ., pat®. The coefficients by, Ax can be com-
puted from the paths as soon ag Ay, - .Ag_; are # 0 (see Viennot {23], Chapitre
V). -

The notation J (resp. §) comes from the fact that the corresponding gen-

erating function has the following expansion into Jacobi (resp. Stieltjes) type
continued fraction (see [8, 23]).

1
J(t; b, 0) = W (4)
1 — bot — e
1—Ht - 2 P
1—bot — =
1
S(t;A) = o
1 L
R

Let ¢ : K[X] — K be the linear functional defined by #(z™) = ua, n > 0.
The monic polynomials defined by the recurrence

Pk+1(I) = (.’I: pe? bk}Pk(;r) — /\kPk—l(x}: Pﬂ = 17 Pl =& - bﬂ'! (5)

are orthogonal with respect to the scalar product ¢( PQ}.

These relations between weighted Motzkin paths and continued fractions and
orthogonal polynomials will not be used in this paper. The qd-algorithm can
be viewed as an algorithm for computing the expansion into Stieltjes continued
fraction (4) of a given generating function 2 om0 Ent™ = S(¢; A). For our purpose,
it 1s convenient to introduce a functional defined for almost all sequences. We
propose the name “gd-transform”.
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3 The qd-transform

Let v = {7 }t>1 be a sequence of elernents of the field K. The gd-transform
7" = {7, }x>1 is the unique sequence (if such one exists) such that

S(t;v) =1 +7t8(,7'); (6)
In general, such a sequence will exist and will be denoted by +' = gd{v).

Ezample 1. For v = k, then +' is the sequence: v, = kif kiseven, 3y =k + 2
if & is odd.

Erample 2. For 1 = 1, then vy, = k/(k+ 1), (K = 1), 75, = (kB + 1)/k,
(k> 1), that is o' = (2,1/2,3/2, 2/3,4/3,3/4,--).

Example 3. Let vy = [k/2] (smallest integer > k/2). Then v, = kf2 if k is
even, v, = [k/2] + 1 if ¥ is odd, that is v = (1,1,2,2,3,8,--+) and o' =
(2?11332:4131"')

Example {. Let v = (1,2,1,2,---) that is 7 = 1 if k is odd, 7 = 2 if & is
even. Then 7' = (3,2/3,7/3,6/7,15/7,14/15,31/15, ) that is 7}, = Zep=2,

R4l _
Yok = g (k> 1),

These four examples follow immediately from the

Proposition 5. Let v = (v a1 and ¥ = (v, )a>1 be two sequences of K. Then
¥ = gd(~y) iff we have the following relations for every k > 0;

Yok+1 T Y242 = Yo + ’Y-Ek-i-la VokVak+1 = Vi1 Vare (7)

Using this relation, one can compute by recurrence the coefficients of 4’ from
the sequence vy as soon as v, # 0 for k > 1. The proof of proposition 5 is based
upon contraction of paths.

4 Contraction of paths

‘The idea, inspired from the renormalisation group in physics, is to “change the
scale” of Dyck paths. We follow such paths w by successive jumps of two consec-
utive elementary steps. We have two types of such contraction, depending upon
starting at the first {contraction T) or second (contraction T') vertex of the
path w.
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a) Contraction T

If w is & Dyck path of length 2n, T'(w) is a Motzkin path of length n, as shown

on figure 2. From the valuation v = (v, ) &>1, we define the two valuations b and
A by

b = Yor + Yakaly Ak = Yor—17Vok. (8)

Let 9 be a Motzkin path weighted by the valuations b and A. We have the
tollowing relation (just look at figure 2!)

v(n) = vlw), (9)

where the summation is over all weighted (according to ) Dyck paths w such
that T'{w) = 5. Note that the number of such paths is 2™ where m is the number
of East steps of the path #.

level 2&

level 2k

level &

Ak = YarTek -1 -—O—-—Ol—evel k
_______ :; " br = Yor +2k—1

Fig. 2. The contraction 7.

From (9) we deduce
S{t;y) = J(t; 6, A). (10)

b) Contraction T+

Starting from the second vertex of the Dyck path w of length 2n, we define the
Motzkin path T (w) of length n — 1, as shown in figure 3.
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Fig. 3. The contraction 7.

Let b1 and At be the valuations defined by

b = qaes1 + Takta, AL = YakYoks1. {(11)
With the analogue summation of (9), we have
no(p) = > wlw), {12)
w/T*{w)=n
which implies
S(ty) = 1+ mtJ{t; 47, 4%). (13)

Proof (Proof of Proposition 5). Combining (6), {10) and (13) we deduce that the
sequences b', ' associated to 7' by the relation (8) is the same as the sequences
bT, AT associated to ' by (11). We get (7). O

5 The qd-algorithm

The “qd-algorithm” is obtained by applying recursively the gd-transform to a
sequence .

Let v = +1% = {4 bex1 and S{t;v) = En20 i#nt™ be the generating function
defined by (3). Denocting by 4{™} = {q«im}}kal the sequence (™ = gdt™) (),
we have successively

S(t:7) = 141”18(57"),
Sty =1+ 90t + 472" 84,

Sy =14+90¢ 4+ 401 Gl g )y, (14)



in Proc. FPSAC’00, Moscow, D.Krob, A.A Mikhalev and A.V Mikhalev eds, Springer, 2000, pp 379-390

385

Thus pin = ¥4V c* 1 and

T}n] = ,Un+1flﬂm n 2> 0. (15)

From (7), the coefficients ﬁn] are related by the relations

Yok HWre = Tn ) AW, WA, =l (g
If the moments u, are given, we can construct recursively the whole table
from the initial condition (15) (in the case where no division by 0 oceurs), This
is the classical form of the qd-algorithm. The rules (16) are called the Rhombus
rules.
Usually the following more convenient notations are used:

i =™, W, =g (17)

The Rhombus rule {16) becomes

qiﬂ + eﬁj; = J(.:T-ﬁl] * E?H)’ ein)qﬁ)] = ej{cn+1]qf‘:cﬂ+l): (18)

with initial conditions

{r) {n) _ Hnp41
€9 L S

=0, g for every n > 0, (19}

Hn

This is visualized on figure 4, called the qd-table

rhombus rules
e g
FOP.L 2
g e T 7 ¢ Q\:}" €
q \\ / :
G;o) =k =2 e g

W

/\ gq:g'q" +G=G'+e'
0= eol] el® Ao

Fig. 4. The gd-table.
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Ezample 6.

PO
14/ zsfls/\"-ﬁ’/
itn = Ca = 7 (7)) (Catalan number)

tn Schrider number (generalized bracketing problem)
Fig. 5. (Table 1.)

For the first two examples, the reader will easily guess all the coefficients of
the table (which are integers). A general formula for the coefficients corresponding
to Catalan numbers will be given below.

Hemark 7. The relation (14) can also be written in the following form:

Hnti _ Z U(")(w), (20)

Hro e

where the surnmation is over all Dyck paths of length 2i, weighted by the valua-
tion ¥, This is the “compression” of paths refered to in the introduction: Dyck
paths of length 2n + 2 are “compressed” into weighted paths of length 2i.

6 Hankel determinants

Let 4t = {pin }n>1 be a sequence of elements of the field K. For0 < a; < +++ < a,
and 0 < B < -+ < §p, the Hankel determinant H(;i:.sﬁ) is the determinant
of the p x p matrix with geperal term pig,+3,, for 1 <, 7 < p. From the general
methodology of Gessel, Viennot [9, 10] one deduce the following interpretation
(see also [23], Ch. TV).

¥y, -, 0
H B TR S
(ﬁl? T ?BP) {w'l cee 1P )U(u 1) U(wp]’ (21:]

where the summation is over all configurations & = (wy,- - ,w,) of Dyck paths
such that: (i) for any ¢, 1 < ¢ < p, the path w; goes from A; = (—2a;,0) to
B;"= (28;,0) and (ii) the paths w; are two by two disjoint (no common vertex).
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One of the configurations interpretating the Hankel determinant H (34) is
digplayed in figure 6. Y

A Bz
Ei™ Fa? Fi)
-6 -4 -2 0 2 1 6

Fig. 6. The Hankel determinant H(323).

P {n) _ AR+l ntk—1
Nﬂtatiﬂﬂ. Hk — H(n,n+l,--- ’ﬂ_i_k_]_)‘

If some confusions are possible we will also write H,'E")(p). For p = {ptn }n>o0,
we define ,u(“) - {ﬂgn)}izu and ,l_i{n) = {ﬁ{inj},;go by ;.&Enl = Un+i and ,U.in) =
inyi/pn for i,n > 0. With (20), we can state the following relations

HP () = B0, B () = B (),
H{" (1) = (un ) HO (™), (22)

HM Y () = (u) b HY (@), (23)

The Hankel determinant of the right-hand side of (22) (resp. (23)) is in-
terpretated by a single configuration of non-crossing paths, as shown on figure
7 (resp. 8). We have thus defined a kind of “compression” of configurations of
non-crossing Dyck paths.

Fig. 7. The Hankel determinant H,EO}(A).
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Fig. 8. The Hankel determinant HS"(A).

For any valuation A, the geometry of the configurations displayed on figures
7 and 8 shows that the ratios HO(A)/H (0 and ALVA/HI, (M) are
respectively the weight of the longest path of each configuration.

With the notations of Section §, we take A = ("), Remark that (14) or (20)
can also be written: S(t;+™) = Y10 E’i’ﬂt", for every n > 0.

With (22) and (23} we deduce

HM () wom m He ) (m_(n) ()
i, < HaT T Tekey i, 2 Heh et Tak—ae (24)
HM, (1) HID ()

With the notations (17) we get back the classical formulae for the coefficients of
the gd-table

+1 n n +1
o™ = B ARl BELEDTY
k

= Dy By = — ey (25)
F D g T g gl

We also have the two corollaries (where we suppose un # 0):

Corollary 8. Sterting from the sequence {un }n>0, the gd-algorithm can be per-
formed iff H;E")(,u) # 0 for every n, k > 0.

Corollary 9. The gd-transform of the sequence v exists iff H,El}(p) and Hf](p.}
are £ Q0 for every k > 0 (with p = (Un)azo defined by (1))

7 Application to enumeration

This section results from a joined work with M. Desainte-Catherine.

In the Young tableaux enumerative problem of Desainte-Catherine, Viennot
16], we need to compute the gd-table in the case of the Catalan numbers, that
i —= — 2n
1S,u.n—Cn—-——( )

n+1Lvn
Proposition 10. The coefficients of the gd-table corresponding to the Catalon
numbers u, = O, are given by

(0 _ Gn+k-LEn+2k) @ 2Kk+1)
% T Tt k-Dm+2%) ' * T ikt 2k+ 1)

(26)
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Proof. We just have to check that these numbers satisfy the rhombus rules (18).
We have successively

Mg ZEZE+1On 2%+ D+ +2) J(m41) (i)
FER T 2+ 2kt D(nF2k+ Din+ k42 ok %
{(n} (n) __ (2n + 2k + 1)(2n + 2k + 2) (2k + 2)(2k + 3)
Ter1 T Exp1 =

(n+2k+1)(n+ 2k +2) (n+2k+2)(n+2k+3)°

_ 4 4 n?(16k + 18) + n(24k? + 52k + 26) + 2(2k + 1){2k + 2)(2k -+ 3)
- (n+ 2k 4+ 1)(n + 2k + 2}{n + 2k + 3) ‘
_ {2n+ 2k + 3)(2n + 2k + 4) 2k(2k + 1)

(n+2k+2){n+2k+3) (n+2k+ 1¥n+2k+2)

=gt 3 in

Corollary 11. The number of non-crossing configurations of k Dyck paths n =
(w1, wa, -, wy) such that fori, 1 <i <k, w; goes from the peint (—2i + 2,0)
to the point (2n + 24 — 2,0) is

H 1+ j+2k

dy g = -
A i+

1<i<j<n
Proof. From the above considerations, this number is the k x k& Hankel determi-
nant (for u, = Cy)

H™ = ()% (g™ eyt (gl el k2 . (g o™y, (27)

with q}c"J and e}c”} defined by (26). We have successively
1) {n) ) ) f(n) _ (Qk — 1)'{'21’1 + 2k — 2)‘
Crat e glMel™ - gl e, = (n+2k~ L+ 2k—2)’

_(2k+n)2k+n+1) - (2 + 21 - 2)

113 dﬂ. —] = i
e/t e 2k(2k + 1) (2k+n— 2)
dn i fdnjr = H/H, (02 1,62 2). (28)
With d, | = 0, = Hin] (n > 1). We deduce H}Enj =ty & O

The formula of corollary 11 reappeared in Physics in the context of directed
polymers with watermelons topoly in the presence of a wall, Extensions are
given in Guttmann, Krattenthaler, Viennot [13}. This work follows Guttmann,
Owczarek, Viennot [14].

Acknowledgement. Many thanks to A. Zemmari for the typing of this paper.
References

1. G. A. Baker. Essentials of Padé approzimants. Academic Press, New York, 1575,

2. G. A. Baker and P. Graves-Morris. FPadé¢ approvimants. (vols 1 and 2). Addison-
Wesley, Reading, Mass., 1981. Encyclopedia of Math. and its Applications, vols 13
and 14.



in Proc. FPSAC’00, Moscow, D.Krob, A.A Mikhalev and A.V Mikhalev eds, Springer, 2000, pp 379-390

380

3. C. Brezinski. Padé approximants and orthogonal polynomials. In Padé and raiional
approgimation {Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976),
pages 3-14. Academic Press, New York, 1977.

4. C, Brezinski. Padé-type approzimation and general orthogonel polynomials.
Birkhduser Verlag, Basel, 1880.

5. C. Brezinski. Outlines of Padé approximation. In Compuietional aspects of complex
onalysis {Breunlege, 1982}, pages 1-50. Reidel, Dordrecht, 1983

6. M. de Sainte-Catherine and G, Viennot. Enumeration of certain Young tableaux
with bounded height. In Combinatoire énumérative (Montréal, Quecbec), 1985,
volume 1234 of Lecture Notes in Math., pages 58-67. Springer, Berlin, 1986.

7. A. Draux. Polynéres orthogonaus formels. Appiications. PhD thesis, Université
de Lille, 1981.

8. P. Flajolet. Combinatorial aspects of continued fractions. Discrele Maih.,
32(2):125-161, 1980,

9. 1. Gessel and G. Viennot. Binomial determinants, paths, and hook length formulae.
Adv. in Math., 58(3):300-321, 1985.

10. 1. Gessel and G. Viennot. Determinants, paths, and plane partitions. preprint,
1989.

11. J. Gilewicz. Approximants de Padé, Lecture Notes in Maths, 667, 1978.

12. W. B. Gragg. The Padé table and its relation to certain algorithms of numerical
analysis. STAM Rev., 14:1-16, 1972.

13. A.J. Guttmann, C. Krattenthaler, and X. G. Viennot. Vicious walkers and Young
tableaux II: with walls. in preparation.

14. A. J. Guttmann, A. L. Owczarek, and X. G. Viennot. Vicious walkers and Young
tableaux ): without walls. J. Phys. 4, 31{40):8123-8135, 1998.

15. P. Henrici. Applied and computational compler analysis. Wiley-Interscience [John
Wiley & Sons], New York. vol 1, 1974 and vel 2, 1976.

16. P. Henrici. The quotient-difference algorithm, ANat. Bur. Standards Appl. Malh.
Ser. no., 49:23-46, 1958.

17. W. B. Jones and W. J. Thren. Continued fractions. Analytic theory and applica-
f1oms. Addison-Wesley, Reading, Mass., 1980.

18. E. Roblet. Une interprétation combinatoire des approzimants de Padé. PhD thesis,
Université du Québec 4 Montréal, 1994. Publications du LaCIM, vol 17.

19. H. Rutishauser. Der Quottenten- Differenzen Algorsthmus. Birkhiuser Verlag,
Basel, 1957.

20. K. Sogo. Excited states of Calogero-Sutherland-Moser model—classification by
Young diagrams. J. Phys. Soc. Japan, 62(7):2187-2191, 1993.

91. E. L. Stiefel. Kernel polynomials in linear algebra and their numerical applications,
Nai. Bur. Standards Appl. Math. Ser., 1958(49):1-22, 1958.

99, H. Van Rossum. A theory of orthogonal polynomisls based on the Padé table. PhD
thesis, University of Utrecht, 1953.

93. G. Viennot. Une théorie combinatoire des polynomes orthogonaux généraux. Lee-
ture notes, 217p, Université du Québec & Montréal, 1984.

94. (. Viennot. A combinatorial theory for general orthogonal polynomials with exten-
sions and applications. In Orthogonal polynomials and applications (Bar-le-Duc,
1984}, pages 139-157. Springer, Berlin, 1985.

95. H. S. Wall. Analytic Theory of Continued Fractions, D). Van Nostrand Company,
Inc., New York, N. Y., 1948.

26. P. Wynn. A general system of orthogonal polynomials. Quart, J. Math. Ozford
Ser. {2}, 18:81-96, 1967.



