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|. Introduction

» Observed notion of time is external to quantum mechanics.
It is part of a classical spacetime geometry, which
comprises of a spacetime manifold and the metric. The
metric is determined by classical matter fields.

» In principle, the Universe could be in a state in which there
are no classical matter fields, but only quantum fields. In
such a situation, the metric of the Universe will in general
no longer be classical, but will undergo quantum
fluctuations.

» It is known from the Einstein hole argument that in order
for the spacetime manifold to have a physically meanigful
point structure, a well-determined classical metric (which is
a solution of the Einstein equations) must reside on the
manifold. When the metric is undergoing quantum
fluctuations, the point structure of the spacetime manifold
is destroyed.



|. Introduction

» Nonetheless, one should be able to describe the dynamics
of a quantum system, even if an external classical time is
not available. It can be shown that standard linear quantum
theory is a limiting case of a more general quantum theory
which is nonlinear on the Planck mass/energy scale.

» A natural mathematical structure which foregoes the point
structure of spacetime is a noncommutative spacetime.
We construct the reformulation by pursuing the following
proposal : in the reformulation, relativistic quantum
mechanics is the same theory as noncommutative special
relativity.

» The physical principle is that the basic laws are invariant
under ‘inertial’ coordinate transformations of
noncommuting coordinates. One is naturally led to attach
an antisymmetric part to the Minkowski metric. The theory
is supposed to describe dynmaics when gravity can be
neglected.



|. Introduction

» The nonlinear generalization of this reformulation
describes the dynamics of the system when its energy
becomes comparable to Planck energy. The Schrédinger
equation becomes nonlinear and the gravitational
dynamics is now a noncommutative general relativity. The
physical principle now is that basic laws are invariant under
general coordinate transformations of noncommuting
coordinates.

» The presence of the nonlinearity has two important
consequences. Firstly, the antisymmetric part of the
gravitational field associated with this nonlinearity suggests
the existence of a quantum-classical duality, as a
consequence of which one can match a dominantly
quantum sector of the theory to a dominantly classical
sector. In turn this helps us understand why the
cosmological constant should be non-zero and yet have
the very small value it does.



Introduction

» The second important consequence of the nonlinearity has
to do with the nonlinearity in the Schrédinger equation,
which becomes relevant in the vicinity of the Planck mass
scale. This can lead to a breakdown of quantum
superposition, and could lead to the collapse of the
wavefunction during a quantum measurement.

» The parameters influencing the collapse of the
wavefunction are in principle measureable in the
laboratory. These are the same parameters which are
responsible for the existence of the quantum classical
duality, and for the non-zero value of the comological
constant. Thus our explanation for the origin of the dark
energy is in principle testable experimentally, via the
quantum measurement process.



[I. Quantum mechanics as a noncommutative special
relativity

» In this reformulation, the quantum dynamics of a relativistic
particle of mass m <« mp; is described as a
noncommutative special relativity. In the illustrative 2-d
case, the noncommutative spacetime has the line element

d§® = M, ditdi” = di* — d@® + didd — didi, (1)

» and the noncommuting coordinates ¢, &: obey the
commutation relations
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Quantum mechanics as a noncommutative special
relativity

» Dynamics is described by defining a velocity 4' = d?/ds, a
momentum p¢ = ma‘, and by defining momenta as the
gradients of a complex action S, in the generalized Casimir

relation

(") — (™) + p'p" — p*p’ = m?, 3)

in the spirit of the Hamilton-Jacobi equation.

» If an external classical spacetime (z,t) becomes available,
the Klein-Gordon equation of standard linear quantum
mechanics is recovered from this reformulation via the
correspondence

opt

(") = (") + 9" ="' = (0')* = (0")" + ik (4)

and by defining the wave-function as ¢ = e'%/".



[ll. A noncommutative general relativity

» When the mass of the particle is comparable to Planck
mass, the noncommutative line-element (1) is modified to
the curved noncommutative line-element

ds® = hy, dirdz” = Gudi® — §ordi® + Q[didi — didi).
» Correspondingly, the Casimir relation (3) is generalized to
Ge(0")? = Gua(P")* + 0 (99" — p™p') = m? (6)
and the correspondence rule (4) to
opH
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» This leads, in the simplest case, where 6 is a function of
m/mpy, to the equation of motion
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which is equivalent to a nonlinear Klein-Gordon equation.

» The noncommutative metric is assumed to obey a
noncommutative generalization of Einstein equations, with
the property that (m/mp;) goes to one for m < mp;, and
to zero for m > mp;. Also, as 6(m/mp;) — 0 one recovers
classical mechanics, and in the limit 6 — 1 standard linear
quantum mechanics is recovered.

» In the mesoscopic domain, where 6 is away from these
limits and the mass m is comparable to Planck mass, both
quantum and gravitational features can be defined
simultaneously, and new physics arises. The
antisymmetric component ¢ of the gravitational field plays a
crucial role in what follows.



IV. A proposed quantum-classical duality

Motivation for the duality

» In general relativity, the Schwarzschild radius
Rs = 2Gm/c? of a particle of mass m can be written in
Planck units as Rsp = Rs/Lp; = 2m/mp;, where Lp; is
Planck length and mp; ~ 107> gm is the Planck mass.

» If the same particle were to be treated, not according to
general relativity, but according to relativistic quantum
mechanics, then one-half of the Compton wavelength
Rc = h/mc of the particle can be written in Planck units as
Recp = Ro/2Lp; = mpy/2m.

» The fact that the product RspRcp = 1 is a universal
constant cannot be a coincidence; however it cannot be
explained in the existing theoretical framework of general
relativity (because herein h = 0) and quantum mechanics
(because herein G = 0).



Proposal

» We propose and justify the following quantum-classical
duality:
The weakly quantum, strongly gravitational dynamics of a
particle of mass m. > mp; is dual to the strongly quantum,
weakly gravitational dynamics of a particle of mass
mg = m%;l/mC < My

» It follows that the dimensionless Schwarzschild radius Rgp
of m, is four times the dimensionless Compton-wavelength
Rcp of my.

» The origin of this duality lies in the requirement that there
be a reformulation of quantum mechanics which does not
refer to an external classical spacetime manifold.



» The Planck mass demarcates the dominantly quantum
domain m < mp; from the dominantly classical domain
m > mp; and is responsible for the quantum-classical
duality.

» As is evident from (8), the effective Planck’s constant is
hO(m/mpy), going to zero for large masses, and to # for
small masses, as expected. Similarly, the effective
Newton’s gravitational constant is likely to be
G(1—6(m/mp;)), going to zero for small masses, and to G
for large masses.

» Thus the parameter space 6 = 1 is strongly quantum and
weakly gravitational, whereas 6 ~ 0 is weakly quantum and
strongly gravitational. The Compton wavelength Rcp for a
particle of mass m, gets modified to
Reg = Repf(my/mp;) and the Schwarzschild radius Rsp
for a mass m. gets modified to
Rsg = Rgp(1 = 0(me/mpr)).



» We propose that the dynamics of a mass m, < mp; is dual
to the dynamics of a mass m,. > mp; if
Rsg(me) = 4Rcg(my). This holds if m. = m%,/m, and

0(m/mpi) + 0(mpr/m) = 1. (9)

» If (9) holds, the solution for the dynamics for a particle of
mass m. can be obtained by first finding the solutions of
(8) for mass m,, and then replacing (m,/mp;) by
1 — 0(mp;/my), and finally writing m. instead of m,,
wherever m, appears.



» We can deduce the functional form of 8(m/mp;) by noting
that the contribution of the symmetric part of the metric,
gix, to the curvature, grows as m, whereas the contribution
of the antisymmetric part 6 must fall with growing m. This
suggests that 1/6 grows linearly with m; thus

b
O(m/mpy)

and 6(0) = 1 implies b = 1; and we set a = 1 since this
simply defines mp; as the scaling mass. Hence we get
O(m/mp;) = 1/(1 + m/mp;), which satisfies (9) and thus
establishes the duality.

=a(m/mpy) + b, (10)

» The mapping m — 1/m interchanges the two fundamental
length scales in the solution : Compton wavelength and
Schwarzschild radius.



» Quantum-classical duality has previously been observed in
string theory. Our results suggest one of two possibilities :
(i) such a duality is a property of quantum gravity,
independent of string theory; or (ii) we have identified a key
physical principle underlying string theory, namely,
invariance of physical laws under general coordinate
transformations of noncommuting coordinates.

» The duality we observe is holographic, by virtue of the
above-mentioned relation Rsg(m.) = 4Rcgr(mq). Thus,
the number of degrees of freedom N that a quantum field
associated with the particle m, possesses (bulk property)
should be of the order of the area of the horizon of the dual
black hole in Planck units (boundary property), i.e.

N ~ m%l/mg.



The Cosmological Constant Puzzle

» The quantum-classical duality helps understand why there
should be a cosmological constant of the order of the
observed matter density; the most likely explanation for the
observed cosmic acceleration.

» If there is a non-zero cosmological constant term A in the
Einstein equations, of the standard form Ag;y, it follows
from symmetry arguments that in the noncommutative
generalization of gravity, a corresponding term of the form
A6 should also be present. This latter term vanishes in the
macroscopic limit m > mp; but is present in the
microscopic limit m < mp;.

» However, when m < mp;, the effective gravitational
constant goes to zero, so A cannot be sourced by ordinary
matter. Its only possible source is the zero-point energy
associated with the quantum particle m < mp;. Since this
zero-point energy is necessarily non-zero, it follows that A
is necessarily non-zero.



» This same A manifests itself on cosmological scales,
where Ag;;. is hon-vanishing, because g;; is non-vanishing,
even though A# goes to zero on cosmological scales,
because 6 goes to zero.

» The value of A can be estimated by appealing to the
deduced quantum-classical duality. The total mass in the
observable Universe is m. ~ ¢*(GHy)~!, where Hy is the
present value of the Hubble constant. The mass dual to
this m,. is my = m%,;/m. ~ hHy/c*, and m,c? is roughly the
magnitude of the zero-point energy.

» We associate this much zero point energy with each of the

N degrees of freedom, where, according to the holographic
arguments alluded to above, N is of the order (cH;')?/L3.



» The vacuum energy density, and hence the value of the
cosmological constant, is (m,c?)N/(cHy )3 ~ (cHo)?/G
which is of the order of the observed value of A.

» Clearly, nothing in this argument singles out today’s epoch;
hence it follows that there is an ever-present A, of the order
(cH)?/G, at any epoch, with H being the Hubble constant
at that epoch. This solves the cosmic coincidence and
fine-tuning problems; and difficulties related to an
ever-present A can possibly be addressed.



Understanding A

» The holographic value for the allowed number of degrees
of freedom plays a crucial role in the argument. The
minimum value of the zero point energy, m,c? ~ hHo,
corresponds to a frequency Hy, which being the inverse of
the age of the Universe, is a natural minimum frequency
(infra-red cut-off).

» This corresponds to a contribution A to the cosmological
constant, per degree of freedom, given by

o <LP >4L_2 (11)
= cH(;1 P

and a corresponding energy density

Lp \!
= ) 12
pf <CH0_1> PP (12)




» We recall that the observed A and its associated energy
density can be written as

LP 2 92
Aobszﬂg/c2=< — > Ly (13)
CHO1
PAob —CQHQ/G—< Lp )20191 (14)
obs — 0 - _
cHol

where pp; is Planck energy density.

» One could artificially introduce a cut-off to the total zero
point energy of the dual quantum field, for example simply
by saying that the maximum allowed frequency is Planck
frequency. In this case, the number of degrees of freedom
N is Ep;/E,, which is equal to cH; ' /Lp;. This gives
A= NAs = (Lp/cH; ")’ L;? which does not match with
observations.



» Now consider what values of A result from other choices of
N, by writing N = (cH;'/Lp)™. Our deduction has been
the holographic value n = 2, which reproduces the correct
A. The choices n = 4 and n = 3, which correspond to the
four volume and the three volume, give wrong values of A
(too high), whereas n = 1 also gives a wrong value of A
(too low).

» Put another way, the natural minimum frequency is
wmin = Hg. Our choice of N is such that
Wmazr = wPl(wPl/Hﬂ)s (N = wmax/wmin)- Thus the
maximum frequency is scaled up from Planck frequency by
the same factor by which the minimum frequency is scaled
down with respect to Planck frequency. It is also the
frequency corresponding to the rest mass of the observed
Universe, which is of the order H,;*. Thus the UV cut-off is
not at Planck energy, but at the observed rest mass of the
Universe.



» With hindsight, it seems rather natural that the observed
value of the cosmological constant is reproduced when the
infra-red and ultra-violet cut-offs for the zero point energy
are taken at the cosmological values Hy and H; !,
respectively. The quantum-classical duality proposed here
provides the reason as to why quantum zero point energy
contributes to gravity in the first place.



VI. Can there be an ever-present A?

» Open problem. If one stays within the framework of
Friedmann equations, one has to make modifications so as
to allow A # 0.

» Eventually, one must allow for spatial inhomogeneity and
anisotropy, in a manner consistent with observations.



