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Introduction

In a manifold endowed with space-time metric gµν , the local
geometric properties such as distance, area, volume,
curvature etc. are described by the metric gµν .

Local propagating degrees of freedom described by an
appropriate action functional also depend on the metric.

On the other hand, topological (global) properties are
independent of the metric.

For example, the size and shape of a knot in a three
dimensional manifold do depend on the metric, its
‘knotedness’ does not.
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Knots that can be deformed into each other by continous
deformations are not topologically distinct.
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RH Trefoil

LH Trefoil
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Knots that can be deformed into each other by continous
deformations are not topologically distinct.
Those which can not be so deformed are topologically
distinct.

Unknot

RH Trefoil

LH Trefoil

Borromean ringsUnlink Hopf link

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 3/31



Topological Quantum Field Theory (TQFT)

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 4/31



Topological Quantum Field Theory (TQFT)

A QFT that captures topological properties has to be
independent of gµν .

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 4/31



Topological Quantum Field Theory (TQFT)

A QFT that captures topological properties has to be
independent of gµν .

(i) The action functional S of such a theory has to be
independent of the metric:

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 4/31



Topological Quantum Field Theory (TQFT)

A QFT that captures topological properties has to be
independent of gµν .

(i) The action functional S of such a theory has to be
independent of the metric: δS

δgµν
= 0.

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 4/31



Topological Quantum Field Theory (TQFT)

A QFT that captures topological properties has to be
independent of gµν .

(i) The action functional S of such a theory has to be
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independent of gµν .

(i) The action functional S of such a theory has to be
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[d(fields)] expS would also be
independent of the metric:
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Topological Quantum Field Theory (TQFT)

A QFT that captures topological properties has to be
independent of gµν .

(i) The action functional S of such a theory has to be
independent of the metric: δS

δgµν
= 0.

The partition function Z =
∫

[d(fields)] expS would also be
independent of the metric:

δ
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Z =
∫

[d(fields)]
(

δS
δgµν

)

expS = 0. (Schwarz-type TQFT)

(ii) It is also possible that δS
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6= 0 but

δ
δgµν

Z =
∫

[d(fields)]
(

δS
δgµν

)

expS = 0. (Witten-type)

Reviews: Birmingham et al, Topological field theory, Phys. Rep. 209 (1991),129.

Kaul, Govindarajan, Ramadevi, Schwarz type topological quantum field theories, in

Encyclopedia of Mathematical Physics, 2006, 494, hep-th/0504100.
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A TQFT that describes the topological properties of
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Chern-Simons theory

A TQFT that describes the topological properties of
3-manifolds with or without knots and links in it is CS theory.

The theory is described on a three-manifold M (say S3) by
the metric independent action functional:

S = k
4π

∫

M d3x ǫµνα tr
(

Aµ∂νAα + 2
3AµAνAα

)

k is an integer. We may take the gauge group to be SU(2).

Observables are constructed from Wilson loop functionals:

W [(K,R)] = tr P exp
∮

K dxµAR
µ , K is a knot

where AR
µ = Aa

µT
a
R with T a

R as the representation matrices of
a representation R of the gauge group.

W [(K,R)] is metric independent and also gauge invariant.
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More generally, we have the link functionals.
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More generally, we have the link functionals.
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1 Ki with representations Ri on the

component knots Ki, we have the link functional:

W [L; R1, R2, ..., Rn] =
∏n

1 WRi
[Ki]
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1 Ki with representations Ri on the
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W [L; R1, R2, ..., Rn] =
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1 WRi
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or link functionals:
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More generally, we have the link functionals.

For a link L = ∪n
1 Ki with representations Ri on the

component knots Ki, we have the link functional:

W [L; R1, R2, ..., Rn] =
∏n

1 WRi
[Ki]

The observables are the functional averages of these knot
or link functionals:

V [L; R1, R2 · · ·Rn] =
∫

[DA] W [L; R1···Rn] e
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∫

[DA] eikS
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More generally, we have the link functionals.

For a link L = ∪n
1 Ki with representations Ri on the

component knots Ki, we have the link functional:

W [L; R1, R2, ..., Rn] =
∏n

1 WRi
[Ki]

The observables are the functional averages of these knot
or link functionals:

V [L; R1, R2 · · ·Rn] =
∫

[DA] W [L; R1···Rn] e
ikS

∫

[DA] eikS

These do not depend on the metric of the 3-mfd and hence
are not sensitive to the geometric properties of the knots
and links, but depend only on their topological properties.
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More generally, we have the link functionals.

For a link L = ∪n
1 Ki with representations Ri on the

component knots Ki, we have the link functional:

W [L; R1, R2, ..., Rn] =
∏n

1 WRi
[Ki]

The observables are the functional averages of these knot
or link functionals:

V [L; R1, R2 · · ·Rn] =
∫

[DA] W [L; R1···Rn] e
ikS

∫

[DA] eikS

These do not depend on the metric of the 3-mfd and hence
are not sensitive to the geometric properties of the knots
and links, but depend only on their topological properties.

Besides, these depend on the group representations
R1, R2, . . . living on the knots.
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Early discussion of Hamiltonian quantization:
Bos and Nair: Phys. Letts. B223, (1989), 61; Int.J.Mod.Phys. A5, (1990), 959.
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be described by CS theory: A.S. Schwarz, Baku Int. Conference (1987).
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An important ingredient in this construction is the deep
connection between CS theory on a mfd with 2−D boundary
Σ and the gauge Wess-Zumino conformal field theory on Σ.
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Early discussion of Hamiltonian quantization:
Bos and Nair: Phys. Letts. B223, (1989), 61; Int.J.Mod.Phys. A5, (1990), 959.

Schwarz conjectured that Jones polynomial invariant may
be described by CS theory: A.S. Schwarz, Baku Int. Conference (1987).

Witten demonstrated this to the case with spin 1/2 reps. on
the knots in SU(2) theory: E. Witten, CMP, 121 (1989), 351.

V [L, spin 1/2] = Jones Polynomial [L] .

An important ingredient in this construction is the deep
connection between CS theory on a mfd with 2−D boundary
Σ and the gauge Wess-Zumino conformal field theory on Σ.

V [Unknot, spin 1/2] = q1/2 + q−1/2, where q = exp
(

2πi
k+2

)

.

V [LH trefoil, spin 1/2] = q1/2 + q3/2 + q5/2 − q9/2.

V [RH trefoil, spin 1/2] = q−1/2 + q−3/2 + q−5/2
− q−9/2.
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Early discussion of Hamiltonian quantization:
Bos and Nair: Phys. Letts. B223, (1989), 61; Int.J.Mod.Phys. A5, (1990), 959.

Schwarz conjectured that Jones polynomial invariant may
be described by CS theory: A.S. Schwarz, Baku Int. Conference (1987).

Witten demonstrated this to the case with spin 1/2 reps. on
the knots in SU(2) theory: E. Witten, CMP, 121 (1989), 351.

V [L, spin 1/2] = Jones Polynomial [L] .

An important ingredient in this construction is the deep
connection between CS theory on a mfd with 2−D boundary
Σ and the gauge Wess-Zumino conformal field theory on Σ.

V [Unknot, spin 1/2] = q1/2 + q−1/2, where q = exp
(

2πi
k+2

)

.

V [LH trefoil, spin 1/2] = q1/2 + q3/2 + q5/2 − q9/2.

V [RH trefoil, spin 1/2] = q−1/2 + q−3/2 + q−5/2
− q−9/2.

V [RH Hopf link, spin 1/2] = 1 + q−1 + q−2 + q−3.
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If we place spin 1 representations on the knots, we obtain
different polynomial invariant:
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If we place spin 1 representations on the knots, we obtain
different polynomial invariant:

V [L, spin 1] = Kauffman polynomial.

Instead of SU(2) as the gauge group, we can also study CS
theory with gauge group SU(N).
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If we place spin 1 representations on the knots, we obtain
different polynomial invariant:

V [L, spin 1] = Kauffman polynomial.

Instead of SU(2) as the gauge group, we can also study CS
theory with gauge group SU(N).

The polynomial invariant obtained from this theory with
N -dimensional representation on all the knots are the
two-variable HOMFLY invariants, with q ≡ exp

(

2πi
k+N

)

and N

as two variables.
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If we place spin 1 representations on the knots, we obtain
different polynomial invariant:

V [L, spin 1] = Kauffman polynomial.

Instead of SU(2) as the gauge group, we can also study CS
theory with gauge group SU(N).

The polynomial invariant obtained from this theory with
N -dimensional representation on all the knots are the
two-variable HOMFLY invariants, with q ≡ exp

(

2πi
k+N

)

and N

as two variables.

VSU(N)[L, N dim rep] = HOMFLY (q,N).
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If we place spin 1 representations on the knots, we obtain
different polynomial invariant:

V [L, spin 1] = Kauffman polynomial.

Instead of SU(2) as the gauge group, we can also study CS
theory with gauge group SU(N).

The polynomial invariant obtained from this theory with
N -dimensional representation on all the knots are the
two-variable HOMFLY invariants, with q ≡ exp

(

2πi
k+N

)

and N

as two variables.

VSU(N)[L, N dim rep] = HOMFLY (q,N).

Thus, for any compact gauge group G, we have a new
polynomial knot/link invariant.
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Complete and explicit solution of CS theory
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Complete and explicit solution of CS theory

CS theory is an exactly solvable theory.
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Complete and explicit solution of CS theory

CS theory is an exactly solvable theory.

Say, for the gauge group SU(2), the functional average of
any Wilson link functional with arbitrary spin j1, j2, j3, . . . ,
representations living on the component knots can be
explicitly and exactly obtained.
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CS theory is an exactly solvable theory.

Say, for the gauge group SU(2), the functional average of
any Wilson link functional with arbitrary spin j1, j2, j3, . . . ,
representations living on the component knots can be
explicitly and exactly obtained.

Construction of this complete and explicit solution exploits
the close connection of knots/links with braids.
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Complete and explicit solution of CS theory

CS theory is an exactly solvable theory.

Say, for the gauge group SU(2), the functional average of
any Wilson link functional with arbitrary spin j1, j2, j3, . . . ,
representations living on the component knots can be
explicitly and exactly obtained.

Construction of this complete and explicit solution exploits
the close connection of knots/links with braids.
(RKK: Commun. Math.Phys. 162, 1994, 289.)
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Complete and explicit solution of CS theory

CS theory is an exactly solvable theory.

Say, for the gauge group SU(2), the functional average of
any Wilson link functional with arbitrary spin j1, j2, j3, . . . ,
representations living on the component knots can be
explicitly and exactly obtained.

Construction of this complete and explicit solution exploits
the close connection of knots/links with braids.
(RKK: Commun. Math.Phys. 162, 1994, 289.)

Artin Braids: Braids of unoriented single colour strands
form a group.
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Complete and explicit solution of CS theory

CS theory is an exactly solvable theory.

Say, for the gauge group SU(2), the functional average of
any Wilson link functional with arbitrary spin j1, j2, j3, . . . ,
representations living on the component knots can be
explicitly and exactly obtained.

Construction of this complete and explicit solution exploits
the close connection of knots/links with braids.
(RKK: Commun. Math.Phys. 162, 1994, 289.)

Artin Braids: Braids of unoriented single colour strands
form a group.

An arbitrary braid can be generated by the elementary
generators Bi:
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B i

i+1i
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B i

i+1i

Braid generators obey elementary braiding relations:
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B i

i+1i

Braid generators obey elementary braiding relations:

BiBi+1Bi = Bi+1BiBi+1, BiBj = BjBi |i− j| ≥ 2
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B i

i+1i

Braid generators obey elementary braiding relations:

BiBi+1Bi = Bi+1BiBi+1, BiBj = BjBi |i− j| ≥ 2

i i+2 i i+2

=

=

i ii+1 i+1
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Knots/links from braids
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by
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Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.

B

For a matrix representation of braid B written as a word in
terms of the matrix representations of generators Bi, plating
constitutes a specific matrix element.
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.

B

For a matrix representation of braid B written as a word in
terms of the matrix representations of generators Bi, plating
constitutes a specific matrix element.

< Φ|B|Φ > = knot/link invariant
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.

B

For a matrix representation of braid B written as a word in
terms of the matrix representations of generators Bi, plating
constitutes a specific matrix element.

< Φ|B|Φ > = knot/link invariant

Different matrix representations lead to different invariants.
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Knots/links from braids

Theorem (Birman): A knot/link can be constructed (though
not uniquely) from an appropriate braid by plating.

B

For a matrix representation of braid B written as a word in
terms of the matrix representations of generators Bi, plating
constitutes a specific matrix element.

< Φ|B|Φ > = knot/link invariant

Different matrix representations lead to different invariants.
Jones polynomial corresponds to a specific representation.
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Oriented coloured braids
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Oriented coloured braids

Braids where strands have orientation as well as colour
(spin j representation) form a GROUPOID.
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Oriented coloured braids

Braids where strands have orientation as well as colour
(spin j representation) form a GROUPOID.

There are many identities here.
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Oriented coloured braids

Braids where strands have orientation as well as colour
(spin j representation) form a GROUPOID.

There are many identities here.

Composition of two braids is also defined only when the
orientations and colours on the strands match at the joining
ends.
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Oriented coloured braids

Braids where strands have orientation as well as colour
(spin j representation) form a GROUPOID.

There are many identities here.

Composition of two braids is also defined only when the
orientations and colours on the strands match at the joining
ends.
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Braid

j = (j, ε )
ε = +, −
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Oriented coloured braids

Braids where strands have orientation as well as colour
(spin j representation) form a GROUPOID.

There are many identities here.

Composition of two braids is also defined only when the
orientations and colours on the strands match at the joining
ends.
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j
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j
4

j
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j
6 j 

1
j 
2

j 
3

j 
4

j 
5

l1 l 2 l 5
l 4l 3

Braid

j = (j, ε )
ε = +, −

The assignments (l̂1 , l̂2, l̂3, l̂4, l̂5) are a permutation of
(ĵ∗1 , ĵ

∗
2 , ĵ

∗
3 , ĵ

∗
4 , ĵ

∗
5), where ĵi = (ji,±) and ĵ∗i = (ji,∓).
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An arbitrary braid made from oriented and coloured strands
can be generated by the generators Bi:
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An arbitrary braid made from oriented and coloured strands
can be generated by the generators Bi:
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An arbitrary braid made from oriented and coloured strands
can be generated by the generators Bi:

j i+1
j
i

*
j i+1

*
j i

Bi

The generators obey elementary braiding relations:
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An arbitrary braid made from oriented and coloured strands
can be generated by the generators Bi:

j i+1
j
i

*
j i+1

*
j i

Bi

The generators obey elementary braiding relations:

BiBi+1Bi = Bi+1BiBi+1, BiBj = BjBi |i− j| ≥ 2
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Coloured oriented braids in CS theory

Consider a three-mfd S3 with two three-balls scooped out of
it:

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 14/31



Coloured oriented braids in CS theory

Consider a three-mfd S3 with two three-balls scooped out of
it: this is a three manifold with two boundaries, each an S2.
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Coloured oriented braids in CS theory

Consider a three-mfd S3 with two three-balls scooped out of
it: this is a three manifold with two boundaries, each an S2.

Place a coloured oriented braid inside this three-mfd:
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Coloured oriented braids in CS theory

Consider a three-mfd S3 with two three-balls scooped out of
it: this is a three manifold with two boundaries, each an S2.

Place a coloured oriented braid inside this three-mfd:
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Coloured oriented braids in CS theory

Consider a three-mfd S3 with two three-balls scooped out of
it: this is a three manifold with two boundaries, each an S2.

Place a coloured oriented braid inside this three-mfd:
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ball
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The assignments (l̂1, l̂2, .....l̂2n) are a permutation of
(ĵ∗1 , ĵ

∗
2 , ...., ĵ

∗
2n−1, ĵ

∗
2n).
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Now an arbitrary braid can be represented by a sequence
of elementary generators Bi:
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Now an arbitrary braid can be represented by a sequence
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Now an arbitrary braid can be represented by a sequence
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CS theory in a mfd with boundaries can be described by
WZ SU(2)k cft on the boundaries, which are two S2 here.
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CS theory in a mfd with boundaries can be described by
WZ SU(2)k cft on the boundaries, which are two S2 here.

The conformal blocks associated with the punctures S2

provide basis to describe the matrix representations of Bi’s.
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CS theory in a mfd with boundaries can be described by
WZ SU(2)k cft on the boundaries, which are two S2 here.

The conformal blocks associated with the punctures S2

provide basis to describe the matrix representations of Bi’s.
Since odd indexed B2ℓ+1 commute with each other, we can
describe B2ℓ+1 in a basis where these are diagonal.
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CS theory in a mfd with boundaries can be described by
WZ SU(2)k cft on the boundaries, which are two S2 here.

The conformal blocks associated with the punctures S2

provide basis to describe the matrix representations of Bi’s.
Since odd indexed B2ℓ+1 commute with each other, we can
describe B2ℓ+1 in a basis where these are diagonal.
Alternatively, in another basis, we can have B2ℓ diagonal.
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CS theory in a mfd with boundaries can be described by
WZ SU(2)k cft on the boundaries, which are two S2 here.

The conformal blocks associated with the punctures S2

provide basis to describe the matrix representations of Bi’s.
Since odd indexed B2ℓ+1 commute with each other, we can
describe B2ℓ+1 in a basis where these are diagonal.
Alternatively, in another basis, we can have B2ℓ diagonal.
These two basis are related by the duality properties of cft.
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 16/31



The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1

where Cj = j(j + 1) and q = exp
(

2πi
k+2

)

.
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1

where Cj = j(j + 1) and q = exp
(

2πi
k+2

)

.

The two correspond to a right-handed half-twist and a
left-handed half-twist introduced by the braiding.
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1

where Cj = j(j + 1) and q = exp
(

2πi
k+2

)

.

The two correspond to a right-handed half-twist and a
left-handed half-twist introduced by the braiding.

This allows us to construct new matrix representations of
the braiding generators.
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1

where Cj = j(j + 1) and q = exp
(

2πi
k+2

)

.

The two correspond to a right-handed half-twist and a
left-handed half-twist introduced by the braiding.

This allows us to construct new matrix representations of
the braiding generators. RKK: Commun. Math. Phys.162, (1994) 289.
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The eigenvalues of the braiding matrices are given by the
monodromy properties of these conformal blocks:

λ
(+)
ℓ (ĵ, ĵ′) = (−)j+j′−ℓq(Cj+Cj′)/2+Cmin(j.j′)−Cℓ/2 if ǫǫ′ = +1

λ
(−)
ℓ (ĵ, ĵ′) = (−)|j−j′|−ℓq|Cj−Cj′ |/2−Cℓ/2 if ǫǫ′ = −1

where Cj = j(j + 1) and q = exp
(

2πi
k+2

)

.

The two correspond to a right-handed half-twist and a
left-handed half-twist introduced by the braiding.

This allows us to construct new matrix representations of
the braiding generators. RKK: Commun. Math. Phys.162, (1994) 289.

From these, by plating, invariant for any coloured link is
obtained:
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This procedure provides an explicit method of evaluating
the functional average of Wilson link functionals.
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q1/2−q−1/2 q = exp
(

2πi
k+2

)

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 17/31



This procedure provides an explicit method of evaluating
the functional average of Wilson link functionals.
For example, the invariants for the unknot and trefoil carrying
spin j rep.: Vj [Unknot] = [2j + 1], [x] = qx/2−q−x/2
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)−3
;

λ
(+)
ℓ (j, j) = (−)2j+ℓq2cj−cℓ/2 , cj = j(j + 1).
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Vj1j2j3 [IMSc logo]

= [2j1+1][2j2+1][2j3+1]
∑

(

λ
(−)
q1 (j1j2)

)−1
λ
(−)
q2 (j2j3)λ

(+)
p0 (j1j2)

(

λ
(−)
p1 (j1j3)

)−1

×

(

λ
(+)
n2 (j1j2)

)−1 (

λ
(−)
m1 (j2j3)

)−1
λ
(−)
ℓ1

(j1j2)λ
(−)
ℓ2

(j1j3)

× a(0)(q)





j1 j1

j2 j2

j3 j3



 a(p)(q)





j1 j2

j1 j3

j2 j3



 a(p)(n)





j2 j1

j3 j1

j2 j3





× a(m)(n)





j2 j1

j3 j2

j1 j3



 a(m)(ℓ)





j2 j1

j2 j3

j1 j3



 a(0)(ℓ)





j2 j2

j1 j1

j3 j3




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(i) Several questions in the knot theory have been resolved
by studying the properties of the new invariants so obtained.
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Applications

(i) Several questions in the knot theory have been resolved
by studying the properties of the new invariants so obtained.

For example, invariants with spin 3/2 representation living
on the knots are powerful enough to detect the chirality of
certain knots whose Jones, HOMFLY or Kauffman
ploynomial invariants are not sensitive to their chirality.
P. Ramadevi, T.R. Govindarajan, RKK: Mod. Phys. Letts. A10 (1995) 1635.
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(ii) These CS knot/link invariants have also been used to
construct a certain class of 3-manifold invariants:
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certain knots whose Jones, HOMFLY or Kauffman
ploynomial invariants are not sensitive to their chirality.
P. Ramadevi, T.R. Govindarajan, RKK: Mod. Phys. Letts. A10 (1995) 1635.

(ii) These CS knot/link invariants have also been used to
construct a certain class of 3-manifold invariants:
RKK: Chern-Simons theory, knot invariants, vertex models and three-manifold invariants,
hep-th/9804122; P. Ramadevi and Swatee Naik: Commun. Math. Phys. 209, (2000) 29;

RKK and P. Ramadevi: Commun. Math. Phys. 217, (2001), 295.
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(iii) Matrix representations of braid generators are also
intimately related to exactly solvable vertex models.
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(iii) Matrix representations of braid generators are also
intimately related to exactly solvable vertex models.

The new matrix representation found here can also be used
to construct new vertex models. This way infinitely many
new solutions of the Yang-Baxter equations emerge.
RKK: Chern-Simons theory, knot invariants, vertex models and three-manifold invariants,

hep-th/980412, Puri Conference (1996).
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(iv) In recent years, the new braid representations and the
consequent knot/link invariants obtained through the SU(2)
CS theory have found applications in quantum computing:
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(iv) In recent years, the new braid representations and the
consequent knot/link invariants obtained through the SU(2)
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Lecture Notes in Physics 847, Springer-Verlag, 2012.
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(iii) Matrix representations of braid generators are also
intimately related to exactly solvable vertex models.

The new matrix representation found here can also be used
to construct new vertex models. This way infinitely many
new solutions of the Yang-Baxter equations emerge.
RKK: Chern-Simons theory, knot invariants, vertex models and three-manifold invariants,

hep-th/980412, Puri Conference (1996).

(iv) In recent years, the new braid representations and the
consequent knot/link invariants obtained through the SU(2)
CS theory have found applications in quantum computing:
Combinatorial framework for topological quantum computing:
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V. Subramaniam, P. Ramadevi: quant-ph/021005.
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Black hole in 3 + 1 dimensions
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Black hole in 3 + 1 dimensions

⋆ Black hole properties are completely described by its
event horizon (Holography Principle).

IMSC@50: Topology and Differential Geometry in Quantum Physics , The Institute of Mathematical Sciences, Chennai, March 14, 2012 – p. 21/31



Black hole in 3 + 1 dimensions

⋆ Black hole properties are completely described by its
event horizon (Holography Principle).

⋆ The event horizon (EH) of a black hole (say,
Schwarzschild) is a three dimensional null boundary ∆ of
spacetime that can be accessed by an asymptotic observer.
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⋆ Black hole properties are completely described by its
event horizon (Holography Principle).

⋆ The event horizon (EH) of a black hole (say,
Schwarzschild) is a three dimensional null boundary ∆ of
spacetime that can be accessed by an asymptotic observer.

⋆ ∆ is R× S2 topologically.

⋆ It has a degenerate intrinsic three-metric, signature: (0, +, +).

⋆ Such a mfd can not support any propagating degrees of
freedom.
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⋆ Such a mfd can not support any propagating degrees of
freedom.

⋆ The horizon d.o.f. have to be entirely global or topological.
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⋆ Black hole properties are completely described by its
event horizon (Holography Principle).

⋆ The event horizon (EH) of a black hole (say,
Schwarzschild) is a three dimensional null boundary ∆ of
spacetime that can be accessed by an asymptotic observer.

⋆ ∆ is R× S2 topologically.

⋆ It has a degenerate intrinsic three-metric, signature: (0, +, +).

⋆ Such a mfd can not support any propagating degrees of
freedom.

⋆ The horizon d.o.f. have to be entirely global or topological.

Horizon degrees of freedom can be described only by a
TQFT.
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⋆ The event horizon (EH) of a black hole (say,
Schwarzschild) is a three dimensional null boundary ∆ of
spacetime that can be accessed by an asymptotic observer.

⋆ ∆ is R× S2 topologically.

⋆ It has a degenerate intrinsic three-metric, signature: (0, +, +).

⋆ Such a mfd can not support any propagating degrees of
freedom.

⋆ The horizon d.o.f. have to be entirely global or topological.

Horizon degrees of freedom can be described only by a
TQFT.

RKK: Entropy of Quantum Black Holes, SIGMA 8, (2012), 005.
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provided by LQG which has the SU(2) gauge invariance.
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The boundary theory should also share this gauge
invariance.
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invariance:
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SU(2) CS theory as horizon theory

Theory of gravity in a boost fixed gauge is described by a
gauge theory of the local rotation group: SU(2).

A canonical Hamiltonian formulation of theory of gravity is
provided by LQG which has the SU(2) gauge invariance.

Thus the bulk spacetime theory has SU(2) gauge
invariance:

The boundary theory should also share this gauge
invariance.

Thus, the horizon degrees of freedom have to described by
a TQFT with SU(2) gauge invariance.

Possible theories are SU(2) CS theory or BF theory.

CS and BF theories capture the same topological
properties of the 3-mfds.
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.

For example, this has been explicitly displayed for
Schwarzshild BH expressed in terms of Kruskal-Szekeres
coordinates in:
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.

For example, this has been explicitly displayed for
Schwarzshild BH expressed in terms of Kruskal-Szekeres
coordinates in: RKK and P. Majumdar: Phys. Rev. D 83, (2011) 024038.
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.

For example, this has been explicitly displayed for
Schwarzshild BH expressed in terms of Kruskal-Szekeres
coordinates in: RKK and P. Majumdar: Phys. Rev. D 83, (2011) 024038.

Coordinates of the horizon: v, θ and φ, the horizon is
described SU(2) CS equations (with J i ∼ Σi

θφ = 1
2ǫ

ijkejθe
k
φ

and k ∼ r2H):
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.

For example, this has been explicitly displayed for
Schwarzshild BH expressed in terms of Kruskal-Szekeres
coordinates in: RKK and P. Majumdar: Phys. Rev. D 83, (2011) 024038.

Coordinates of the horizon: v, θ and φ, the horizon is
described SU(2) CS equations (with J i ∼ Σi

θφ = 1
2ǫ

ijkejθe
k
φ

and k ∼ r2H): F i
vθ = 0 , F i

vφ = 0 , k
2πF

i
θφ = −J i.
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These follow as e.o.m. from the CS action:
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Indeed, when detail properties of the geometric quantities
such as the tetrads and curvature on the horizon are
analysed, these expressed in appropriate variables are
seen to obey e.o.m. of SU(2) CS theory with sources.

For example, this has been explicitly displayed for
Schwarzshild BH expressed in terms of Kruskal-Szekeres
coordinates in: RKK and P. Majumdar: Phys. Rev. D 83, (2011) 024038.

Coordinates of the horizon: v, θ and φ, the horizon is
described SU(2) CS equations (with J i ∼ Σi

θφ = 1
2ǫ

ijkejθe
k
φ

and k ∼ r2H): F i
vθ = 0 , F i

vφ = 0 , k
2πF

i
θφ = −J i.

These follow as e.o.m. from the CS action:
SCS = k

2π

∫

∆ ǫabc
(

Ai
a∂bA

i
c +

1
3ǫ

ijkAi
aA

j
bA

k
c

)

+
∫

∆ JaiAi
a

where Jai = (J i, 0, 0).
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Black hole micro-states

Quantizing this CS theory then provides a framework to
count the horizon micro-states.
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Quantizing this CS theory then provides a framework to
count the horizon micro-states.

Quantum theory is described by quantizing the SU(2) CS
theory in the bdy ∆ with bulk solder form
J i = Σi

θφ ≡ 1
2ǫ

ijkejθe
k
φ as the external source.
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Black hole micro-states

Quantizing this CS theory then provides a framework to
count the horizon micro-states.

Quantum theory is described by quantizing the SU(2) CS
theory in the bdy ∆ with bulk solder form
J i = Σi

θφ ≡ 1
2ǫ

ijkejθe
k
φ as the external source.

LQG is described by spin networks made from functionals
of Wilson line integral as configuration operators. The
corresponding momentum operators are the flux operators
constructed from the solder forms:

∫

S2 d
2σΣi

θφ.
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Black hole micro-states

Quantizing this CS theory then provides a framework to
count the horizon micro-states.

Quantum theory is described by quantizing the SU(2) CS
theory in the bdy ∆ with bulk solder form
J i = Σi

θφ ≡ 1
2ǫ

ijkejθe
k
φ as the external source.

LQG is described by spin networks made from functionals
of Wilson line integral as configuration operators. The
corresponding momentum operators are the flux operators
constructed from the solder forms:

∫

S2 d
2σΣi

θφ.

. .

.

. .
. ...
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Quantum states are composite states of the boundary
theory and the bulk theory:
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|Ψ > = |boundary CS > |bulk LQG >.
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Quantum states are composite states of the boundary
theory and the bulk theory:

|Ψ > = |boundary CS > |bulk LQG >.

These states are subjected to the constraint implied by the
CS e.o.m.:
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Quantum states are composite states of the boundary
theory and the bulk theory:

|Ψ > = |boundary CS > |bulk LQG >.

These states are subjected to the constraint implied by the
CS e.o.m.:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ > = P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ >
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Quantum states are composite states of the boundary
theory and the bulk theory:

|Ψ > = |boundary CS > |bulk LQG >.

These states are subjected to the constraint implied by the
CS e.o.m.:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ > = P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ >

This constraint relates the flux functional of the bulk theory
with that of the boundary CS theory.
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Quantum states are composite states of the boundary
theory and the bulk theory:

|Ψ > = |boundary CS > |bulk LQG >.

These states are subjected to the constraint implied by the
CS e.o.m.:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ > = P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ >

This constraint relates the flux functional of the bulk theory
with that of the boundary CS theory.

Non-Abelian generalization of Stokes’ theorem allows us to
replace the CS flux functional by the path ordered
holonomy functional:
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Quantum states are composite states of the boundary
theory and the bulk theory:

|Ψ > = |boundary CS > |bulk LQG >.

These states are subjected to the constraint implied by the
CS e.o.m.:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ > = P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ >

This constraint relates the flux functional of the bulk theory
with that of the boundary CS theory.

Non-Abelian generalization of Stokes’ theorem allows us to
replace the CS flux functional by the path ordered
holonomy functional:

P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

= P exp
(

− k
2π

∮

C dσaAi
aT

i
)
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The closed curve C encloses all the punctures on the S2 of
the horizon.
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The closed curve C encloses all the punctures on the S2 of
the horizon.

Now the closed contour C can be shrunk to a point on S2.

Thus this flux functional on physical states is 1.
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Thus this flux functional on physical states is 1.

Thus the constraint for the physical states is:
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The closed curve C encloses all the punctures on the S2 of
the horizon.

Now the closed contour C can be shrunk to a point on S2.

Thus this flux functional on physical states is 1.

Thus the constraint for the physical states is:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ >

= P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ > = 1
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The closed curve C encloses all the punctures on the S2 of
the horizon.

Now the closed contour C can be shrunk to a point on S2.

Thus this flux functional on physical states is 1.

Thus the constraint for the physical states is:

P exp
(

∫

S2 d
2σ Σi

θφT
i
)

|Ψ >

= P exp
(

− k
2π

∫

S2 d
2σ F i

θφT
i
)

|Ψ > = 1

Now the micro-states can be counted by simply counting
the number of states satisfying this constraint, either in bulk
theory or in the boundary CS theory.
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Micro-state counting

The micro-state counting in CS theory is done by invoking
that the theory may as well be described the WZ SU(2)k
conformal theory on the punctured S2 of the horizon.
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Micro-state counting

The micro-state counting in CS theory is done by invoking
that the theory may as well be described the WZ SU(2)k
conformal theory on the punctured S2 of the horizon.

The punctures carry spins j1, j2, .... jp on them, deposited
by the spin network impinging on the S2 of the horizon at
these punctures.
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Micro-state counting

The micro-state counting in CS theory is done by invoking
that the theory may as well be described the WZ SU(2)k
conformal theory on the punctured S2 of the horizon.

The punctures carry spins j1, j2, .... jp on them, deposited
by the spin network impinging on the S2 of the horizon at
these punctures.

The number of the states then is given by counting the
number of SU(2) singlets that can be constructed by
composing the primary fields in representations j1, j2, ...., jp
living on the p punctures.
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Micro-state counting

The micro-state counting in CS theory is done by invoking
that the theory may as well be described the WZ SU(2)k
conformal theory on the punctured S2 of the horizon.

The punctures carry spins j1, j2, .... jp on them, deposited
by the spin network impinging on the S2 of the horizon at
these punctures.

The number of the states then is given by counting the
number of SU(2) singlets that can be constructed by
composing the primary fields in representations j1, j2, ...., jp
living on the p punctures.

This number is given by:
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Micro-state counting

The micro-state counting in CS theory is done by invoking
that the theory may as well be described the WZ SU(2)k
conformal theory on the punctured S2 of the horizon.

The punctures carry spins j1, j2, .... jp on them, deposited
by the spin network impinging on the S2 of the horizon at
these punctures.

The number of the states then is given by counting the
number of SU(2) singlets that can be constructed by
composing the primary fields in representations j1, j2, ...., jp
living on the p punctures.

This number is given by:

NP(j1, j2, ...., jp) =
2

k+2

∑k/2
r=0

p
∏

l=1

sin
(

(2jl+1)(2r+1)π

k+2

)

[sin( (2r+1)π
k+2 )]

p−2 .
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The entropy of black hole is then given by summing NP

over all possible sets of punctures:
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The entropy of black hole is then given by summing NP

over all possible sets of punctures:

NH =
∑

{P}NP , SH = lnNH
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The entropy of black hole is then given by summing NP

over all possible sets of punctures:

NH =
∑

{P}NP , SH = lnNH

The counting is done subject to keeping the horizon area
AH fixed.
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over all possible sets of punctures:
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∑

{P}NP , SH = lnNH

The counting is done subject to keeping the horizon area
AH fixed.

IN LQG, the area of a punctured S2 , with the spins
j1, j2, j3, ...jp on the punctures:
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The entropy of black hole is then given by summing NP

over all possible sets of punctures:

NH =
∑

{P}NP , SH = lnNH

The counting is done subject to keeping the horizon area
AH fixed.

IN LQG, the area of a punctured S2 , with the spins
j1, j2, j3, ...jp on the punctures:

AH = 8πγ
∑

l=1,2,...,p

√

jl(jl + 1); ℓP = 1.
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This finally leads to the black hole entropy formula for large
area AH :
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This finally leads to the black hole entropy formula for large
area AH :

SH = AH

4 − 3
2 ln

(

AH

4

)

+ const +O(A−1
H ).
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This finally leads to the black hole entropy formula for large
area AH :

SH = AH

4 − 3
2 ln

(

AH

4

)

+ const +O(A−1
H ).

RKK and P. Majumdar: Phys. Rev. Lett. 84, (2000) 5255.
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This finally leads to the black hole entropy formula for large
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SH = AH

4 − 3
2 ln

(

AH

4

)

+ const +O(A−1
H ).

RKK and P. Majumdar: Phys. Rev. Lett. 84, (2000) 5255.

The same entropy formula emerges through several other
frameworks.
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This finally leads to the black hole entropy formula for large
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SH = AH

4 − 3
2 ln

(

AH

4

)

+ const +O(A−1
H ).

RKK and P. Majumdar: Phys. Rev. Lett. 84, (2000) 5255.

The same entropy formula emerges through several other
frameworks.

Carlip: For black holes modelled by cfts, the same formula
results for a generic cft. The coefficient −3/2 of the log term
appears to be universal.
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This finally leads to the black hole entropy formula for large
area AH :

SH = AH

4 − 3
2 ln

(

AH

4

)

+ const +O(A−1
H ).

RKK and P. Majumdar: Phys. Rev. Lett. 84, (2000) 5255.

The same entropy formula emerges through several other
frameworks.

Carlip: For black holes modelled by cfts, the same formula
results for a generic cft. The coefficient −3/2 of the log term
appears to be universal.
Carlip: Logarithmic corrections to the black hole entropy from Cardy formula: Class.

Quantum Grav. 17, (2000) 4175.
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:

SBTZ = SBH − 3
2 lnSBH + ....
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:

SBTZ = SBH − 3
2 lnSBH + ....

T.R. Govindarajan, RKK, V. Suneeta: Class. Quantum Grav. 18 (2001) 2877.
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:

SBTZ = SBH − 3
2 lnSBH + ....

T.R. Govindarajan, RKK, V. Suneeta: Class. Quantum Grav. 18 (2001) 2877.

Even in the string theory the same result obtains.
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:

SBTZ = SBH − 3
2 lnSBH + ....

T.R. Govindarajan, RKK, V. Suneeta: Class. Quantum Grav. 18 (2001) 2877.

Even in the string theory the same result obtains.

RKK: Phys. Rev. D68 (2003) 024026.
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In three dimensional gravity with negative cosmological
constant, the entropy of the BTZ black hole is also given by
the same formula:

SBTZ = SBH − 3
2 lnSBH + ....

T.R. Govindarajan, RKK, V. Suneeta: Class. Quantum Grav. 18 (2001) 2877.

Even in the string theory the same result obtains.

RKK: Phys. Rev. D68 (2003) 024026.

All these facts suggest a universality of this entropy formula.
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properties of the low dimensional (d = 2, 3, 4) mfds.

3D CS theories are a framework for obtaining a whole
variety of new knot/link invariants as well as three-mfd
invariants.

In the process a new class of matrix representations of
coloured oriented braids are obtained, which have wide
applications.

SU(2) CS theory also provides a description of the black
hole micro-states, yielding an entropy formula with a
possibly universal coefficient, −3/2, for the logarithmic area
correction to the Bekenstein-Hawking law.
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