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NC Coordinates and Twisted Products

Commutation Relations: [g", g”] = i0*¥, 6 fixed once and for all
in a given reference frame. Weyl Form:

e gika — e—%hek gl(h+k)a
Weyl quantisation:
Wy(f) = /dk f(k)e™a.
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NC Coordinates and Twisted Products

Commutation Relations: [g*, q"] = i0**, 0 fixed once and for all
in a given reference frame. Weyl Form:

e gika — e—%hek gl(h+k)a
Weyl quantisation:
Wy(f) = /dk f(k)e™a.
Twisted Product defined by:

Wo(F)Wo(g) = Wo(f %9 g).
Easier to work in momentum space:

—

frog="Fx99
where hok = h,0""k, = h'GOGk and

(F %0 9)(k) = [ ai(hak — me~it
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Moyal Expansion; Drinfeld Twist

Let’s write for the ordinary and twisted convolution
c(f® g)(k) = (f x g)(k), co(f® G)(k) = (F xp G)(K);
We define the multiplication operator
(Tof © ) (h, k) = e~ 2" F(h)g(k),
fulfilling T,~' = T_, and (only on analytic symbols!)
(Tof ©8)(x,y) = (7" %% 1 g) (x, ).

so that

Cg = Co Ty

We recover position space definition

o —

co(f @ g) = my(f @ g) = m(Fpf ® g).
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(a(L)F)(k) = e ®f(A~ k), Le P

(Fourier Transform of f +— ,f(x) = f(L~'x)).
Twisted product not covariant in general (6 constant):
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Twisted Poincaré Action

Define
(a(L)F)(k) = e ®f(A~ k), Le P

(Fourier Transform of f +— ,f(x) = f(L~'x)).
Twisted product not covariant in general (6 constant):

a(L)ey(f © §) # cola(L)f @ a(L)).

Solution (Chaichian & cols, Wess & cols): twist the coproduct
action: namely replace o(?)(L) = a(L) ® a(L) by

aP(L) =Ty a@ (L) Ty,
Is an action:
PP M =Ty P )Ty Ty T a®P (M Ty =
= Ty ' a@(L)aP (M) Ty = P (LM).



Twisted Covariance; is 6§ a Tensor?

Easy to check that
a(L)e(f @ §) = co(afP (L) @ §).
Standard interpretation: ¢ not a tensor!



Twisted Covariance; is 6§ a Tensor?

Easy to check that
a(L)e(f @ §) = co(afP (L) @ §).
Standard interpretation: ¢ not a tensor! Is that obvious?



Twisted Covariance; is 6§ a Tensor?

Easy to check that

a(L)ey(F @ §) = eyl (L) @ §). ")
Standard interpretation: 6 not a tensor! Is that obvious? Other
way to check (*). Set 6/ = A9A! (9" = A* , A¥,,0*""). Remark

that
@ (L) Ty = TyaP (L)

[h'GOGK — (A~ Th)!GOGA 'k, use A~ = GA'G, G? = 1]



Twisted Covariance; is 6§ a Tensor?

Easy to check that

a(L)ey(F @ §) = eyl (L) @ §). ")
Standard interpretation: 6 not a tensor! Is that obvious? Other
way to check (*). Set 6/ = A9A! (9" = A* , A¥,,0*""). Remark
that

a®(L)Ty = TyaP(L)

[WGOGK — (A~"h)!GIGA 'k, use A" = GAIG, G® = 1]
so that o!P (L) = T, 1a® (L) Ty = T, Tya@(L) and



Twisted Covariance; is 6§ a Tensor?

Easy to check that

a(L)ey(F @ §) = eyl (L) @ §). ")
Standard interpretation: 6 not a tensor! Is that obvious? Other
way to check (*). Set ¢’ = A9A! (0" = A*,, AY,,0*""). Remark
that
a®(L)Ty = TyaP(L)
[thGGk — (A"Th)!IGIGA 'k, use A~ = GA!G,G? = 1]
so that o!P (L) = T, 1a® (L) Ty = T, Tya@(L) and

B0 g) = c(TyTy ' Tpa@ (L) @ g) =



Twisted Covariance; is 6§ a Tensor?

Easy to check that

a(L)es(F® §) = co(aP (L)  §). (*)

Standard interpretation: 6 not a tensor! Is that obvious? Other
way to check (*). Set 6/ = A9A! (9" = A* , A¥,,0*""). Remark
that
a®(L)Ty = TyaP(L)
[htGGGk — (A™ ) GHGA Tk, use A" = GAIG, G? = 1]
so that o!P (L) = T, 1a® (L) Ty = T, Tya@(L) and
coafd (L) @ g) = U aP(F© §) = o(Ty Ty Tpa®(L)f © §) =
co(fod)="Fxpd.
where f/(k) = e—’kaf(/l— ). in other words:
(twstd covariance + 6 invariant)< (ordinary cov’nce + f tensor):

(f*g g)/ = f/ *g/ g/.
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appealing, but form covariance alone not a guidance, when
equivalence of observers is broken at a fundamental level. Up
to now the two formalisms have same dignity.
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Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of 8 may seem
appealing, but form covariance alone not a guidance, when
equivalence of observers is broken at a fundamental level. Up
to now the two formalisms have same dignity.

Problem is: above only formal remark. To decide, go back to
interpretation of /6 as the commutator of the coordinates.
Assume Jack=preferred observer, Jane=observer connected to

Jack by L.

Jane:
e [@",q"] =7 (no a priori assumption),
o W/(f) f dk ' (k)eka (same physics),

. W’(mg(ae (feg))=W({"YW(9) (twstd cov).
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We first compute (L = (4, 0) for simplicity) )

= ( / dh?’(h)e"”q’> ( / dhg’(k)eikq’> —
W’(mg(ae f®Qg)) = /dk ekd’ /dhe2h9k g2 (hok—ho'k)
f(hg (k- h) =
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Weyl quantisation requires 6 tensor

We first compute (L = (4, 0) for simplicity) )

= ( / dh?’(h)e"“q’> < / dhg'(k)eW> -
W/ (me(afP)(f @ g)) = / ok &7 / lh 617k g (hOk—h0'K)
Py (k- h) =
— / dk &/ / dhF (G (k)e 51/ (k+

where 0/ = A¥ , AV 0" It follows
o i ; /
e/hq’ elkq’ — e—Ethel(h-s-k)q

9

i.e. the Weyl form of [¢'", @'"] = i¢’""". Conclusion; 6 is a tensor!



Part Il
From DFR Model

to

Twisted Covariance



DFR coordinates

3! the regular representation of the relations
[g",q"]=iQ", [g", Q"] =0,

where
iSp(Q) =X = {0 : 0 = AdgA!, A € £},

Motivations: cf preceding talk. Covariance:
U(a, A)~'q"U(a, A) = A* ,q" + &,
U(a7 A)_1 Q’LWU(a, A) = AHM/AVV/ Q’uly/.

Weyl quantisation:
W(f) = / dkf(k)e™a.

Problem with twisted product: they depend on an operator Q,
not on a C-number matrix. Need more general symbols.



Algebra of generalised symbols
Symbol in Fourier space:
¢ : ¥ — L'(R*)continuous, vanish at co
Generalised twisted product:
(¢50)(oik) = [ dkol huloik— me 3t
Involution and norm:

lell = suplie(o; e, @ (oik) = @lo; —k).



Algebra of generalised symbols
Symbol in Fourier space:
¢ : ¥ — L'(R*)continuous, vanish at co
Generalised twisted product:
(¢50)(ik) = [ dkolr hu(oik — e st
Involution and norm:
lell = suplie(o; e, @™ (oik) = ¢(o; —k).
Action of Poincaré group:
(@, 4)p)(0: k) = (det A)e~ (A~ To A" A~ k).

N.B. maps each fibre over sigma onto the fibre onto o/ = Ac AL
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Theorem [DFR 95]; there is a unique C*-norm; the
corresponding C*-completion is isomorphic (as a
continuous field of C*-algebras) to Cy(%, £), X=compact
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DFR C*algebra, and symbol calculus

Theorem [DFR 95]; there is a unique C*-norm; the
corresponding C*-completion is isomorphic (as a
continuous field of C*-algebras) to Cy(%, £), X=compact
operators.

Representation of the algebra:

(i) = / okp(Q@; k)&

(replacement o — Q understood as functional calculus).
Relation with Weyl quantisation:

W(f) = =(f).

Symbol calculus:
W(H)W(g) = W(fxqg).
(f*@ 9)(k) = (Fxg)(Q: k).
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A certain class of localisation states

A localisation state is a linear functional formally written as

o / / do dk K(o: K)p(o: k)

with K such to ensure positivity and normalisation.We are
interested in states with kernel of the form

K(o; k) = (o — 0)w(k),
which give
O /dk w(k)e(0; k)
More cleanly: we define the projection on the fibre over 6:
Molel(k) = w(6; k);

extend it by continuity to a map My : C(X,K) — K. Then we are
interested in the states of the form w o Ny with w € S(K).
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6-Universality

We now make an additional assumption: while in the DFR
model all localisation states are available to each observer,

f-universality.
e There is a privileged class of observers;
e The privileged observers are connected by A’s in the
stabiliser of 6;

e The only available localisation states are those which, in
the reference frame of a privileged observer, are of the
form w o My, where w € S(K);

Unprivileged observers connected to privileged observers by
some A only may localise with states of the form w o Ny, where
0 = A9AL
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Twisted Covariance Recovered

The privileged observer can test the algebra only at 6; he only
sees fA-twisted products:

Mopxyp = (Mgy) xg (Mgt))
Let
o (01 k) = (det A)p(A oA~ A 1k)

be the Lorentz transform of ¢, and analogously for ¢; the
(possibly) unprivileged primed observer only sees the fibre over
0 = AL

(Mg ") (k) = ¢ (0; k) = (det A)p(0; A~ k),

as expected.Finally the primed observer only sees ¢’'-twisted
products:

Mo (@' x1p") = (Ngr”) xor (Mgrt)").
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Many Events

Different inequivalent possibilities for defining polylocal
products:

« Translations: f(q)f(q + a2)f(q + as) - - -; investigated in
DFR. Feature: they depend on one single localisation
state.

* Independent coordinates: [q}", gi] = idy Q""; investigated
in RLBDFP. They naturally lead to ultraviolet finite theories.
Note that [g;, gj] = iQ does not depend on j; corresponds
to tensor products of Z-moduli. Irreps:

q.lzqa(g)/@/...7 q2:[®qg®...’

fulfil [qja qk] = i(;ij-
e Fiore Wess:
(7 g) = i0™
(no 5jk)
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“No Relations without Representation!”

Problem with Fiore Wess coordinates: assume g; regular irrep,
then:
[q;‘t, (gk — q1)"] =0 strongly

hence by Schur’'s Lemma:
Gk — Q1 = by € R*.
Set
g = byt
so that
G=qn+g

There is only one set of 4 coordinates; all the other sets are just
translates of the basic coordinates of a single event.
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Conclusions 1

We have shown that (twisted covariance + 6 invariant) is
equivalent to (untwisted covariance + 6 covariant), and given an
argument in favour of the latter, based on physical
interpretation.

Moreover, we have seen that the latter is equivalent to (DFR
model + #-universality).

Now one may raise the question: which are the physical
motivations for restricting the admissible localisation states?
Namely why 67
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Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180° around x axis, only sees z/(0) < 0.
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Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180° around x axis, only sees z/(0) < 0.

The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.

In the same way, on QST every observer should reach any ¢’
together with 6.

To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.
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