Course IMSc, Chennaí, Indía January-March 2018

The cellular ansatz: bijective combinatorics and quadratic algebra

> Xavier Viennot CNRS, LaBRI, Bordeaux

www.viennot.org

mírror websíte www.ímsc.res.ín/~víennot

Chapter 3 Tableaux for the PASEP quadratic algebra

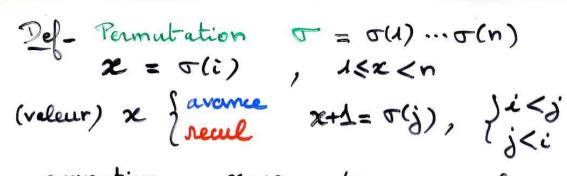
Ch3b Ch3b (2nd part)

IMSc, Chennaí February 15, 2018 Xavier Viennot CNRS, LaBRI, Bordeaux <u>www.viennot.org</u>

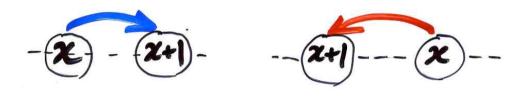
mirror website www.imsc.res.in/~viennot

A variation of the "exchange-fusion" algorithm:

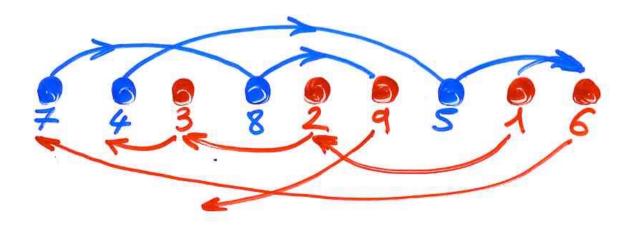
The "exchange-delete" algorithm

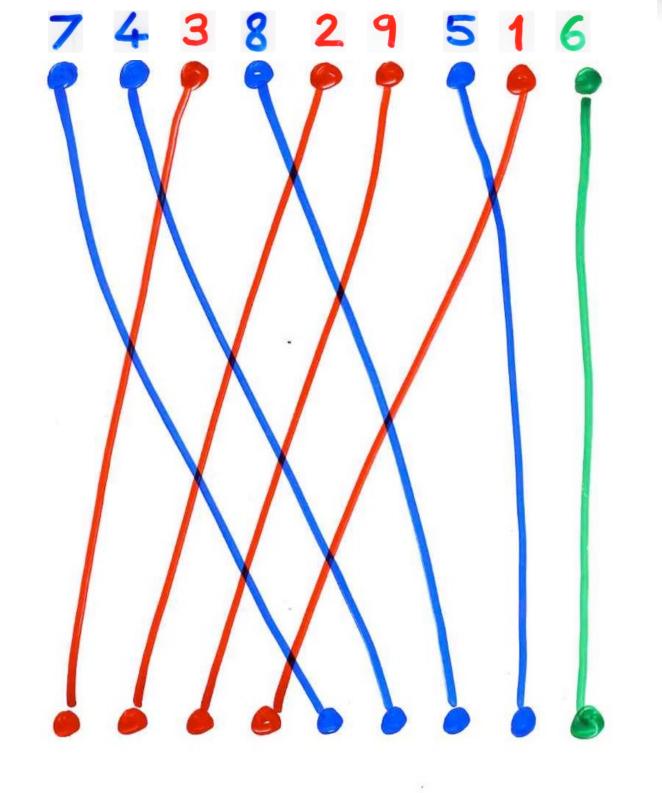


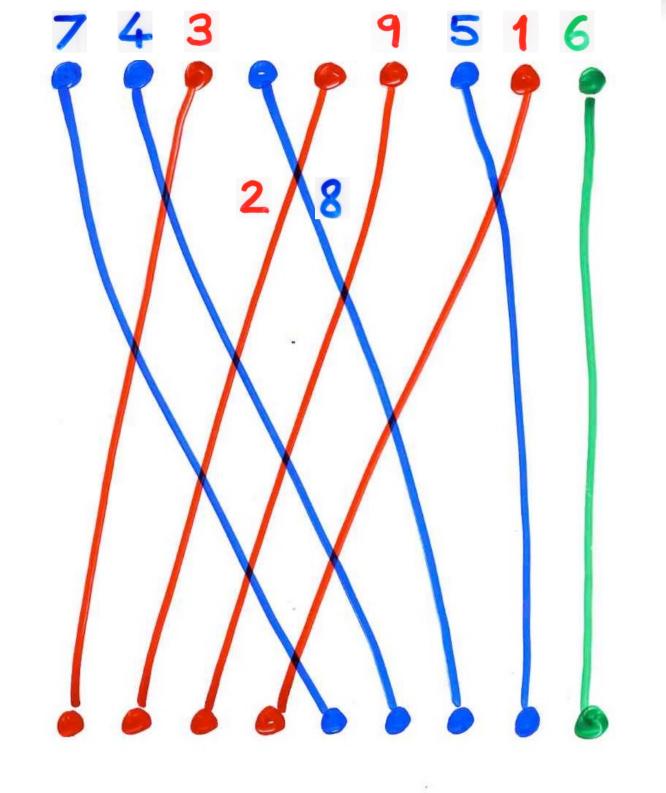
· convention x=n est un recul

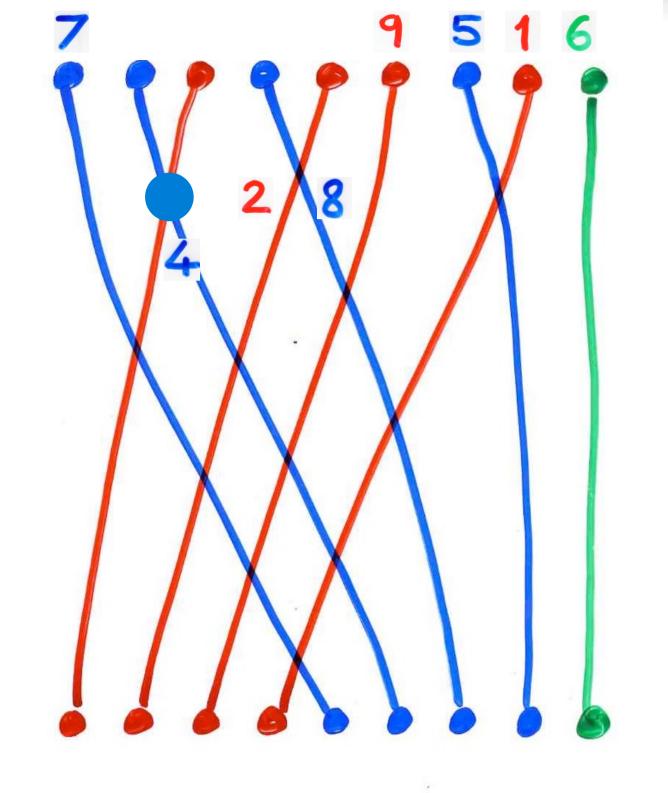


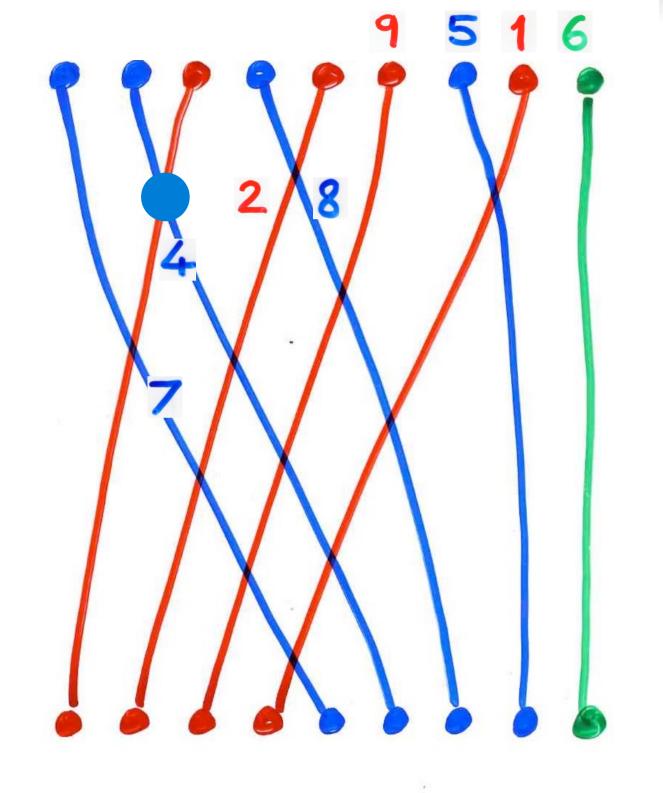
T = 743829516

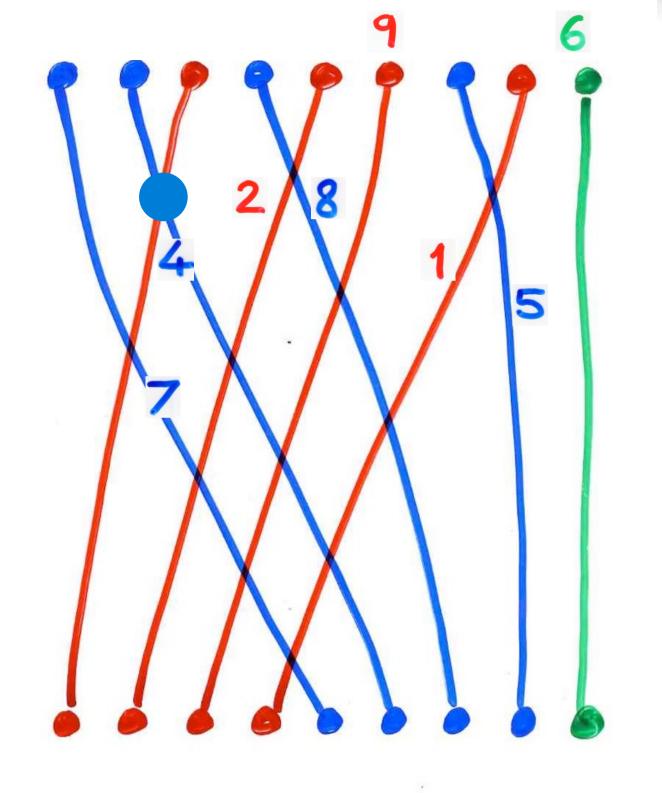


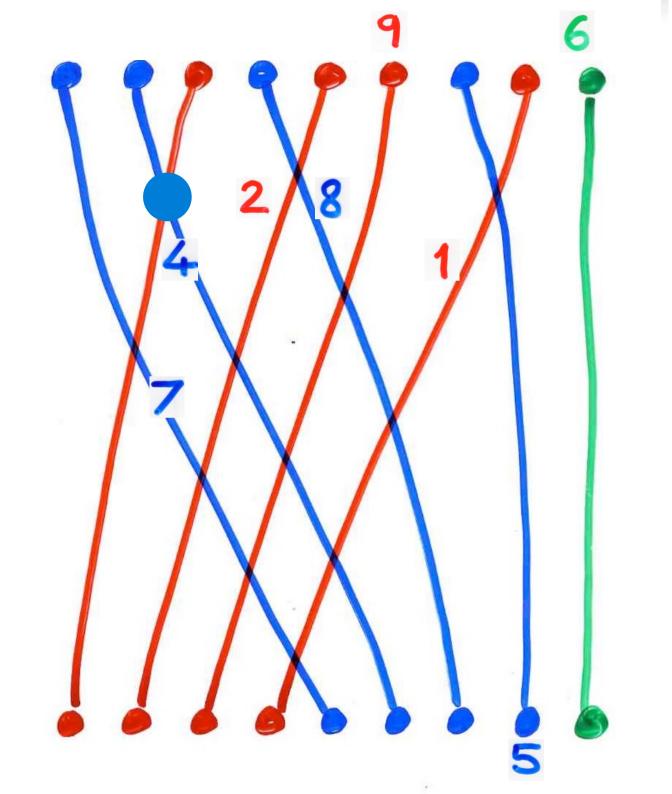


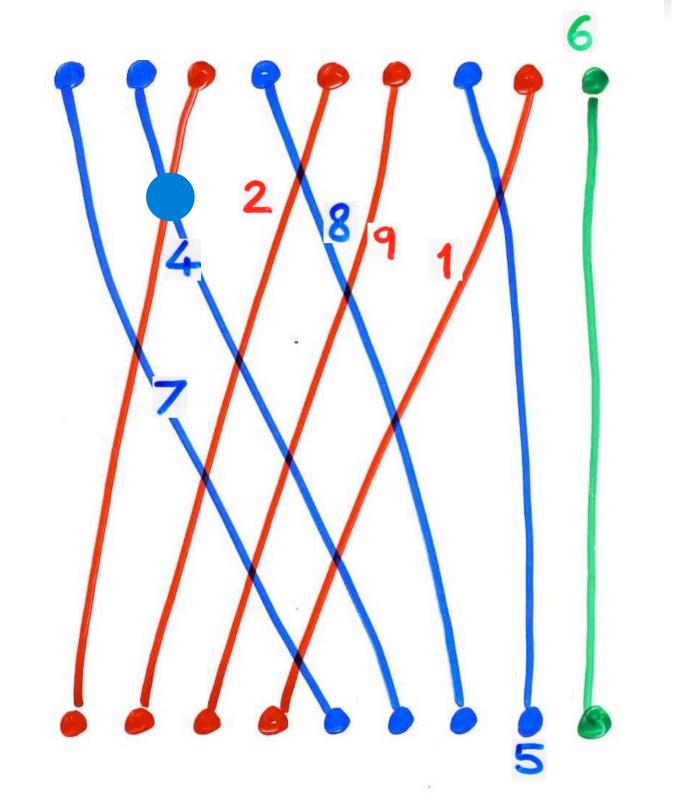


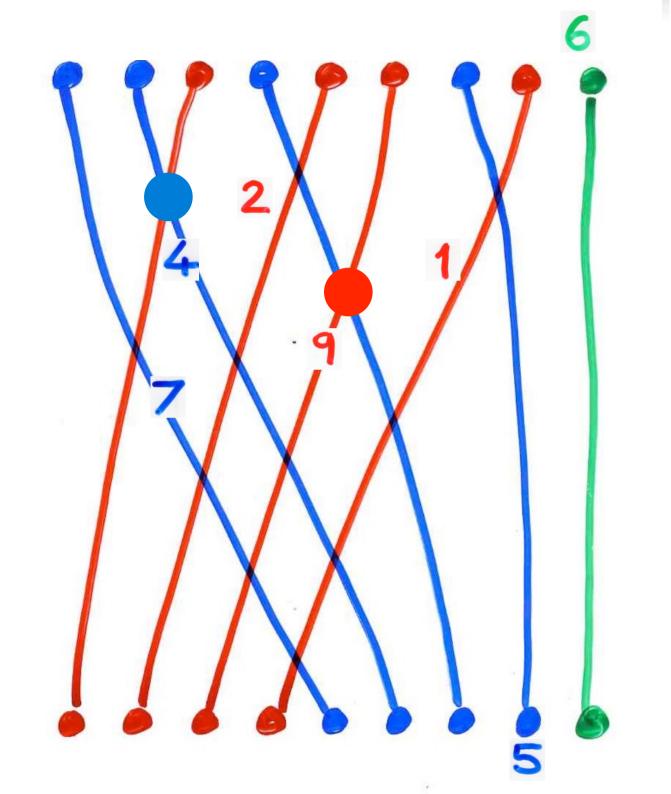


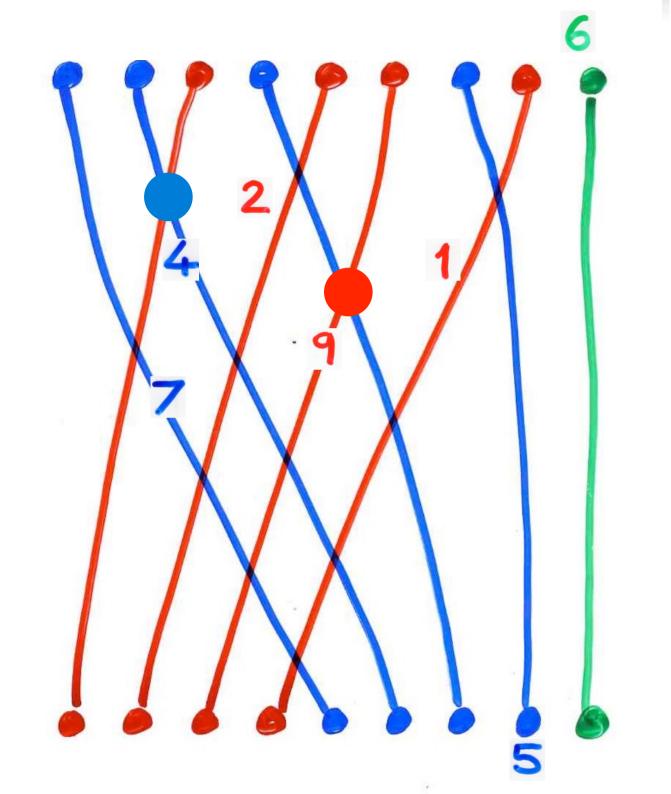


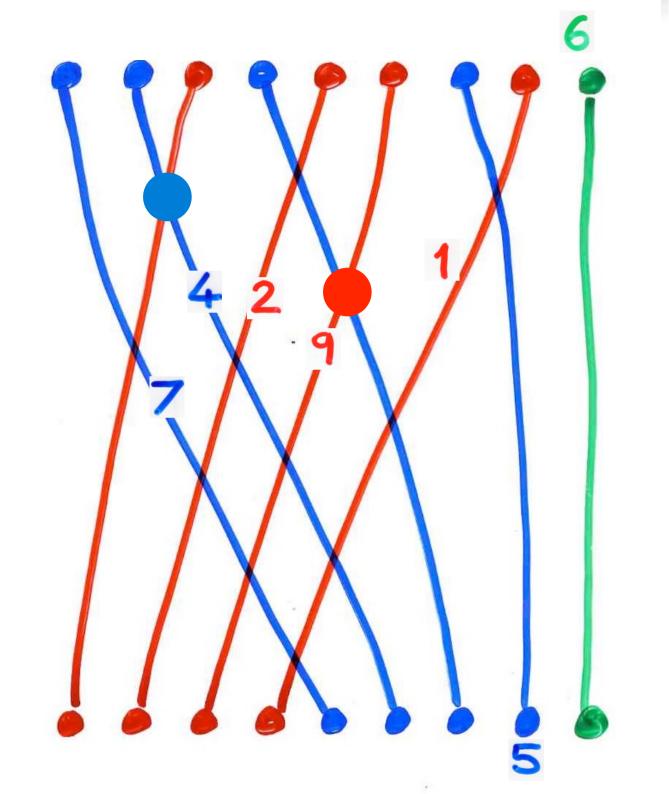


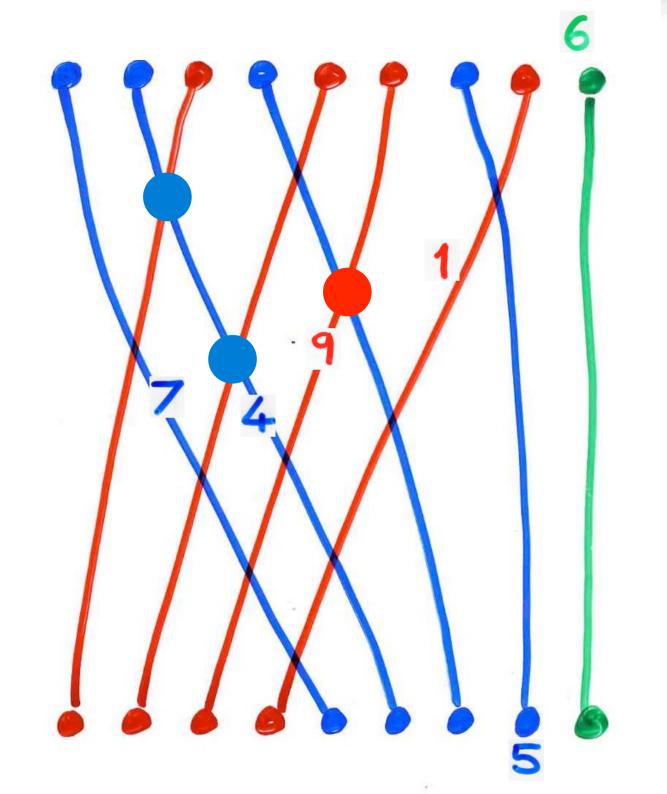


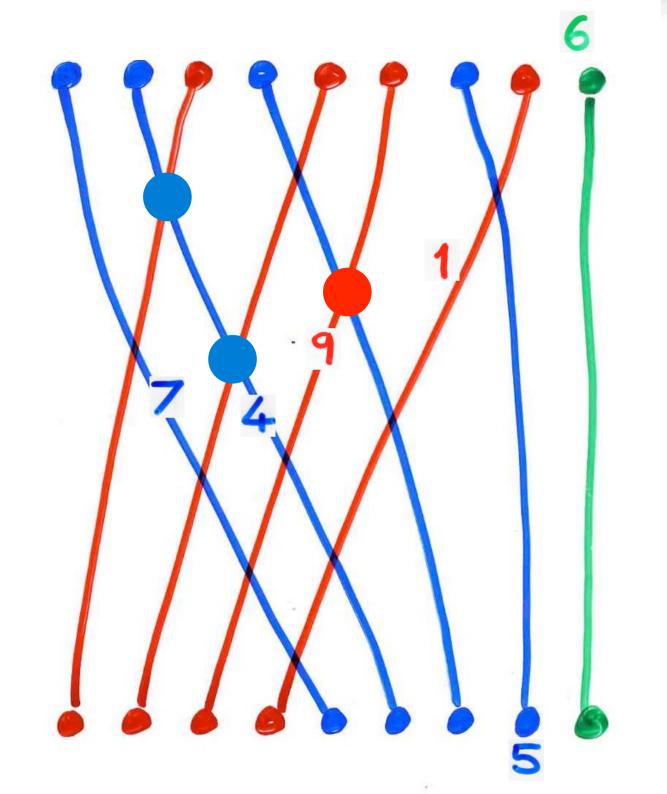


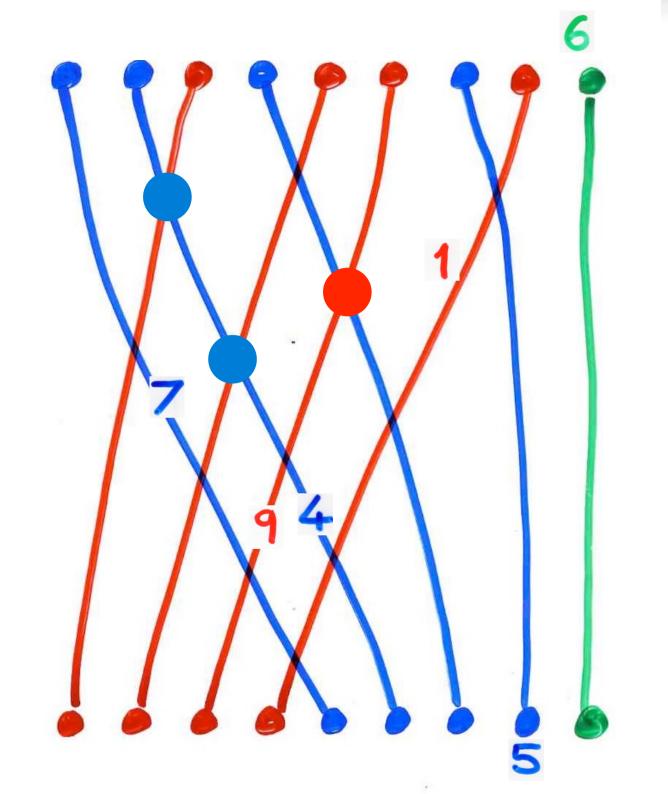


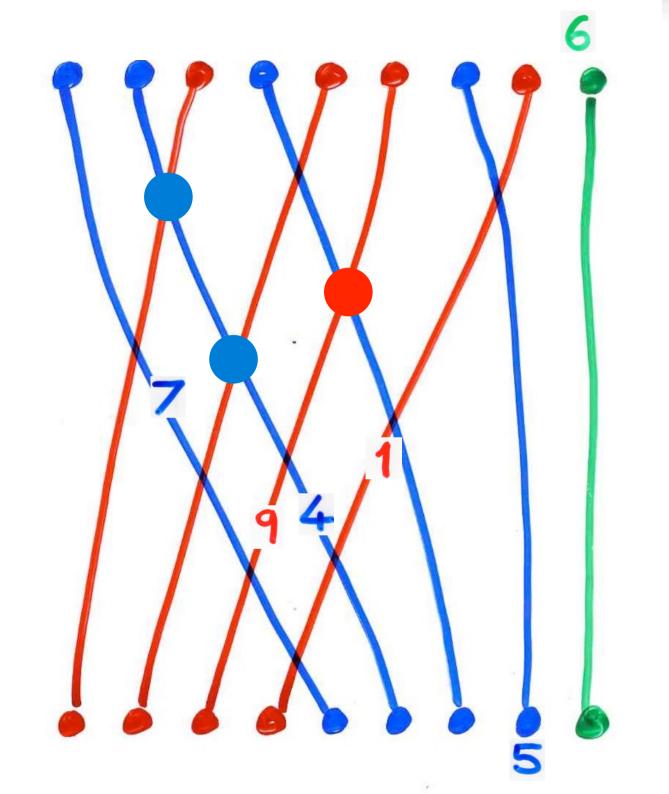


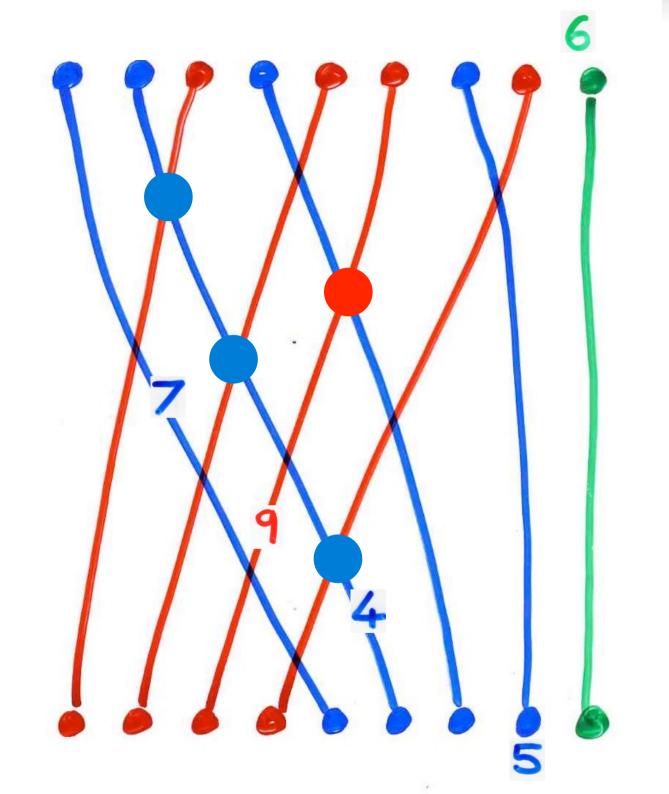


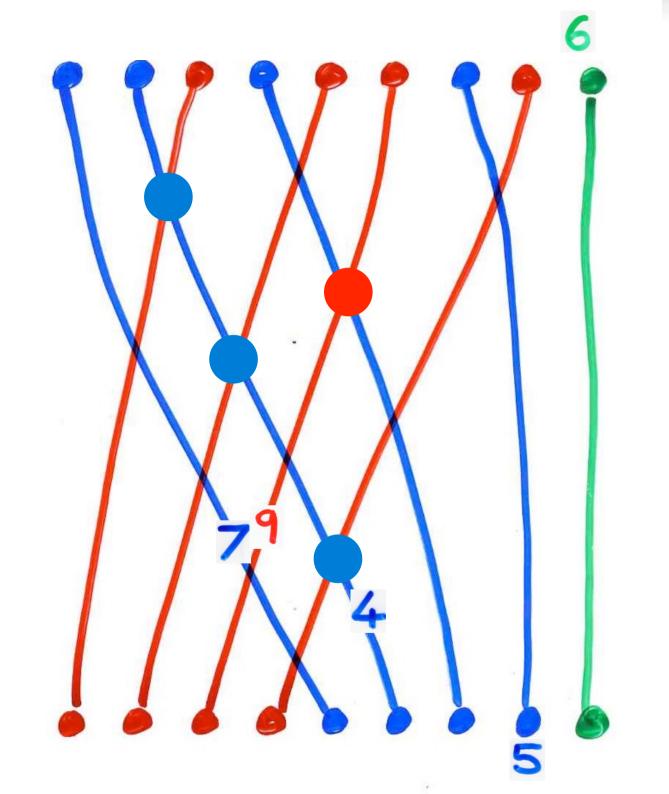


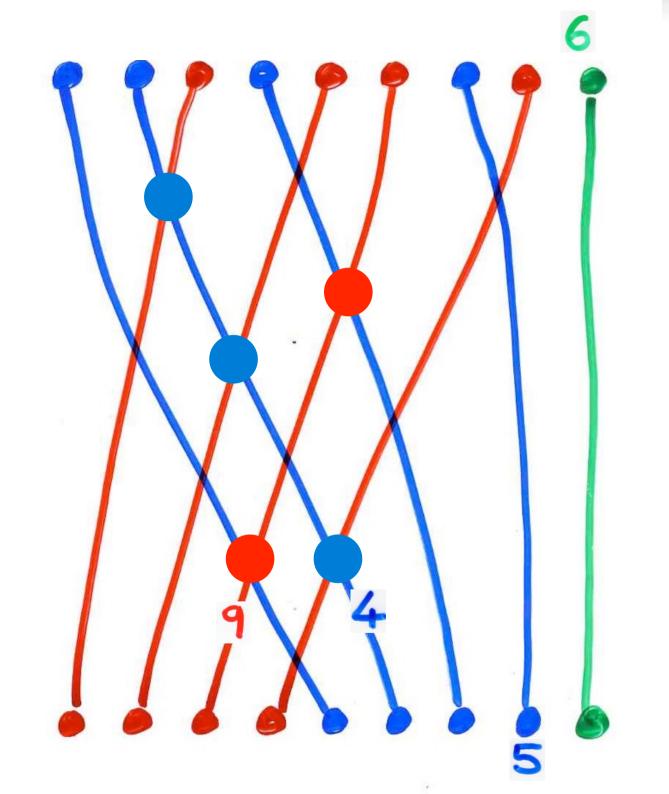


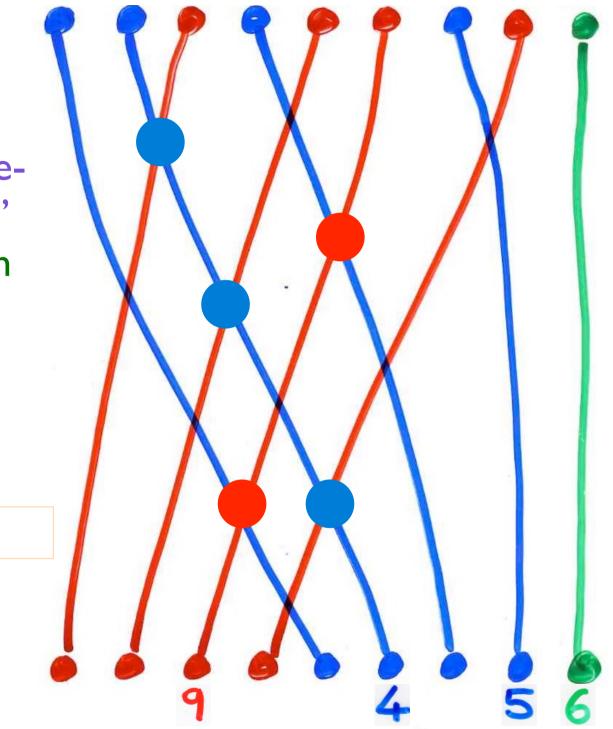




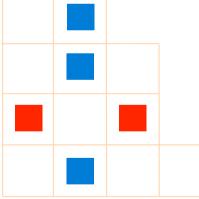


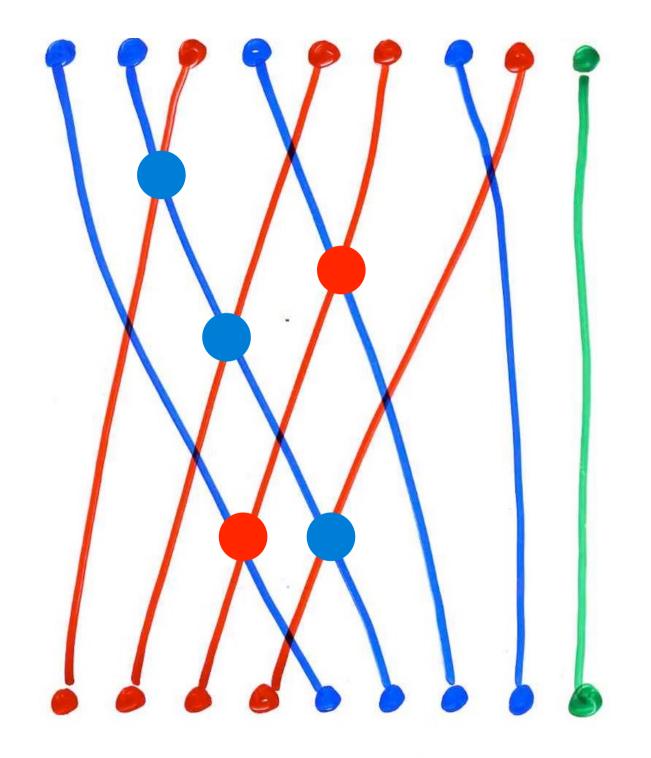




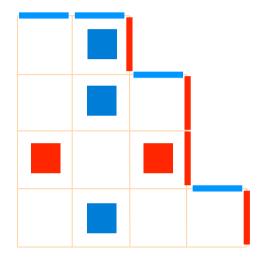


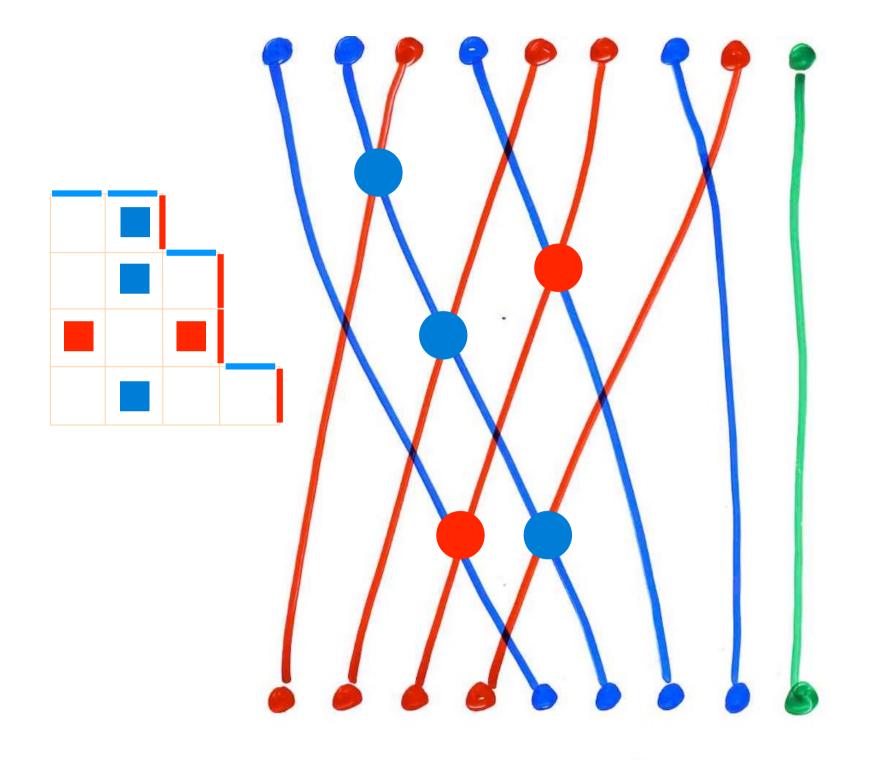
"exchangedeletion" algorithm

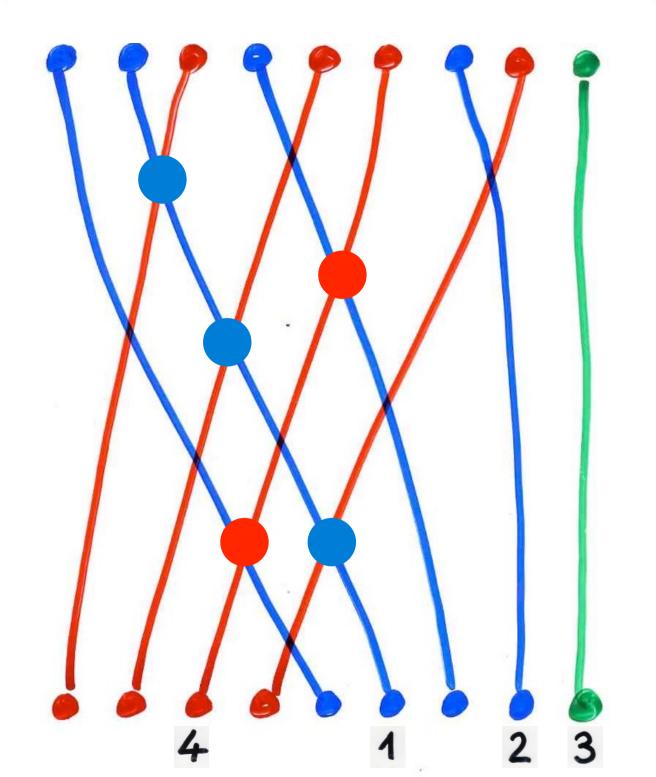


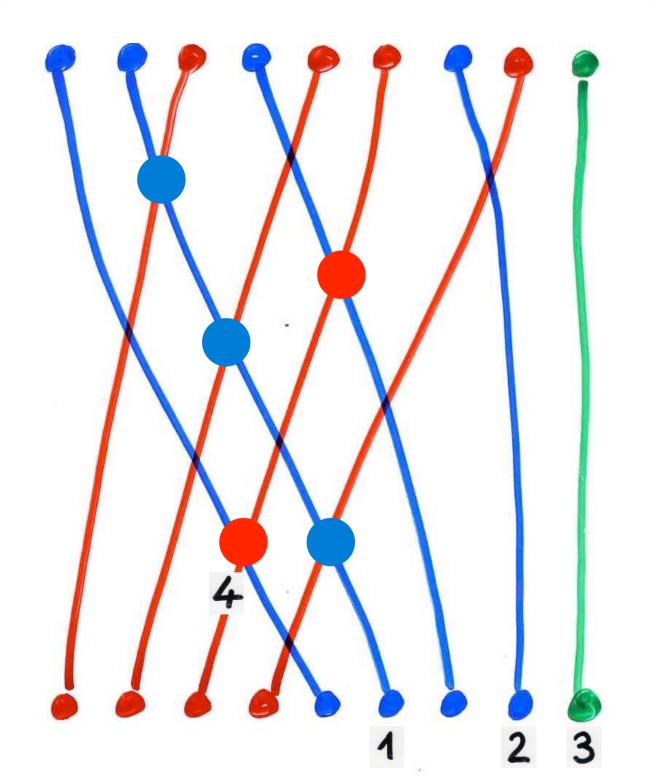


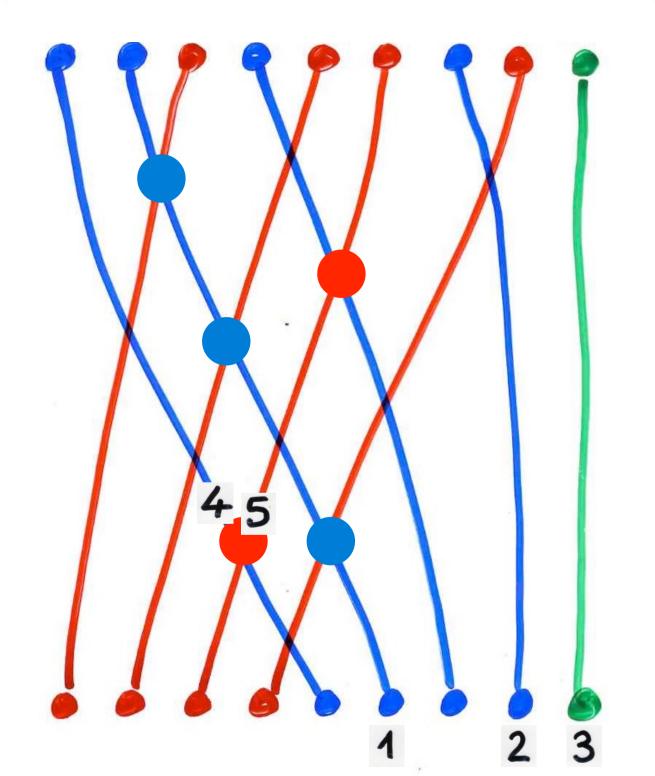
The inverse "exchange-delete" algorithm

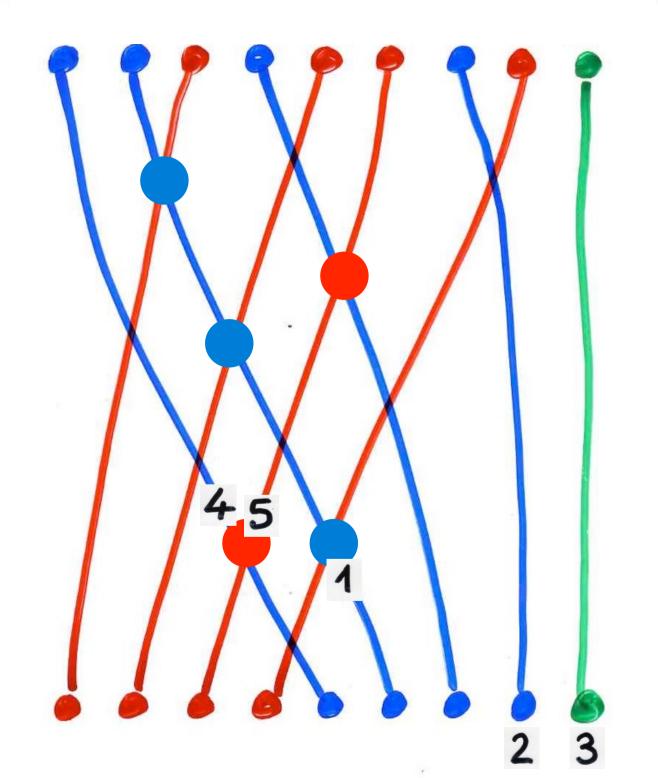


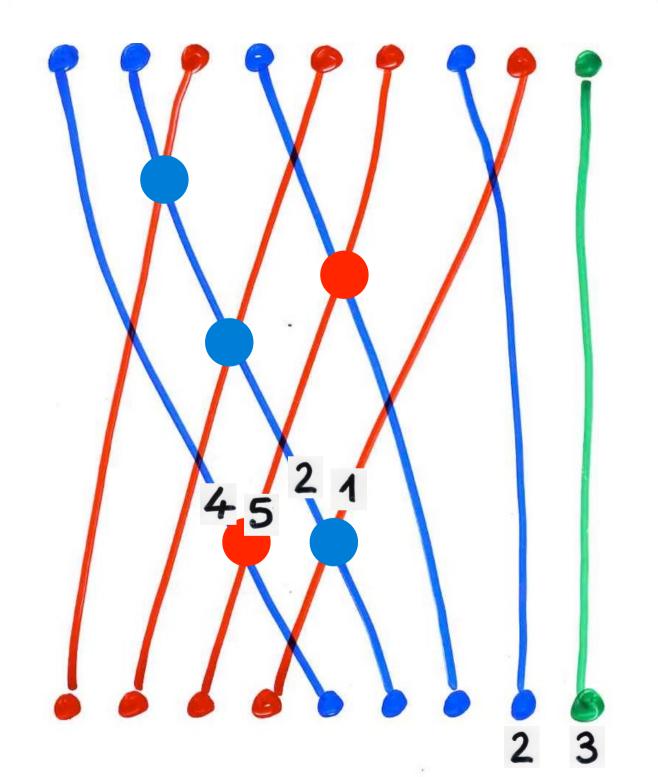


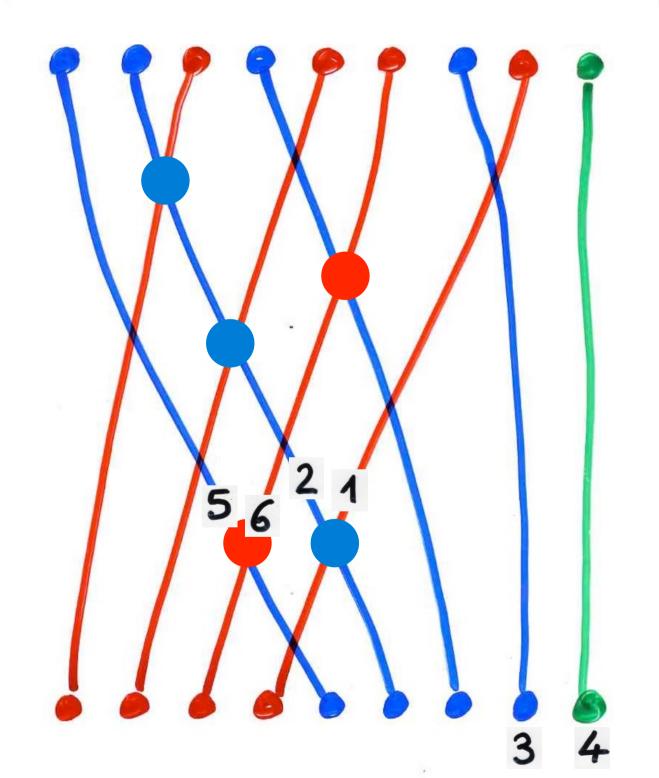


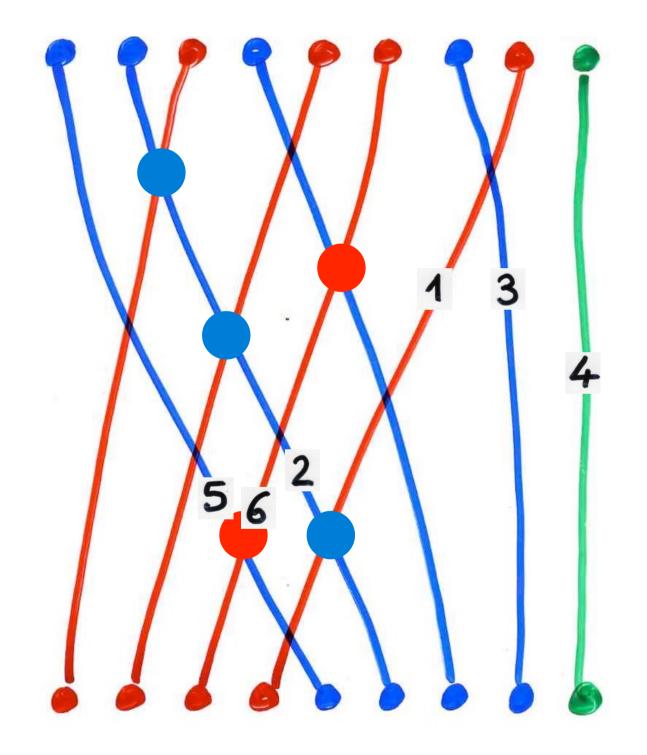




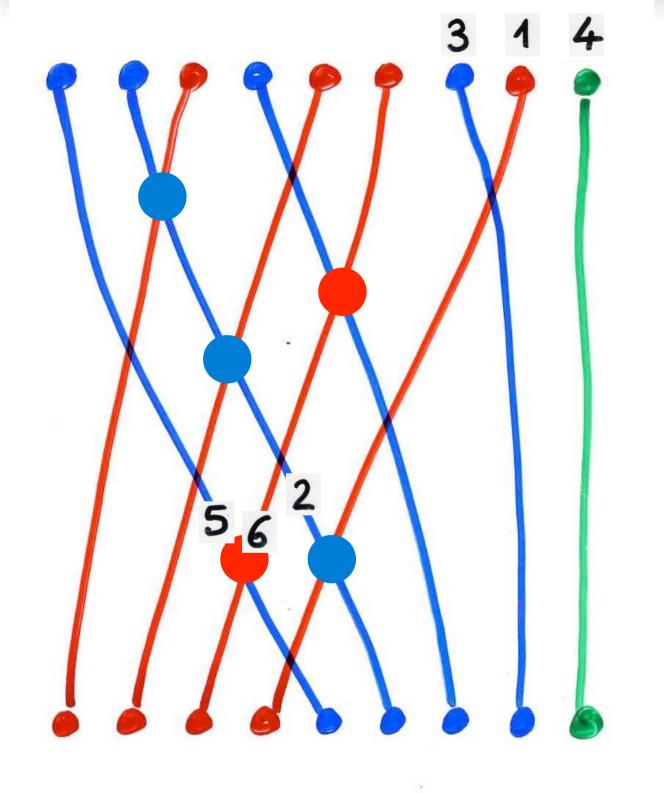


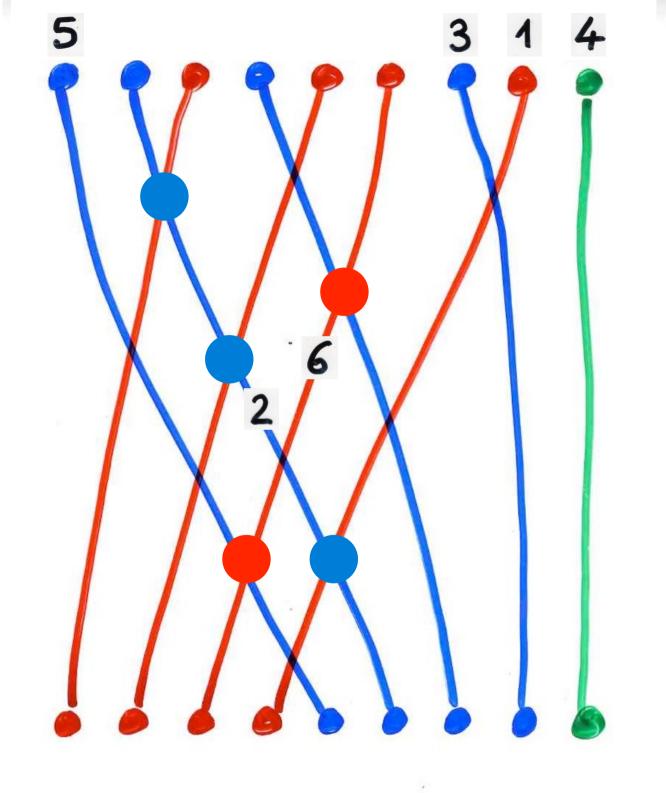


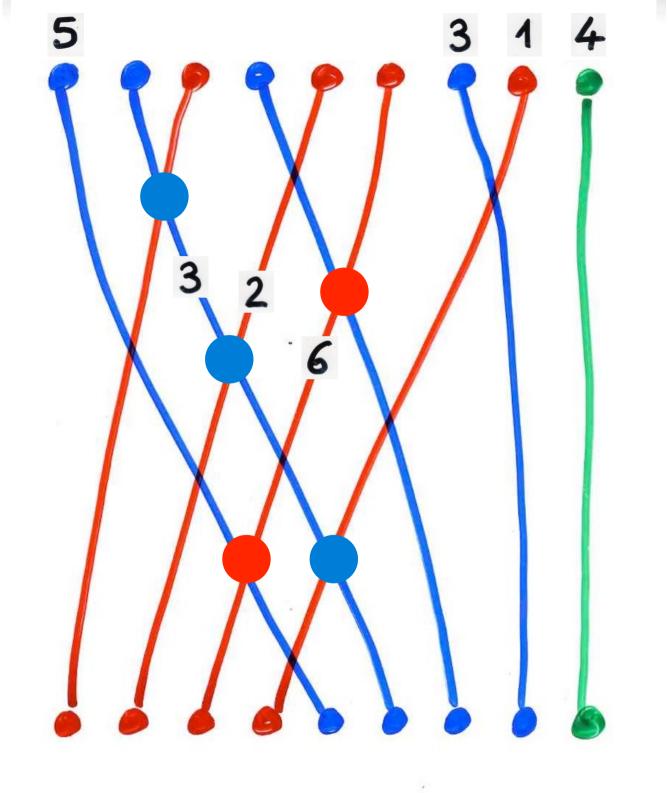


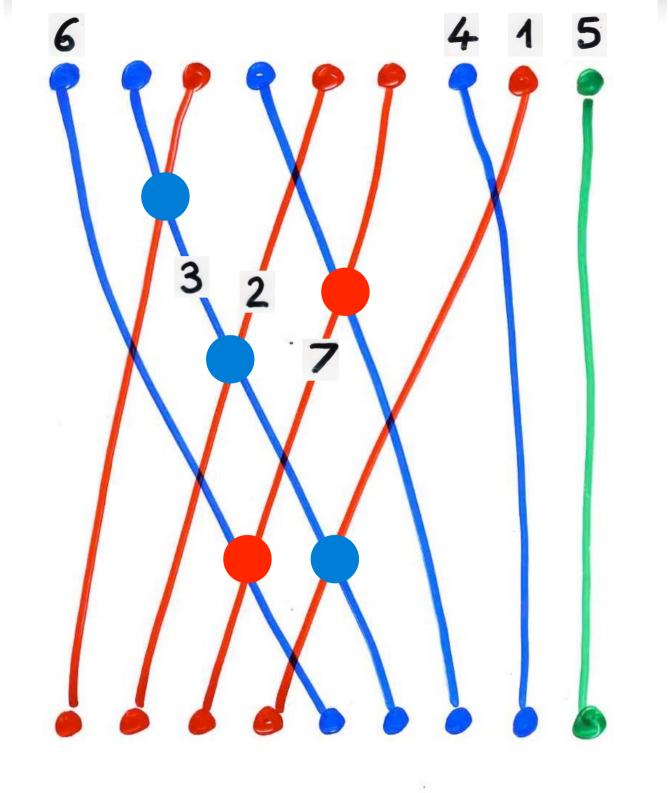


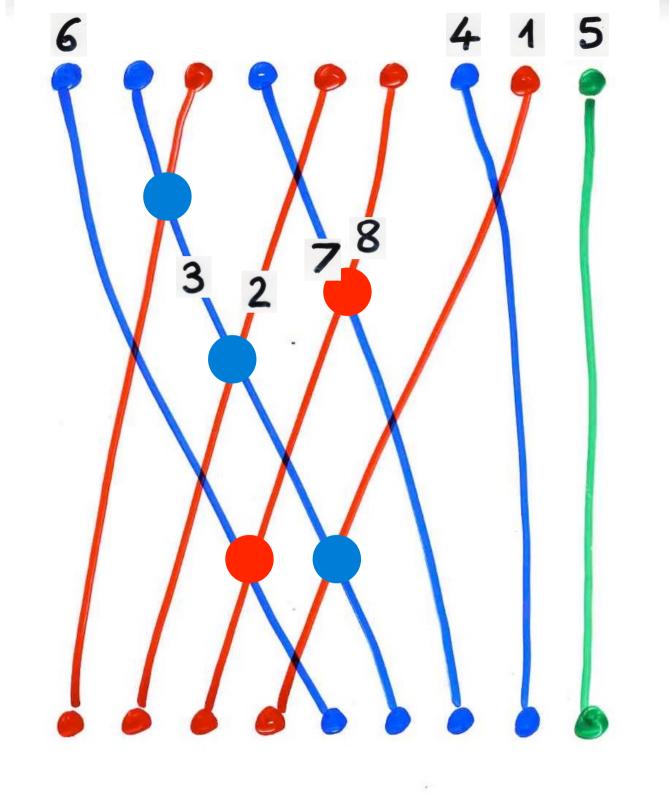
.

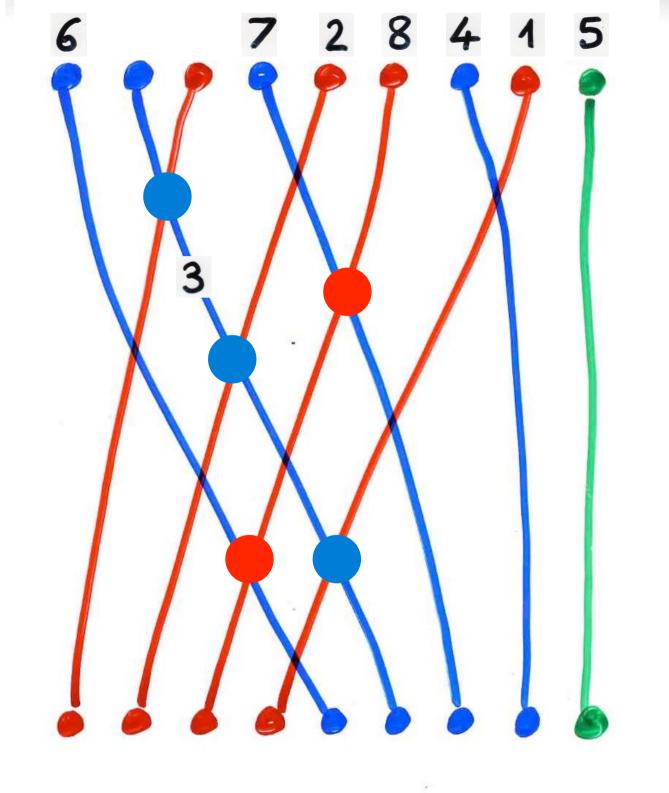


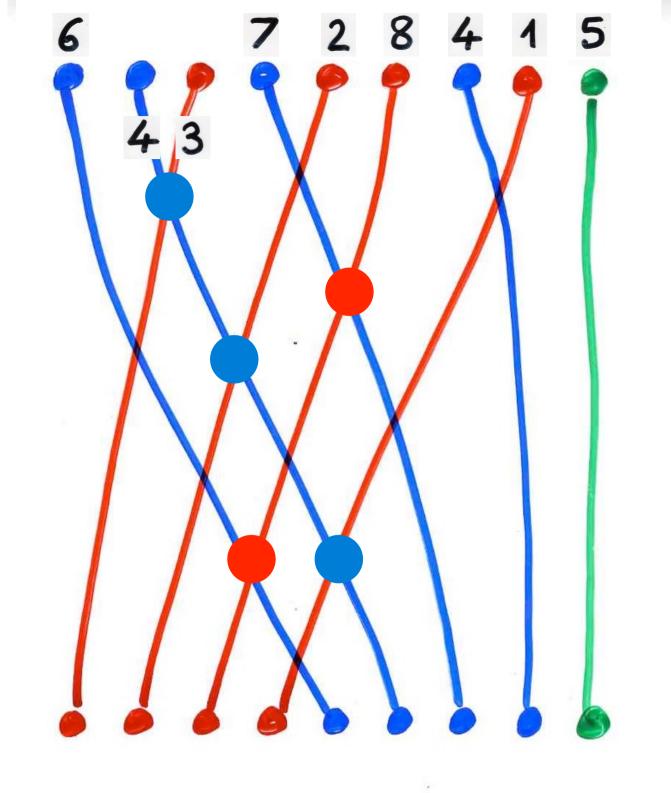


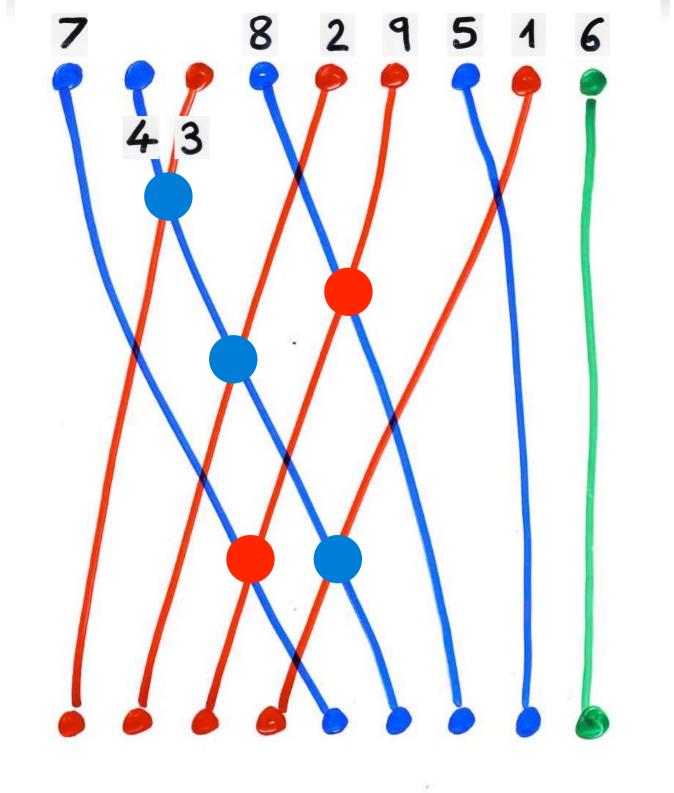


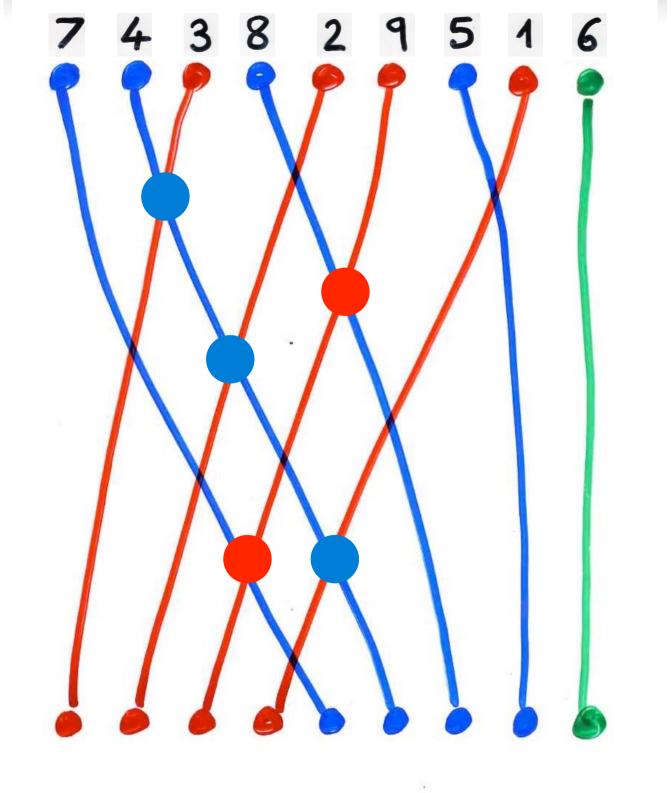










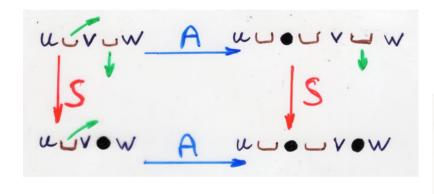


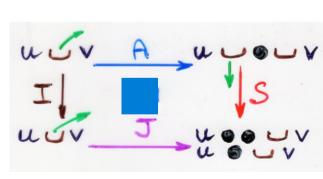
commutation diagrams

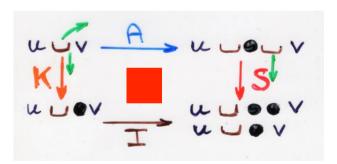
 $AS = SA + I_{y}J + KI_{h}$ AK = KA + I,A $JS = SJ + SI_{h}$ JK = KJ

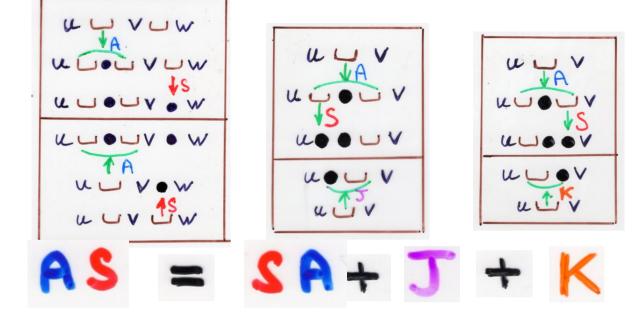
 $AI_{v} = I_{v}A$ $\mathbf{T}^{\Lambda} = \mathbf{T}^{\Lambda}\mathbf{L}$ I's = SI' IK = KIh

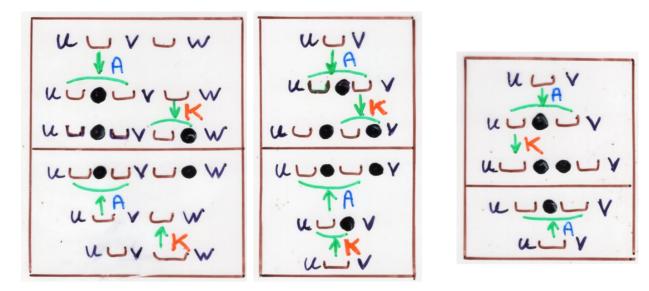
$AS = SA + I_v J + KI_h$

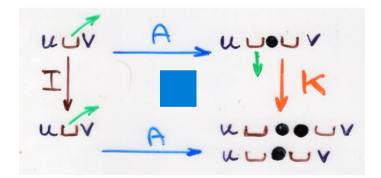


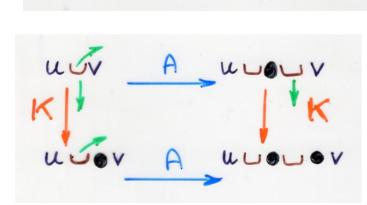


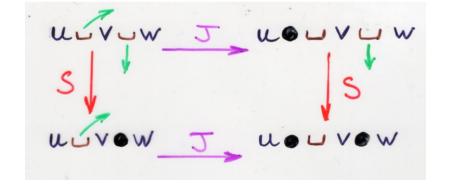


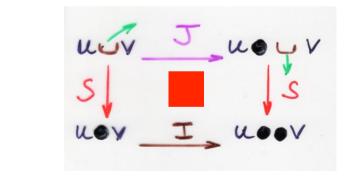




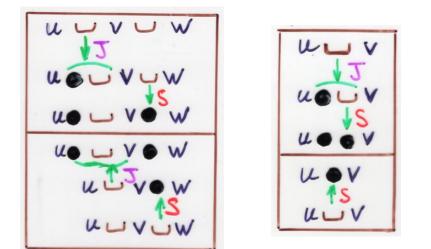


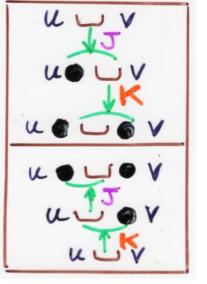






JS = SJ + S





JK = KJ

un Juny K WUOV J u

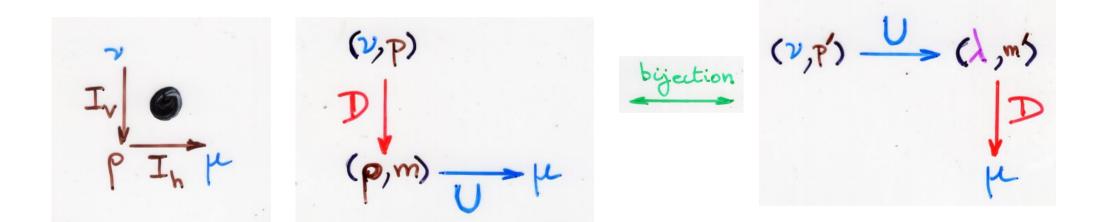
 $AI_{v} = I_{v}A$ $2I^{h} = I^{h}2^{h}$ Ins = SIh IK = KIh

commutation diagrams bijections

analogy with commutation diagrams bijection for the representation of the Weyl-Heisenberg algebra (Ch2)

 $UD = DU + I_v I_v$

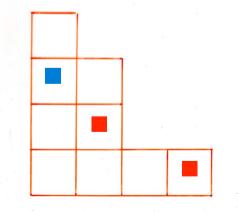
"commutation diagrams"

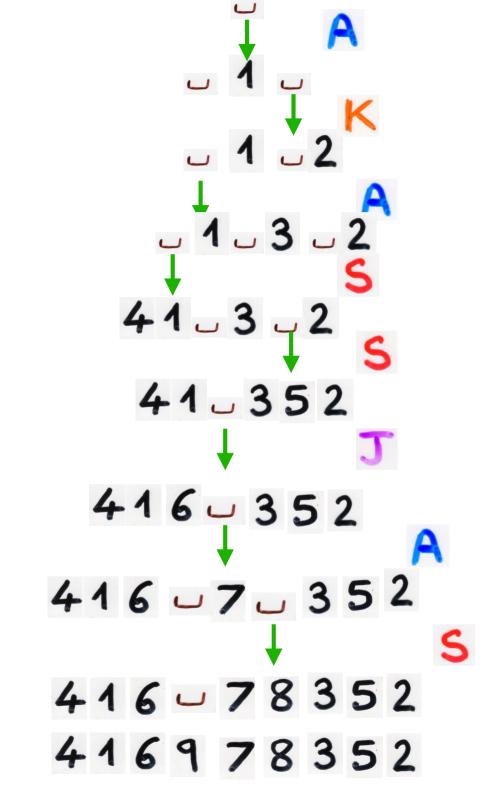


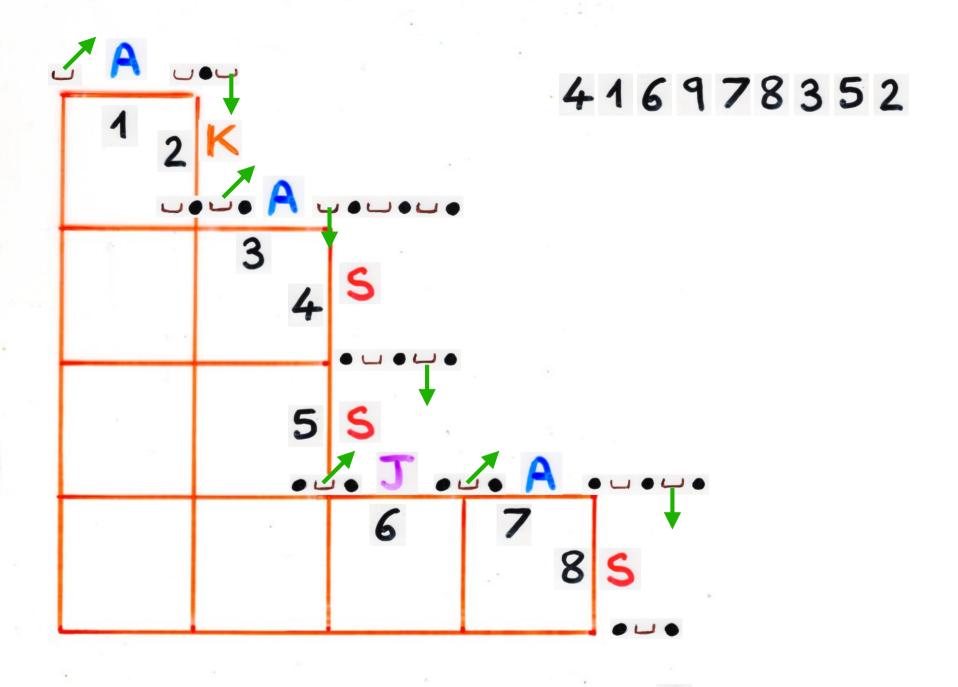
$$p, m, p', m'$$
 are "positions"
in ν, p, ν, λ respectively

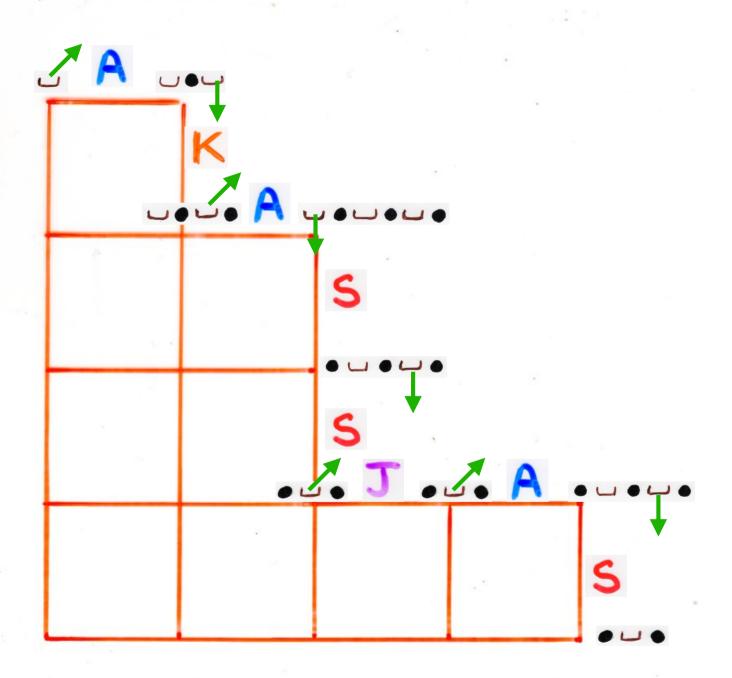
the bijection permutations — alternative tableaux (Laguerre histories) with local rules (commutation diagrams)

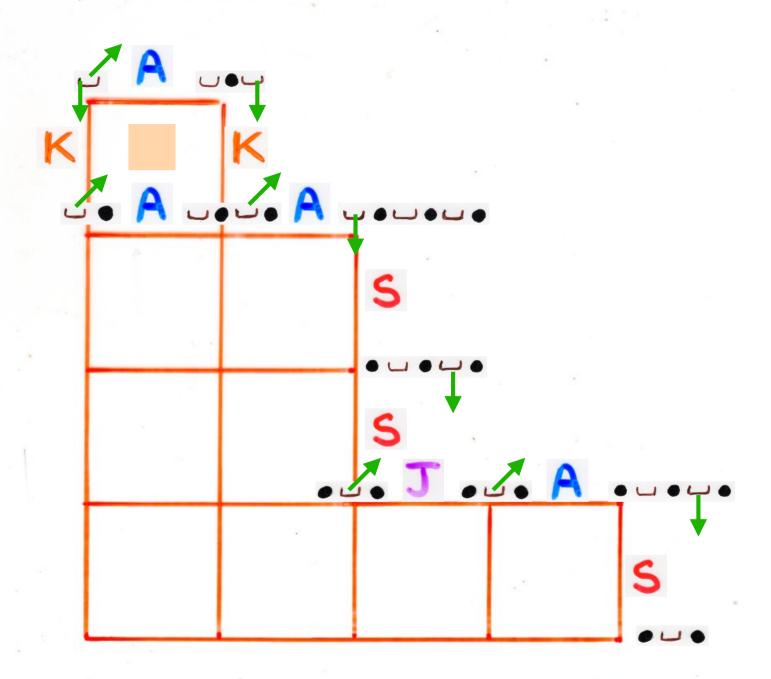
416978352 -

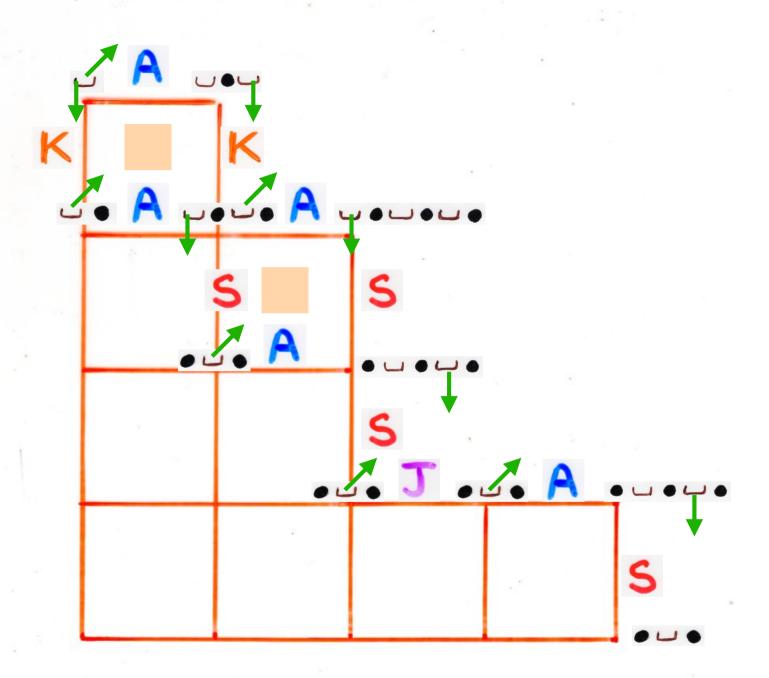


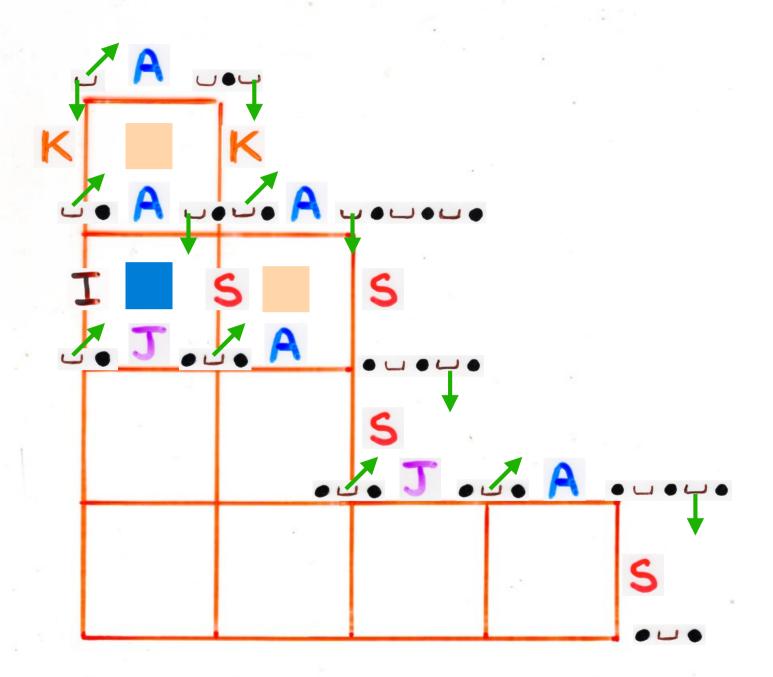


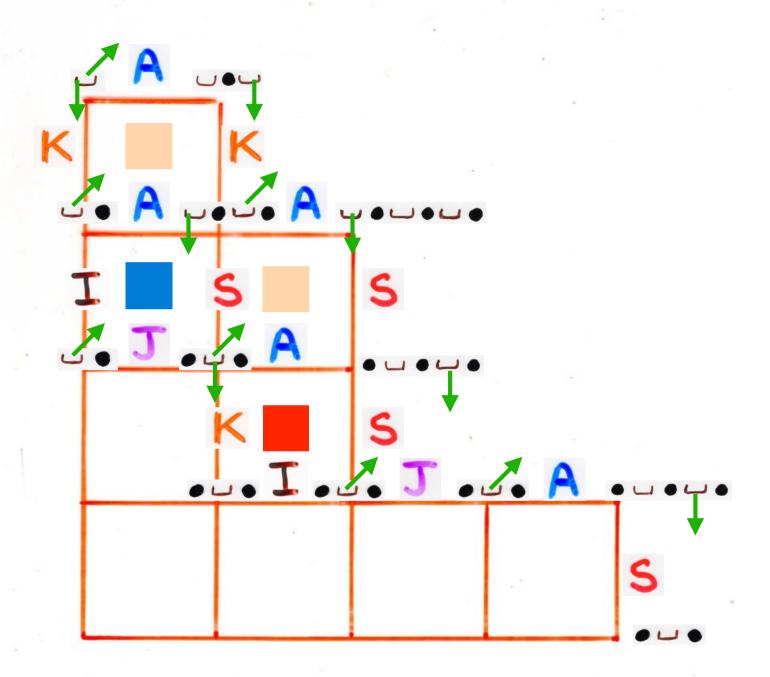


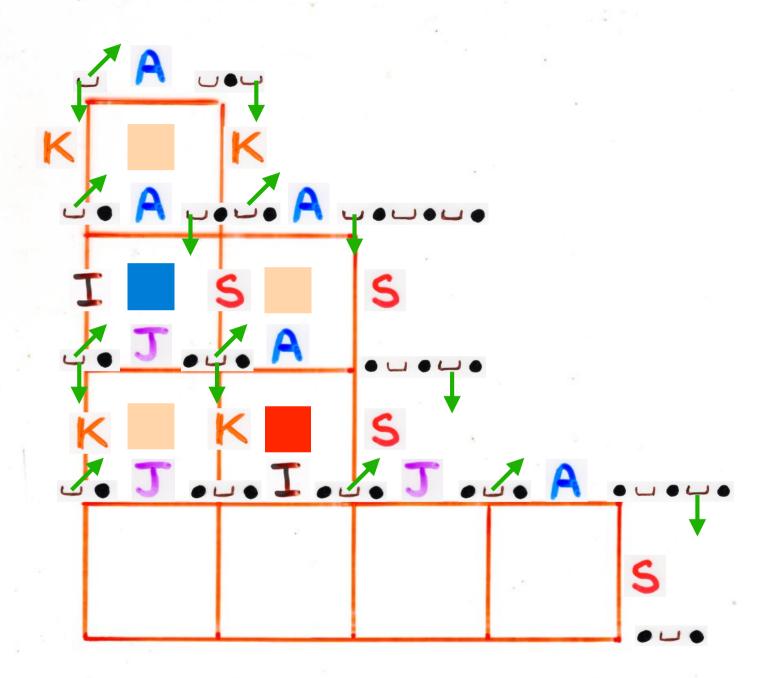


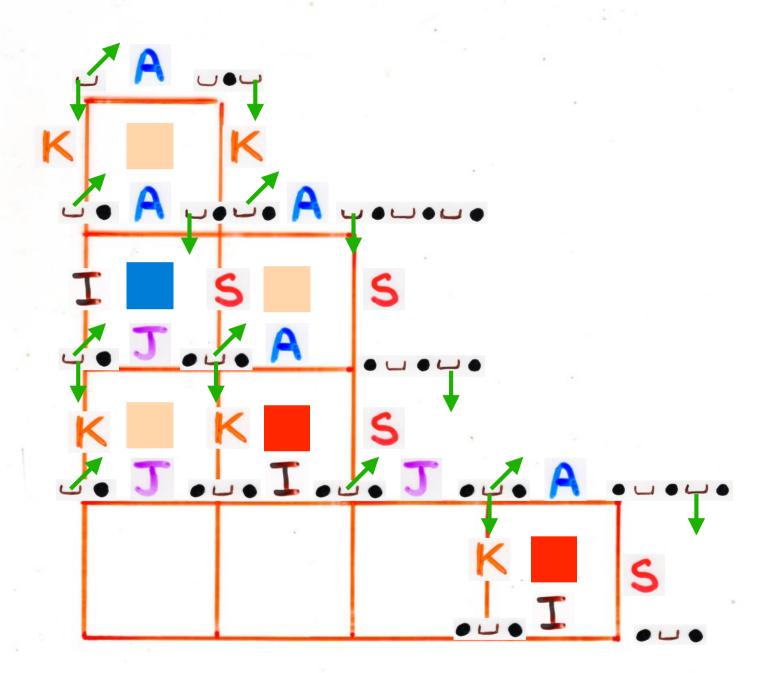


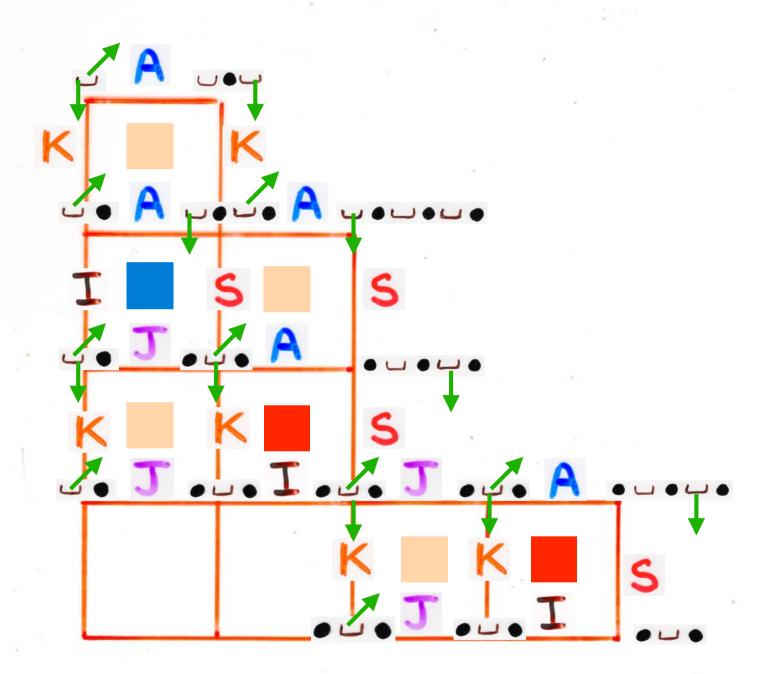


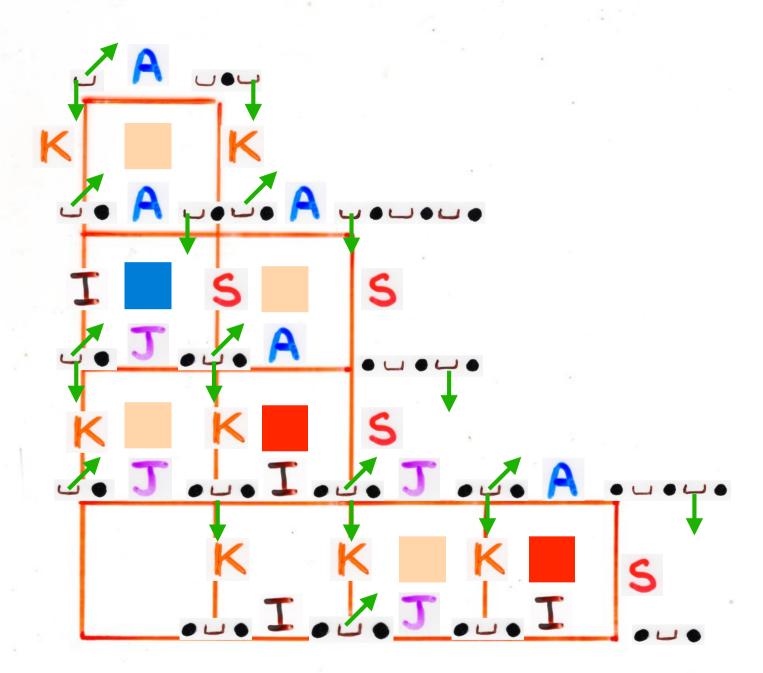


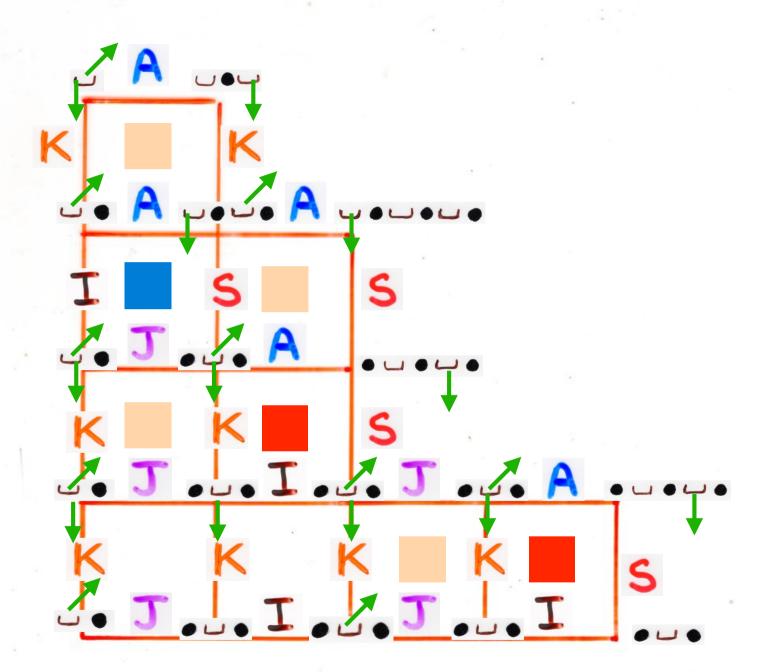


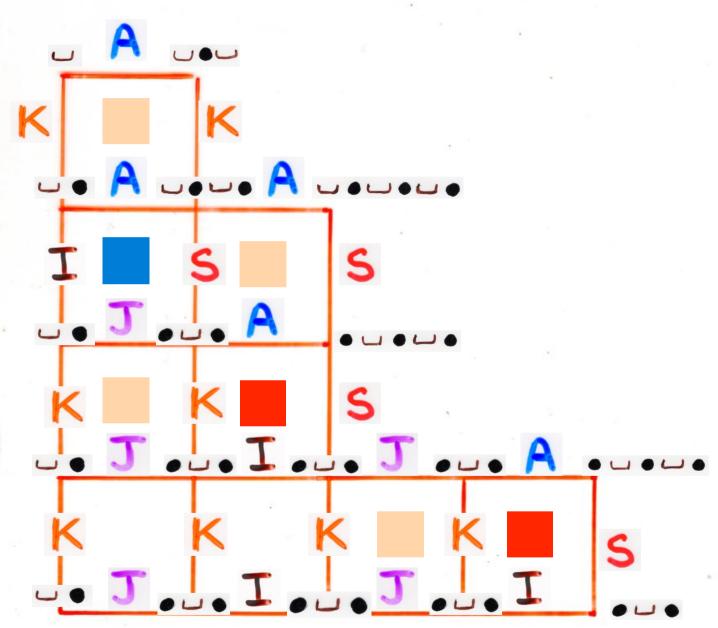












1.1		
1	6	
_ t		
		× 2
1		
ж. –		

•

the reverse bíjection permutations — alternative tableaux (Laguerre histories)

local rules (commutation diagrams)

1.1		
1		
_ t		
		× 2
1		
ж. –		

•

.

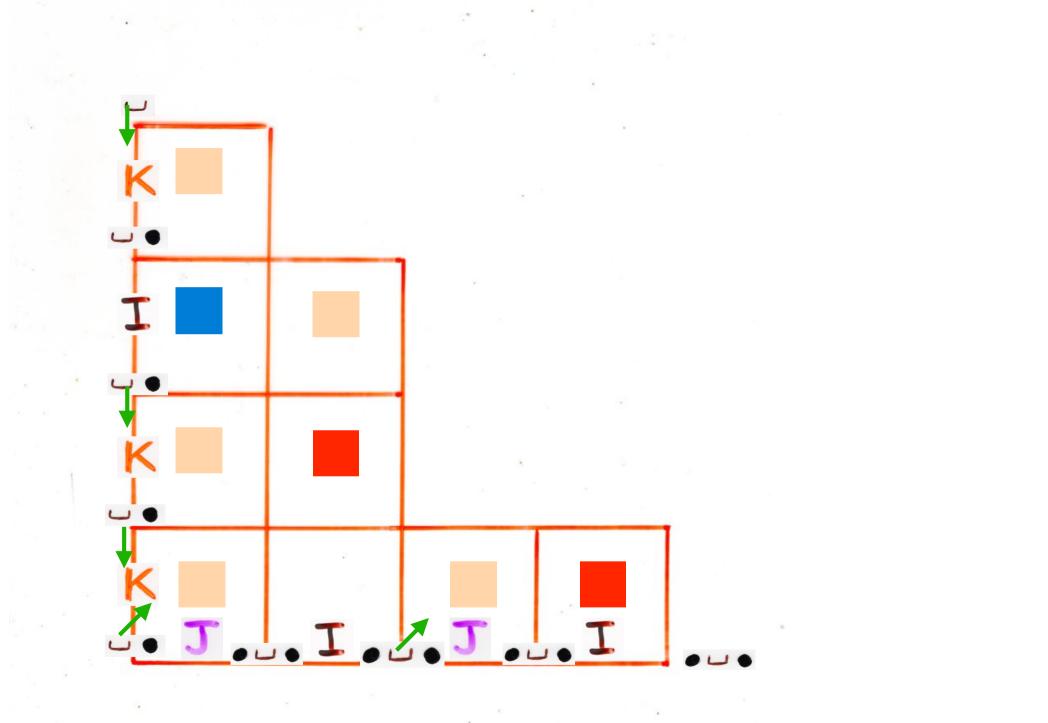
K				
I				
ĸ				
KJ	I	J	I	

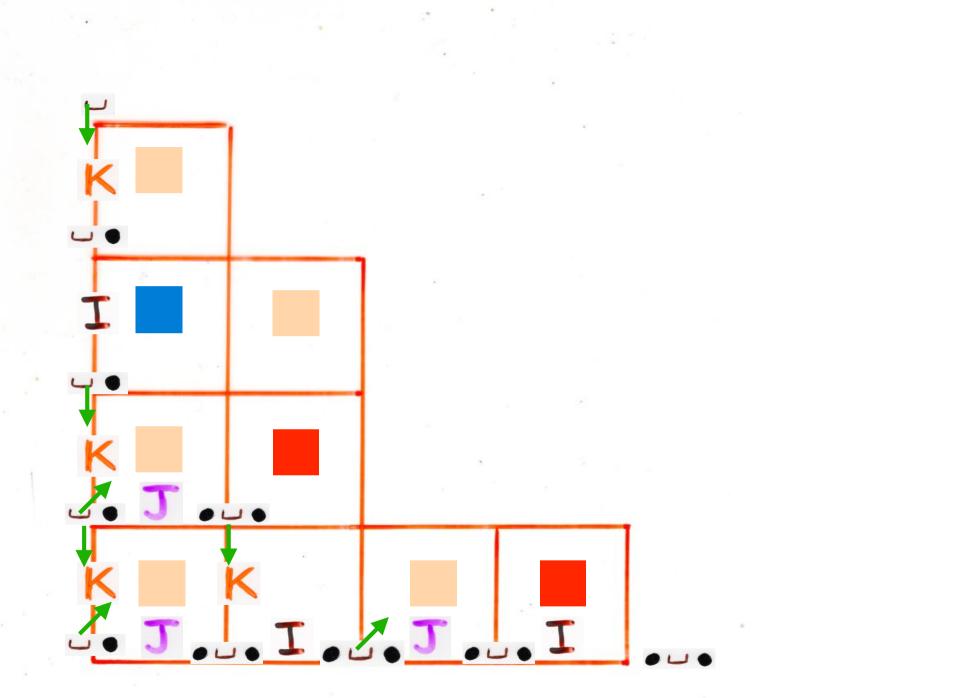
.

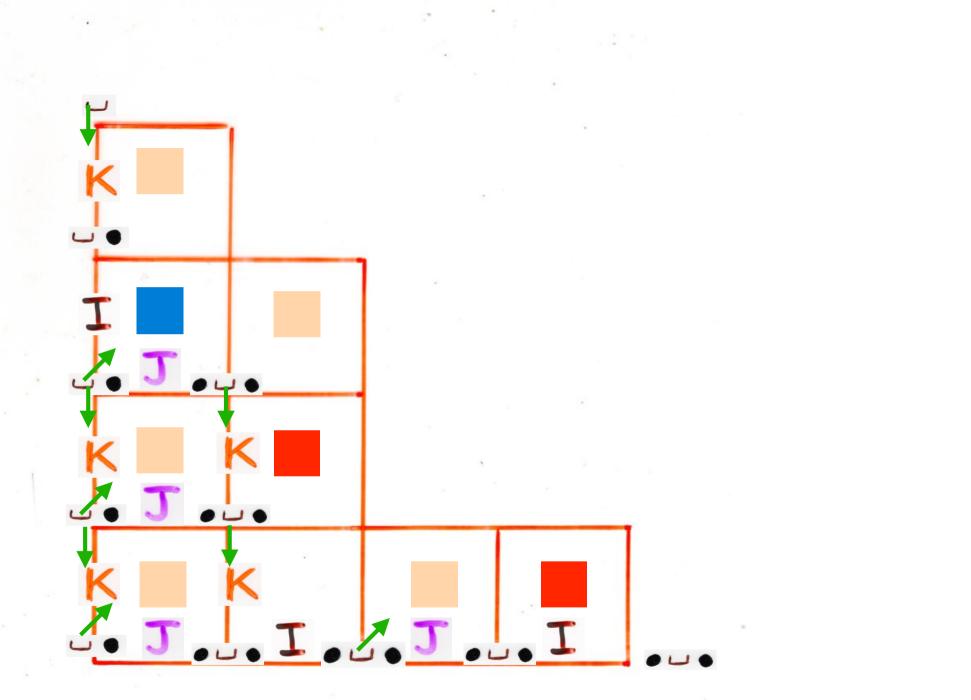
•

.

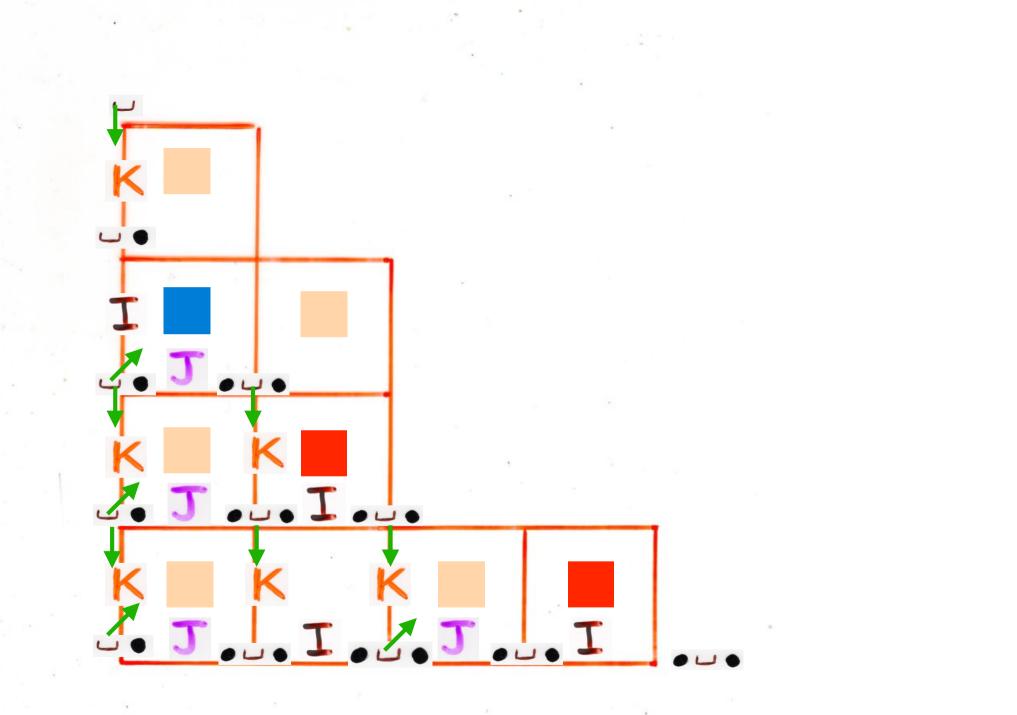
.

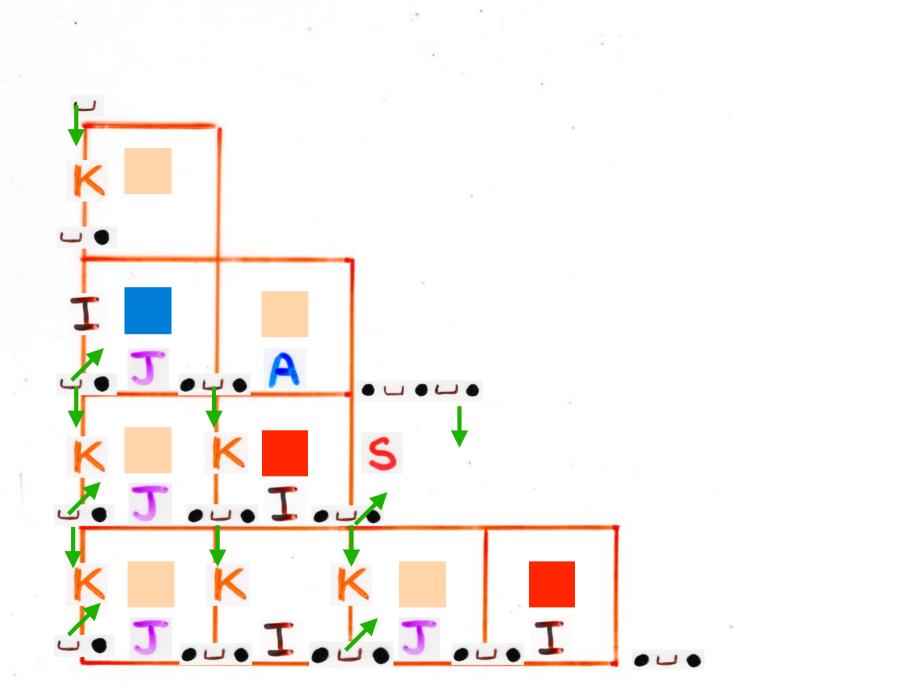




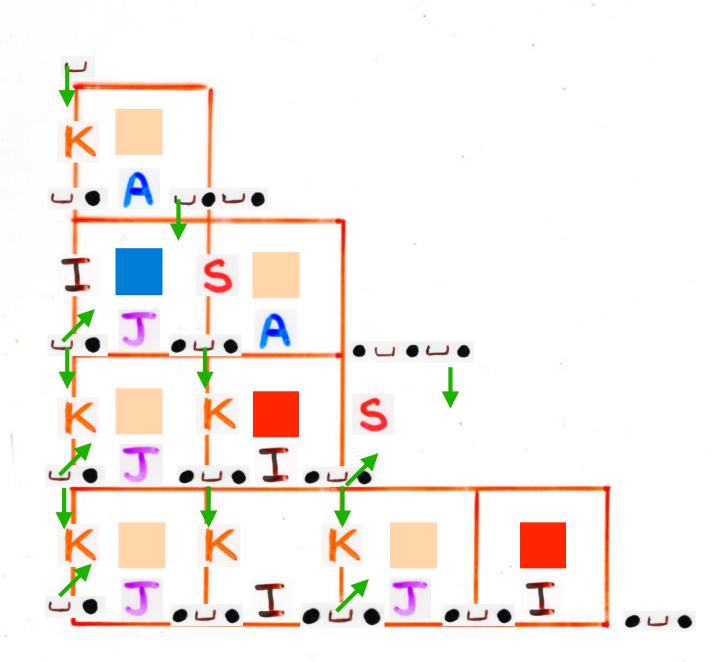


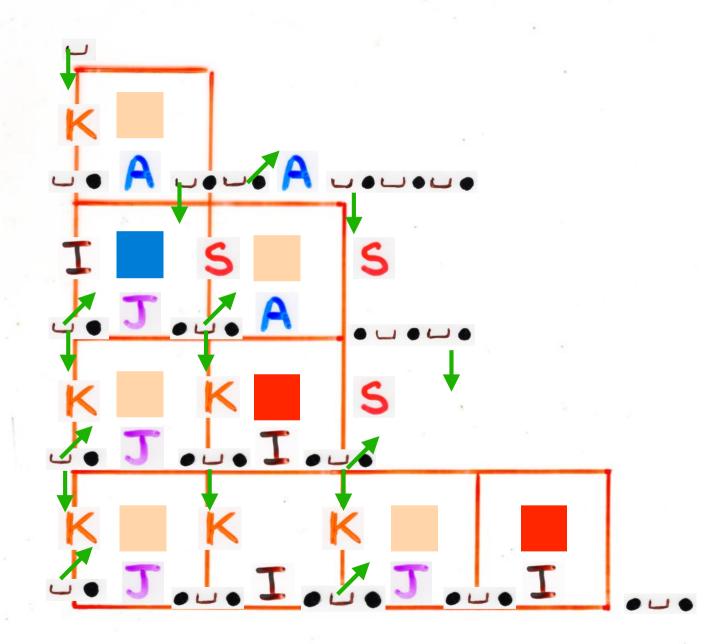
κ

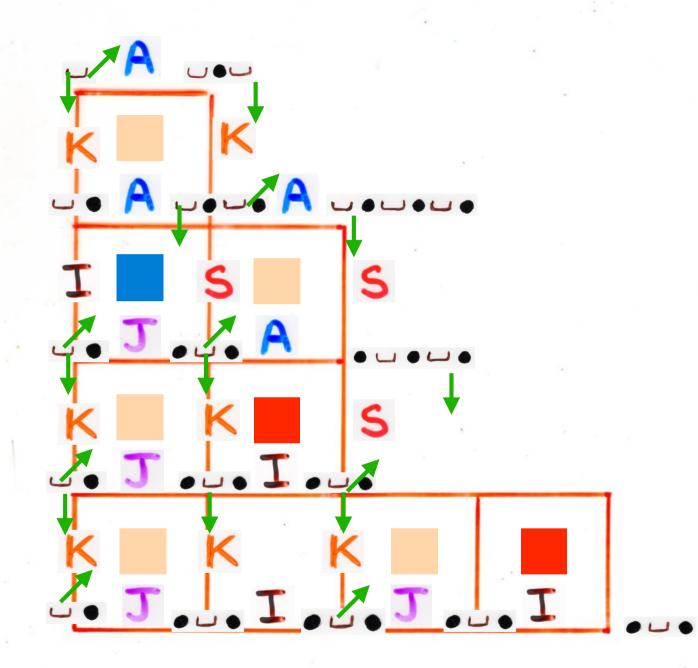


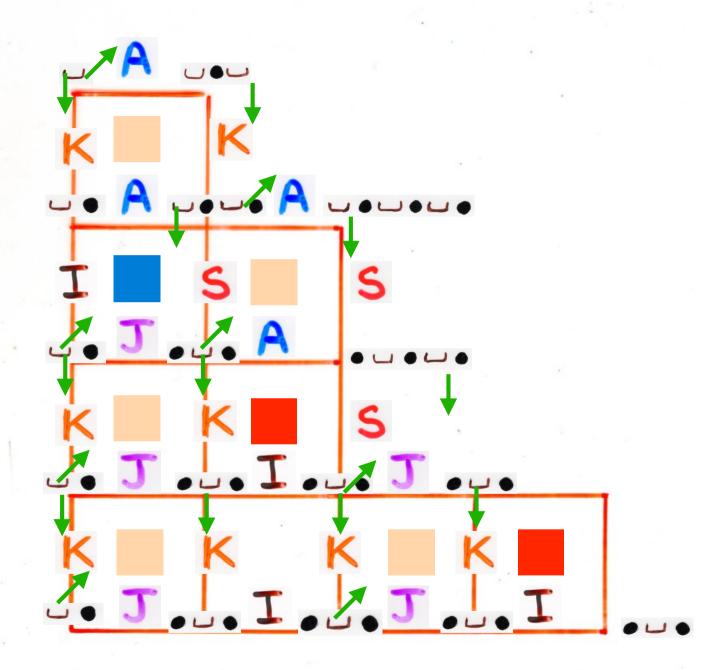


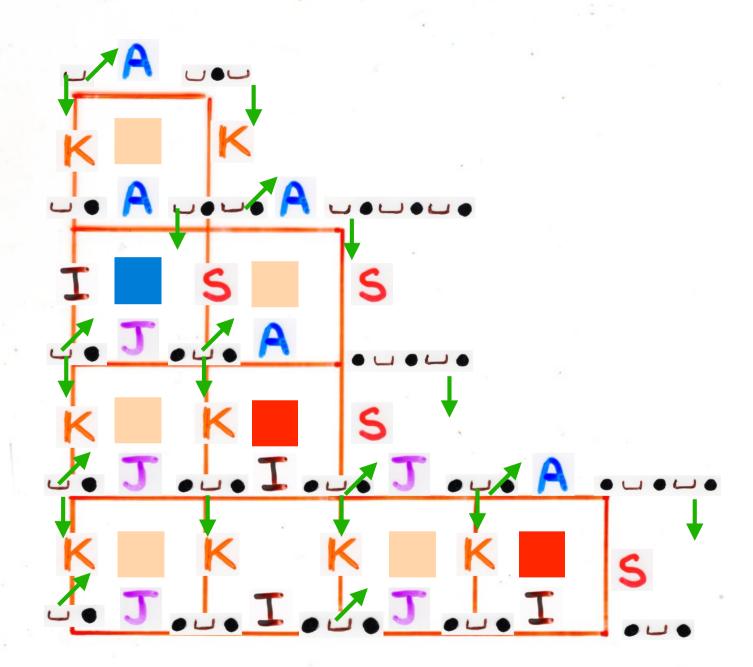
×.

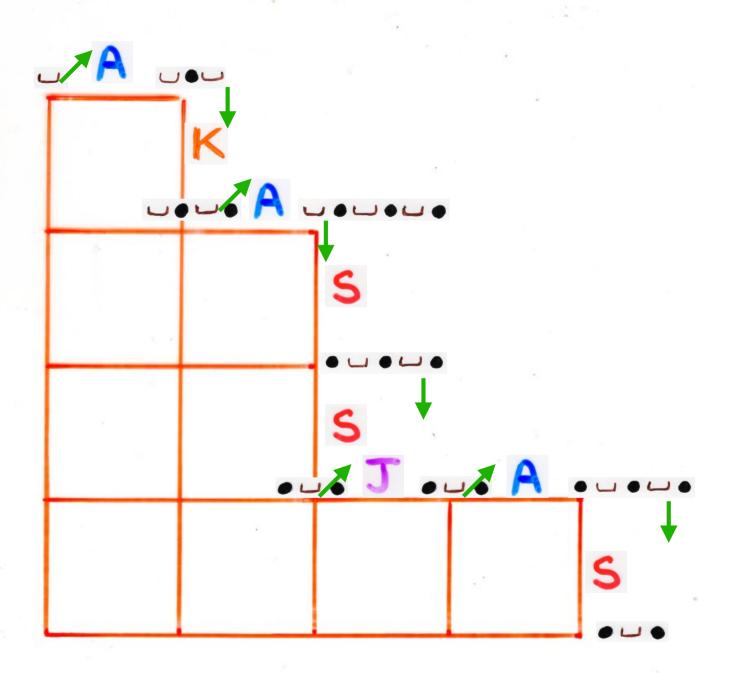


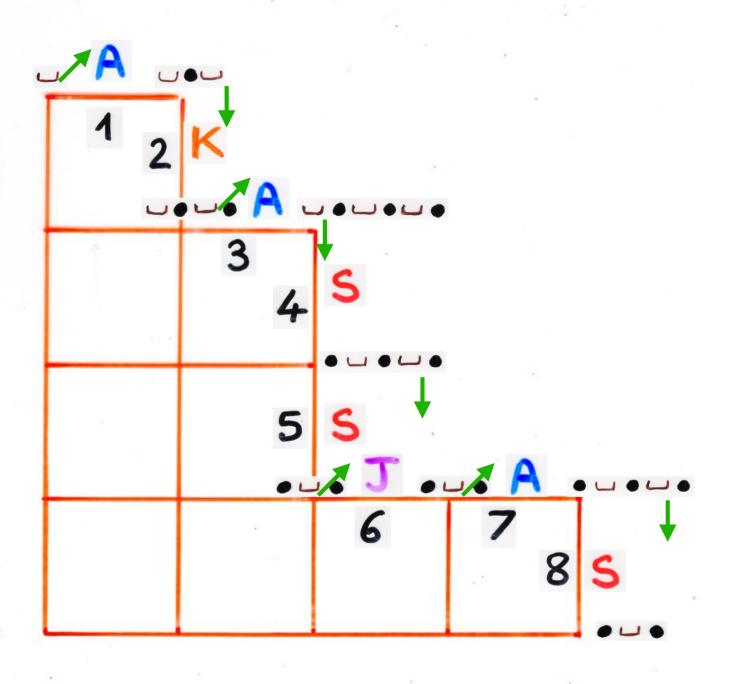


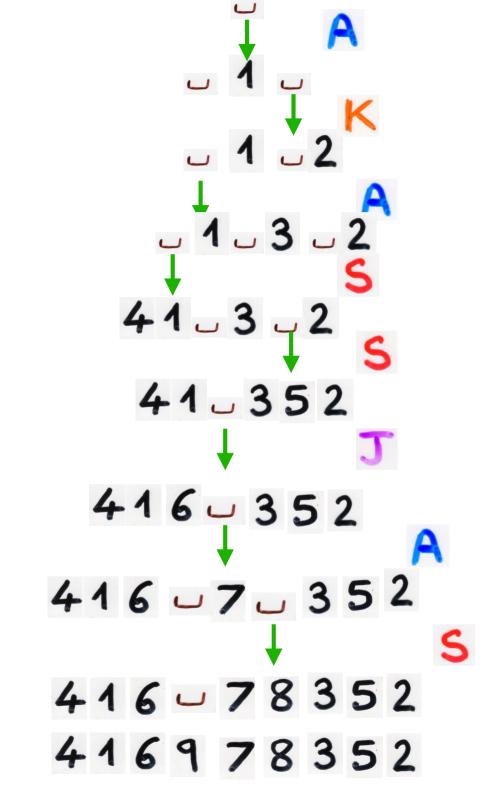












two bijections one theorem

Prop T alternative "exchange - fusion" talleau inverse algorithm "local" Tabgovithm from DE = ED + E + D

exchange-delete algorithm with the inverse permutation

416978352 297183564

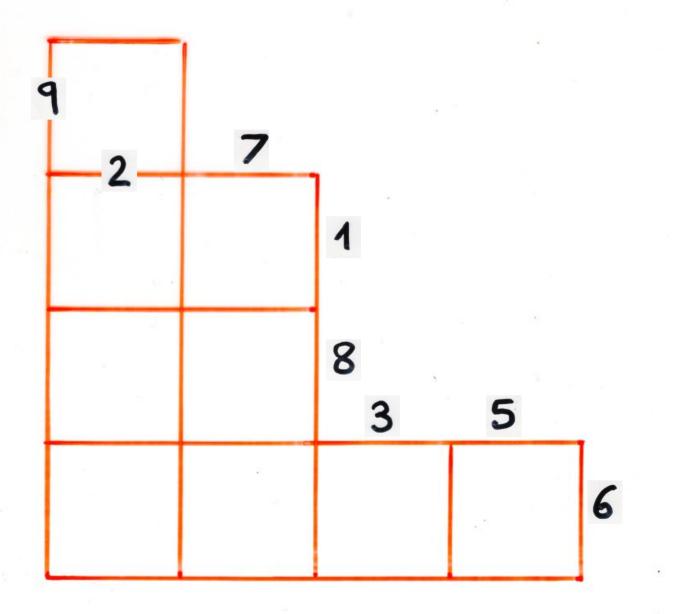
(with a variant: keep the min instead of the max)

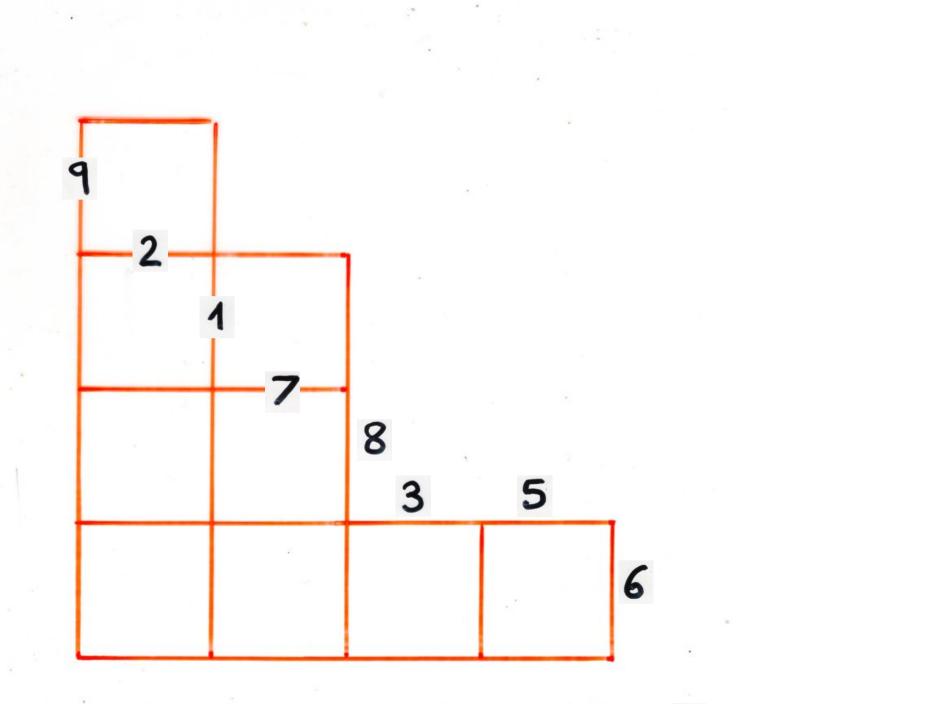
2				
	9 7			
		1		
		8	5	
				6

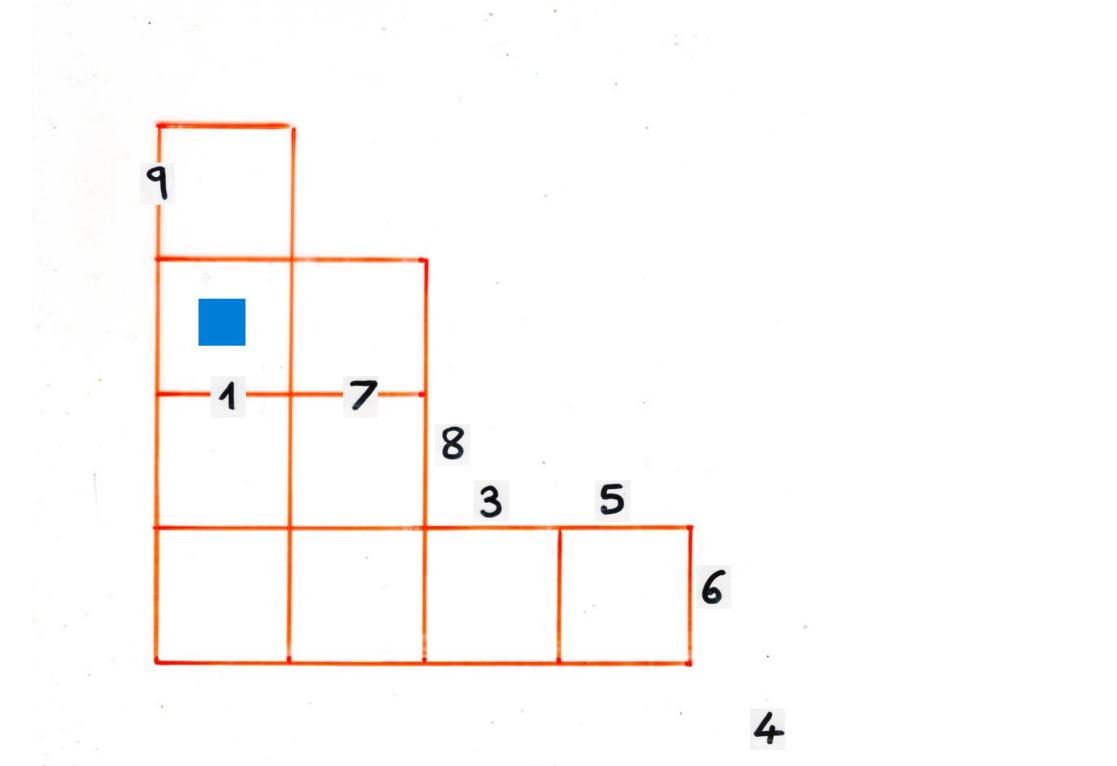
.

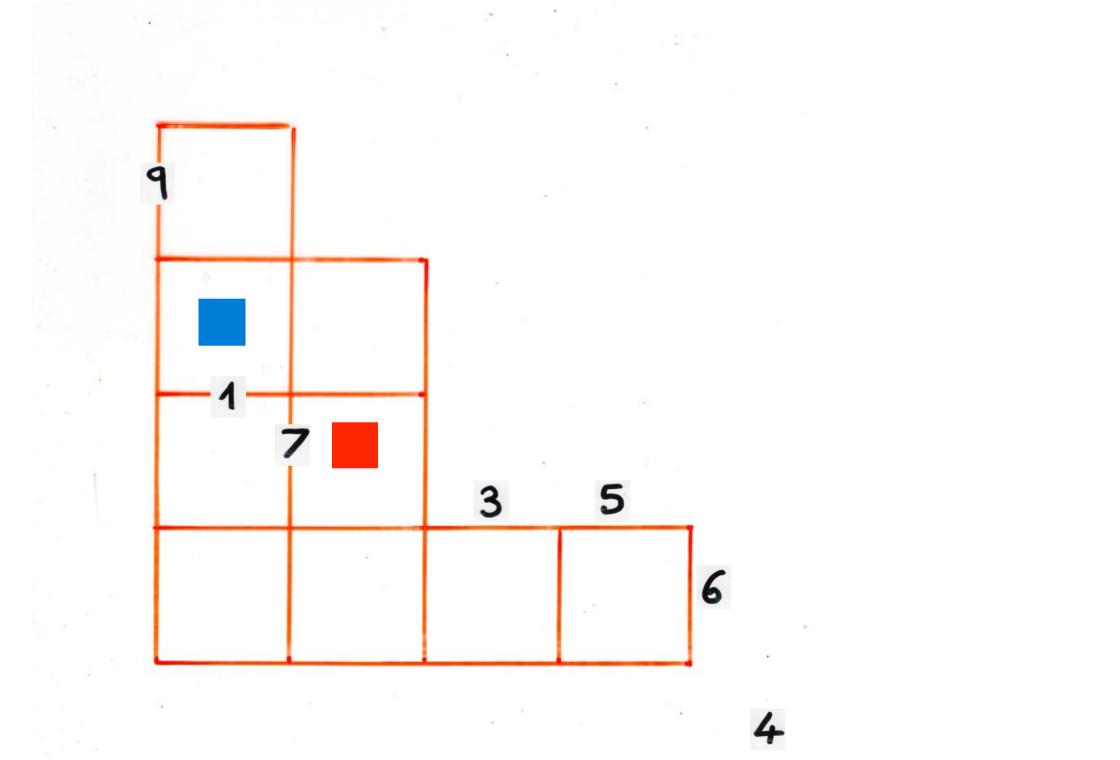
.

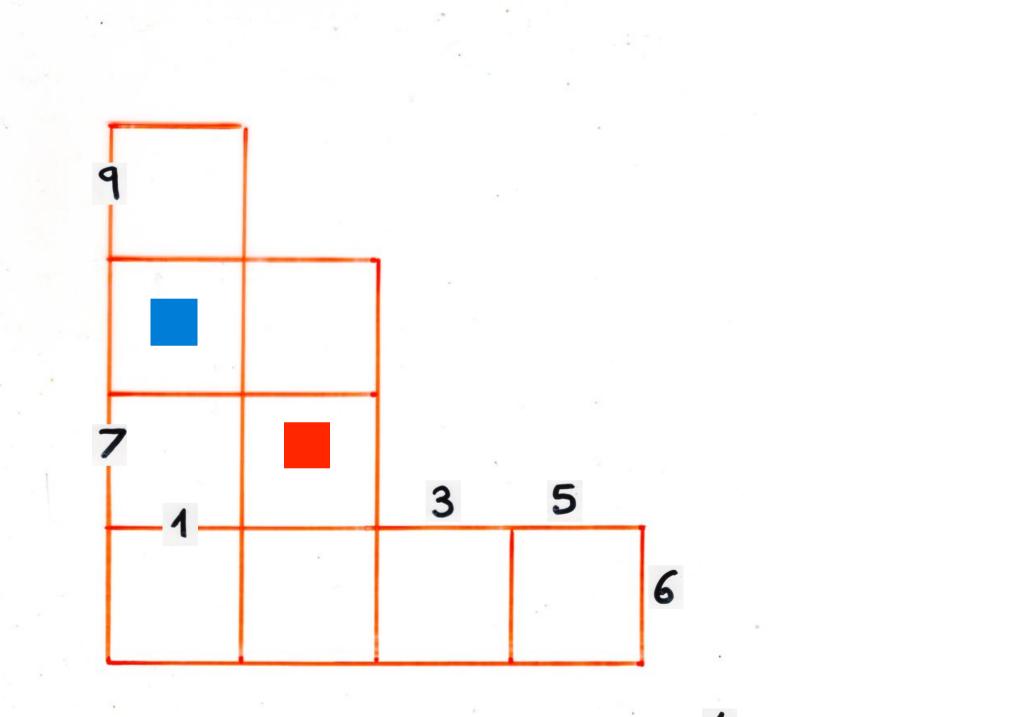
•

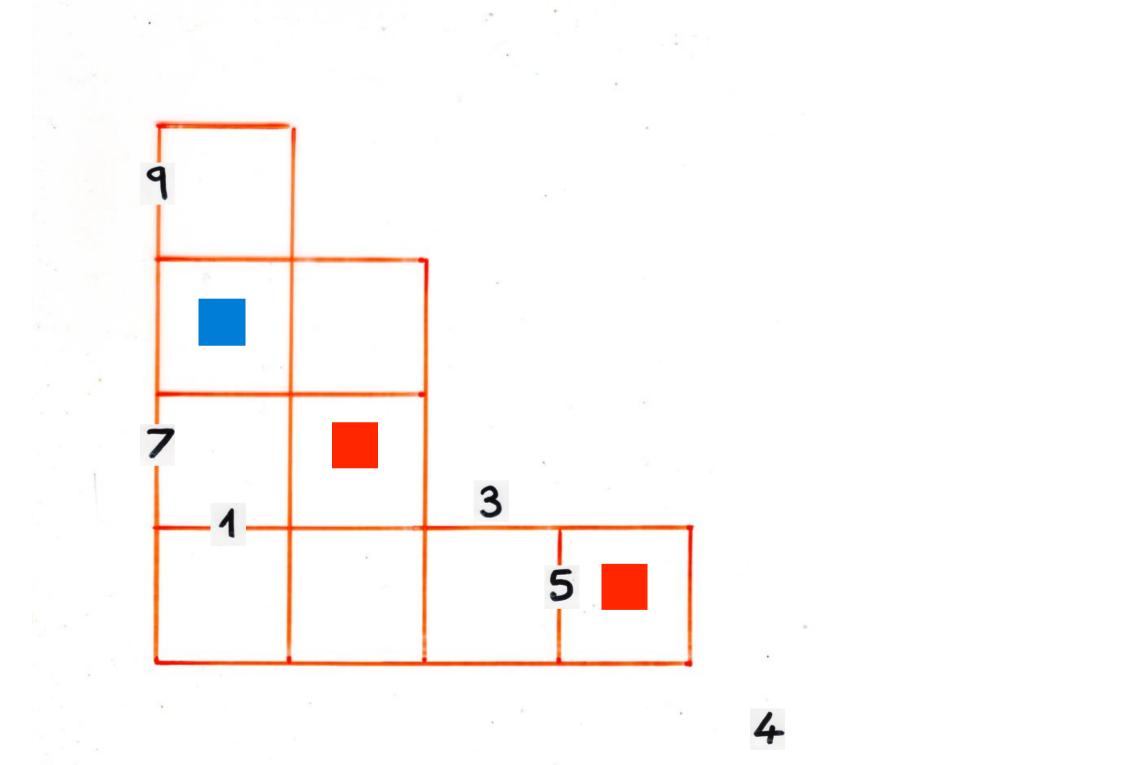


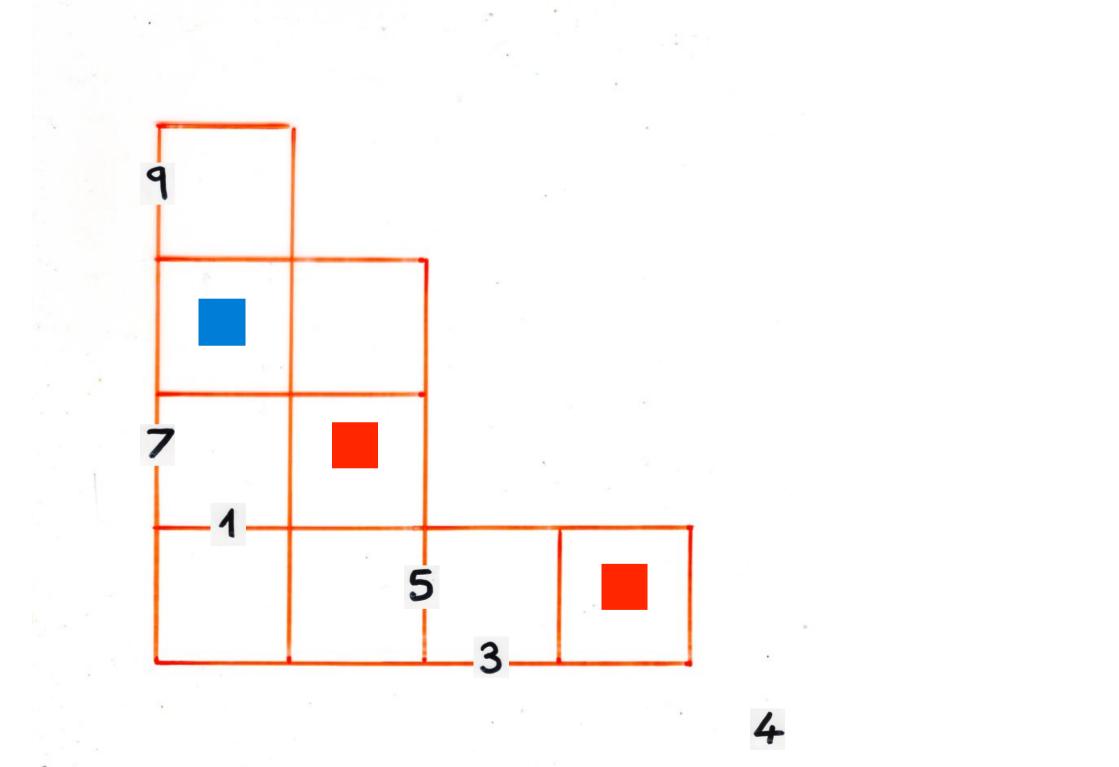


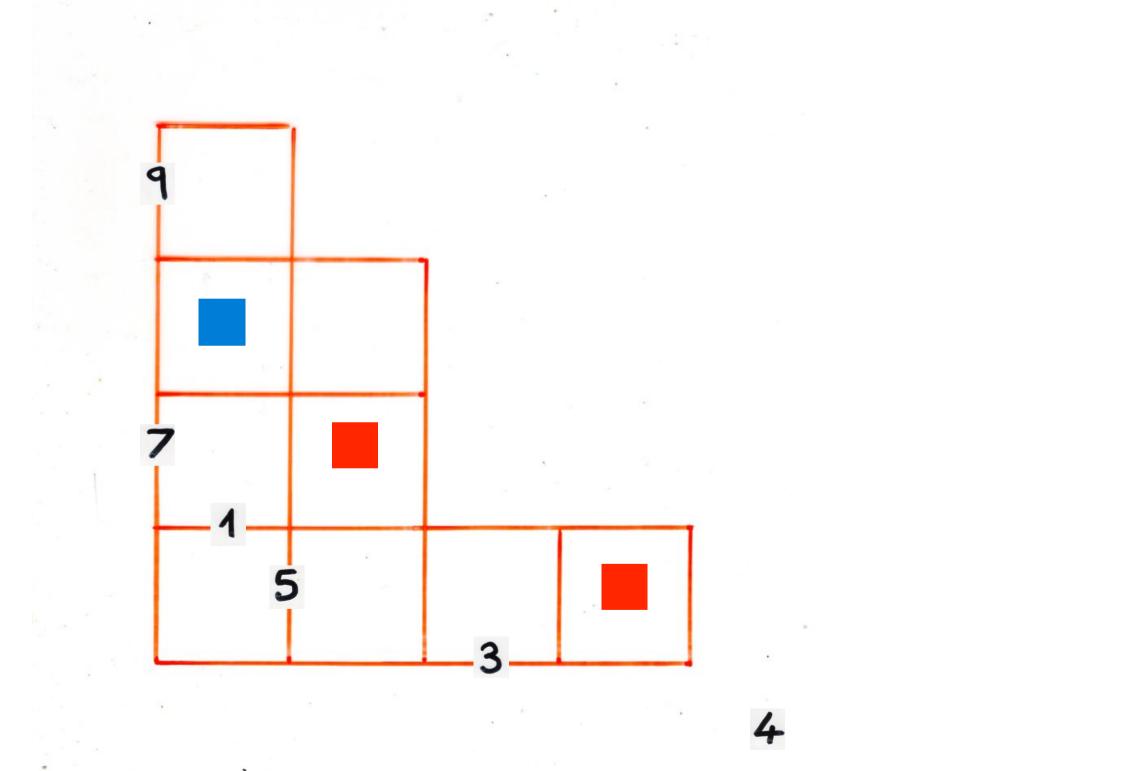


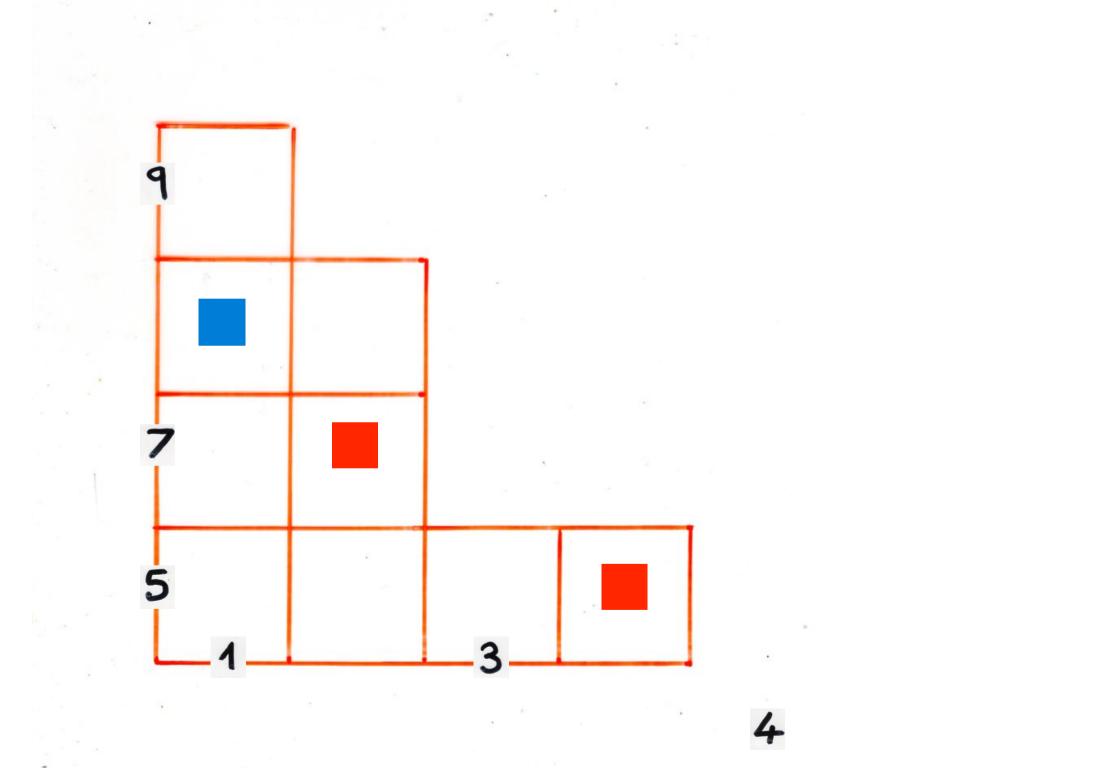












.

proof of the main theorem

Prop. Talleau "exchange - fusion" talleau inverse algorithm "local" from DE = ED+E+D

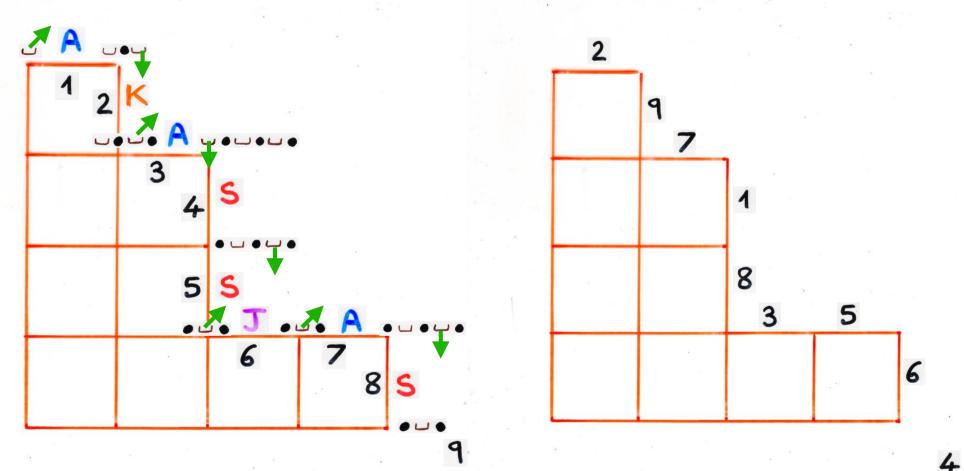
Proof of the equivalence

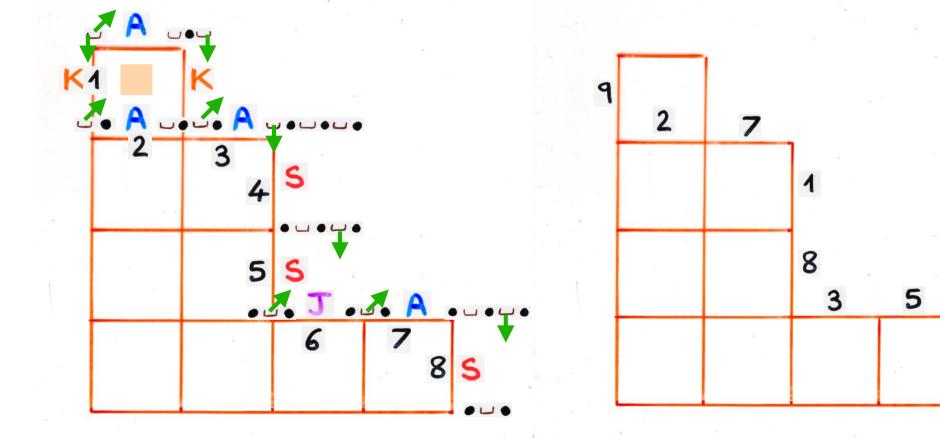
local rules (commutation diagrams) and Laguerre histories

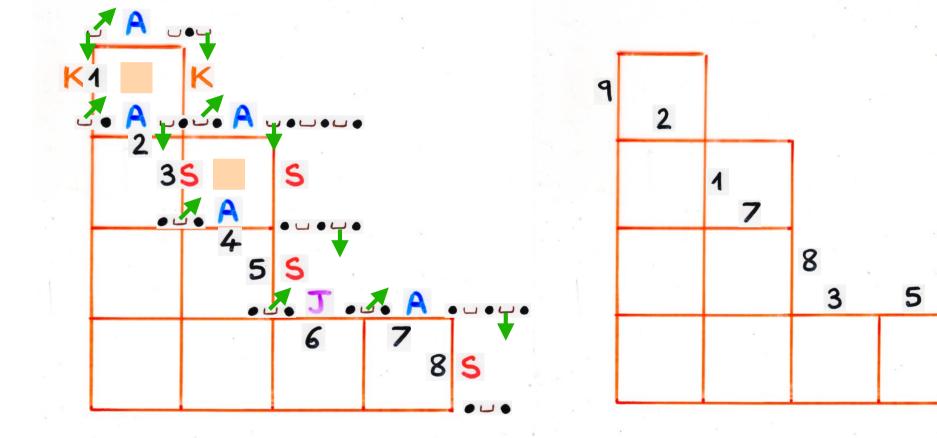
exchange-fusion (or exchange-delete) algorithm

416978352

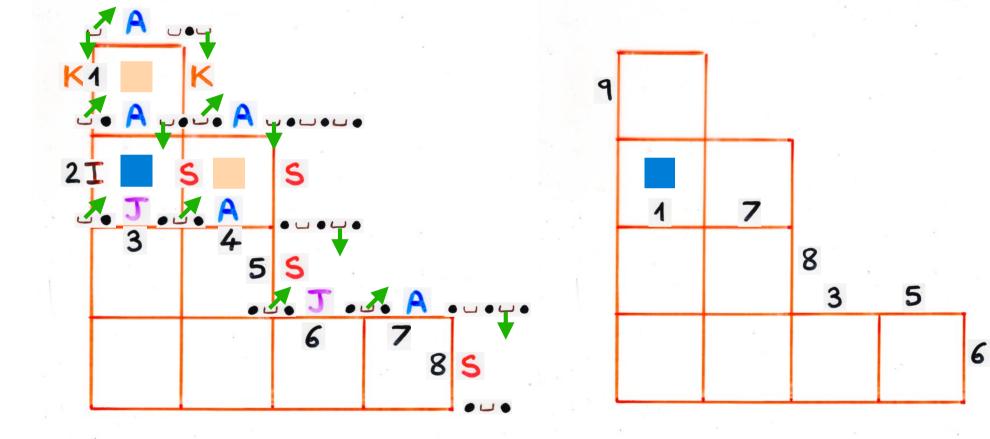
 $\sigma = \tau^{-1}$





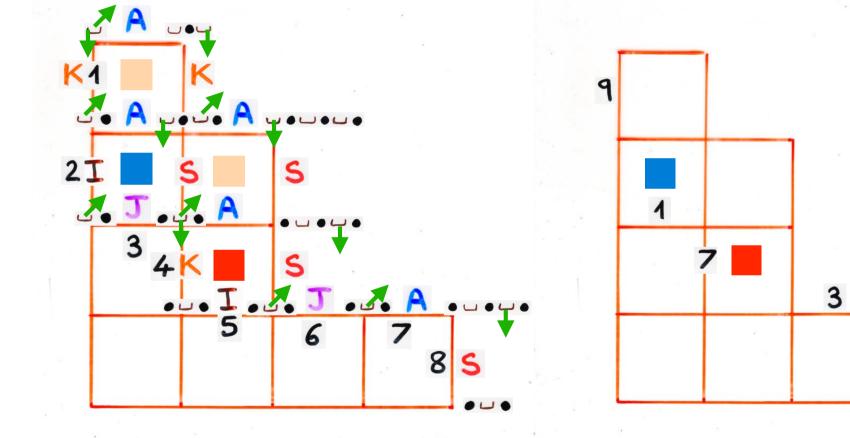


921783564 9 1783564



3 69784513 69784 1

9 1783564 9 17 3564

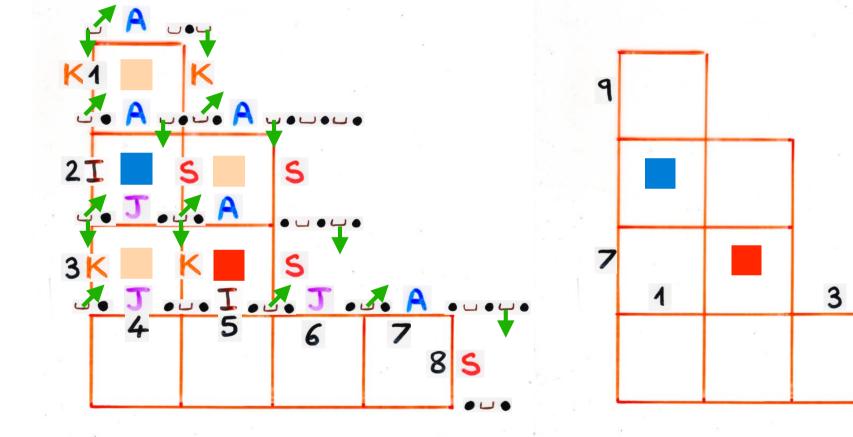


4

6

3 6978451 4 69783 1

9 1783564 9 71 3564

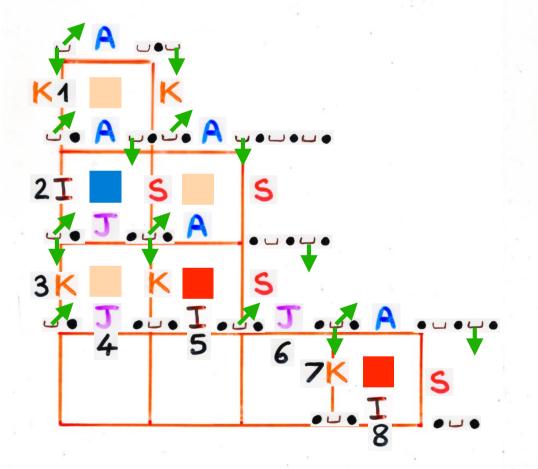


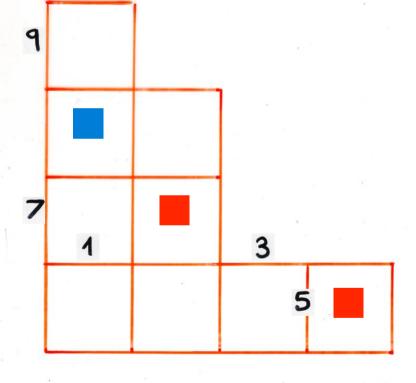
4

6

4 69783 1 4 697 3 1

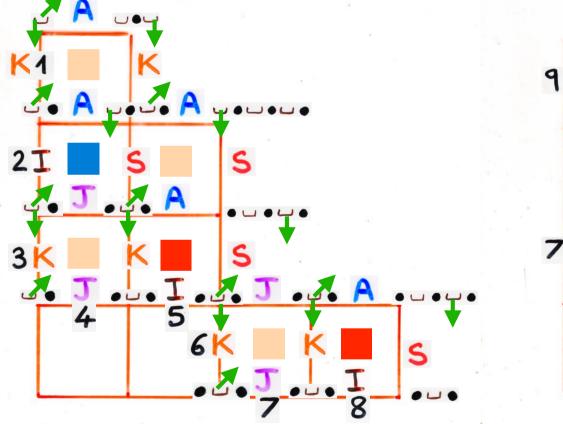
9 71 3564 9 71 35 4

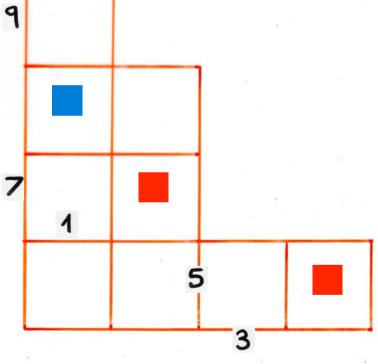




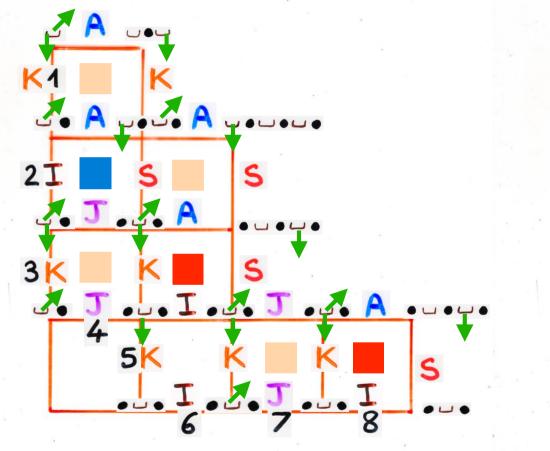
4 697 3 1 4 796 3 1

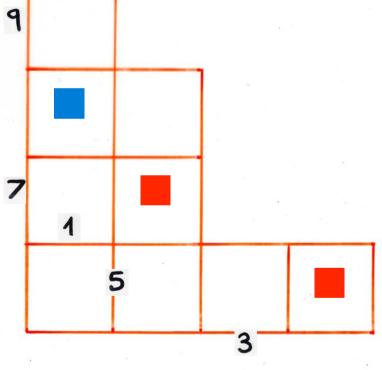
971354971534





4 796 3 1 4 795 3 1





4 795 3 1 5 794 3 1

715 3 4 9 751 3 4 9

