Course IMSc Chennai, India January-March 2017

Enumerative and algebraic combinatorics, a bijective approach:

commutations and heaps of pieces

(with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30

www.xavierviennot.org/coursIMSc2017

Xavier Viennot CNRS, LaBRI, Bordeaux

www.xavierviennot.org

Chapter 1
Commutation monoids
and
heaps of pieces:

basic definitions
(2)

IMSc, Chennai 9 January 2017 from the previous lecture

commutation relation Cantineflexive symmetric

and congruence of A* generated by the commutations

ab = ba iff acb

. acb ⇒ bCa

A = {a,b,c,d} equivalence ilass w= abcadabcda abdea commutation

equivalence class
of the word
$$w \in A$$

product in the
commutation monoid

[u]·[v] = [uv]

independent of the choices
of representants w and v

heap definition • P set (of basic pieces) · E binary relation on P symmetrice reflexive (dependency relation) heap E, finite set of pairs

(x, i) x EP, i EN (called pieces)

Projection level (i) $(\alpha, i), (\beta, j) \in E, \alpha \subset \beta \Rightarrow i \neq j$ (ii) (d, i) = E, i>0 => 3 = P, als, (B, i-1) E E

Heaps monoid

H(P,E)

product of two heaps

EFF

Equivalence commutation monoids and heaps monoids

ex: heaps of dimers on
$$\mathbb{N}$$
 $P = \{ [i,41] = \sqrt{i}, i > 0 \}$
 C

commutations

 $\sqrt{i} = \sqrt{i} \text{ if } |i-j| > 2$

Commutation relation relation
$$\mu \equiv \nu \Rightarrow \varphi(u) = \varphi(\nu)$$
 $\mu \equiv \nu \Rightarrow \varphi(u) = \varphi(\nu)$
 $\mu \equiv \nu \Rightarrow \varphi(u) = \varphi(\nu)$

Proposition is an isomorphism monoids

Heap (P, E) ~ P/= C

heaps
monoid

commutation
monoid

complementary
relation

Proofs of Lemma 1, 2 and Proposition

Lemma 1.

$$u = v \Rightarrow \varphi(u) = \varphi(v)$$

Proof: obvious

$$\frac{Lemma 2}{\varphi(u) = \varphi(v)} \Rightarrow u = v$$

proof of Lemma 2 with

Cartier-Foata normal form

Cartier-Foata normal form

Lemma Every element [w] & L(A,C)

has a unique decomposition into blacks

[w] = [w] [w] ... [wh]

where each wi is a word where the letters "commute" two by two (yCZ)

for every letter Z of the (jth) black, there exist a letter y of the jth black such that y's (i.e. does not "commute")

in particular all the letters of each Winare distinct (Cantineflexive)

Proof Let & the set of letters y of w such that w = c y 4 (i.e. applying commutations y can be put as the first letter) . the letters of Fi "commute" 2 by 2 w = ... y ... z ... y, z & Fa [M] is the equivalence class of the product · Let 1/2 be the set of letters y of w such that w = wy 1/2 [w] is the equivalence class of the product of the letters of \$5 and these letters "commute" 2 by 2 --- etc -- for \$, ---, F

example $W = \sigma_2 \sigma_3 \sigma_5 \sigma_4 \sigma_4 \sigma_3$ $= \sigma_2 \sigma_5 / \sigma_3 \sigma_4 \sigma_4 \sigma_3$ $= \sigma_2 \sigma_5 / \sigma_3 \sigma_4 / \sigma_4 \sigma_3$ $= \sigma_2 \sigma_5 / \sigma_4 \sigma_3 / \sigma_4 / \sigma_3$

unicity -- obvious

Let $[w] = [w_i] \dots [w_r]$ be the Cartier-Toata normal form
of $[w] \in L(A,C)$.

Each block $[w_i]$ corresponds to the elements of the heap (p(w)) located at level i-1

$$\frac{Lemma 2}{\varphi(u) = \varphi(v)} \Rightarrow u = v$$

= 02 05 07 03 07 04 03 Proof of Lemma 2 $W = C_2 C_2 C_4 C_4 C_3 C_5 C_5$ 0 5 1 7 2 5 3 5 4 7 5 5 6

$$\frac{\text{Lemma 1}}{u} \Rightarrow \varphi(u) = \varphi(v)$$

Lemma 2

$$\varphi(u) = \varphi(v) \Rightarrow u = v$$

Definition
$$\varphi([u]) = \varphi(u)$$

Proposition is an isomorphism monoids

[w] equivalence class of the word $w \in A$ • product in the commutation monoid

[u]•[v] = [uv]

independent of the choices E of representants und V

exercise using Cartier-Foata normal form prove that the commutation monoid L(A,C) is simplificable, i.e. $uv = uv' \Rightarrow v = v'$ $uv = uv' \Rightarrow u = u'$

lexicographic normal form (« Knuth »)

lexicographic normal form
(Knuth)

H(P, E)

total order on P

set of basic pieces

minimal

letter of a class [w]

[w] = [yx]

Cartier-Foata normal form

$$[w] = [w_{1}][w_{2}] \cdots [w_{r}]$$

minimal

letter: any letter of my piece of the associated heap at level 0

Lemma In the commutation class [w], the smallest word $V = V_1 \cdots V_n$ for the lexicographic order is obtained by taking V_1 the smallest minimal letter of [w], $V = V_1 v_2$, then V_2 the smallest minimal letter of [we], then

minimal

maximal

$$[w] = [u, z]$$

-p(-t) = y

exercise

quasi-partition of integers

partition of an integer n

Ferrers

quasi-partition de n n= >1+12+ ... + >n hi > him -1 i=1, -, K-1

quasi-partitions

Auluck 1951

Andrews 1981 neciprocal of

Rogers-Ramanyan identities

exercise 1 using lexicographic normal form find a bijection between heaps of dimers on $N_{+} = \{1,2,---\}$ and quesi-partitions $(\lambda_{1},--,\lambda_{k})$ - the number k of parts will be the number of dimers of the heap

- find an interpretation with the corresponding heap of dimers of $n = \lambda_1 + ... + \lambda_R$

exercises

pyramids and semi-pyramids of dimers

exercise semi-pyramid of dimers
on IN

the unique maximal piece has
projection [0,1]

Catalan number
$$C_n = \frac{1}{(n+1)} \binom{2n}{n}$$

exercise 2 Using exercise 1. (about quasi-partitions and lexicographic normal form) find a bijection between semi-pyramids of dimers on IV having n dimers and Dyck paths of length 2n.

exercise 3 pyramid of dimers on Z. (more difficult) up to translation

exercise 3 pyramid of dimers on Z. (more difficult) up to translation

between pyramids of dimers on Z such that the projection of the maximal piece is [0,1] and bilateral Dyck paths starting with step

• thus the number of pyramid of dimens on \mathbb{Z} up to translation is $\frac{1}{2} \binom{2n}{n}$

Posets

Poset (partially ordered set) $(E, \leq) \leq \text{order relation}$

 \leq order relation on E• reflexive $x \leq x$ all $x \in E$ • antisymmetric $x \leq y$ and $y \leq x \Rightarrow x = y$ • transitive $x \leq y$ and $y \leq z \Rightarrow x \leq z$ for all $x, y, z \in E$

Poset (partially ordered set) $(E, \leq) \leq \text{order relation}$

covering relation

 $x,y \in E$, y covers xiff $x \prec y$ and $x \prec z \prec y \Rightarrow \begin{cases} z = x \\ z = y \end{cases}$ (strict)

the interval [x,y] is reduced to 72,y}

Hasse diagrams

minimal clement of a poset.

linear extension
of a poset
(E, <)

$$\frac{\text{Def-}}{2} \frac{f}{f} : E \longrightarrow [1, n] \quad \text{eigention}$$

$$2 \leq y \Rightarrow f(x) \leq f(y)$$

some examples

Youngtableau

shape 1

binary tree

Heaps and posets

poset associated to a heap

Def. Poset (E, x) associated to a heap E transitive closure of the relation (d,i) < (B, j) (d & B, i < j

minimal

maximal

$$[w] = [u, z]$$

heaps and linear extensions

Proposition Let $w \in \mathbb{R}^+$ and [w] the equivalence class $[w] \in L(A,C)$.

For P = A and $E = \overline{C}$, let $E \in H(P,E)$ the associated heap $F = \overline{C}(w)$ and P are in bijection with the linear extensions of (F, \preceq)

commutations.

commutations.

Complements

Heaps, poset and graphs

Prop. every poset can be realized as a heap of pieces

Def E poset set of chains of E strongly covers E iff: Vs, t∈ E, s < t and t covers s, = 18€ [such that s, t ∈ 8

base
$$B = \Gamma$$

Pièces $P = \mathcal{Z}(B)$
 $\pi = Id$
 $\Delta \in E \longrightarrow P_{a} = \{ \forall \in \Gamma, \Delta \in \forall \}$

commutations. C = E W= dB & d &

Corollary For any poset E, counting the number of linear extensions of E is the same problem as counting the number of words in a commutation dass of a commutation monoid.

-> number of Young tableaux hook-length formula

Proposition Every heap monoid is isomorphic to a "heap of subsets of a set X" monoid.

