Twisted Covariance and DFR Spacetime Quantisation

Gherardo Piacitelli SISSA - Trieste e-mail: piacitel@sissa.it

NCGQFT08 Chennai, December 18–24, 2008

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(日) (日) (日) (日) (日) (日) (日)

1 Part I. Tensor character of θ

NC Coordinates and Twisted Products Moyal Expansion; Drinfeld Twist Twisted Poincaré Action Twisted Covariance; is θa Tensor? Tensor or not? Back to Interpretation! Weyl quantisation requires θ tensor

- Part II. From DFR Model to Twisted Covariance DFR coordinates Algebra of generalised symbols DFR C*algebra, and symbol calculus A certain class of localisation states θ – Universality Twisted Covariance Recovered
- 3 Interlude: Many Events
- 4 Conclusions

(日) (日) (日) (日) (日) (日) (日)

1 Part I. Tensor character of θ

NC Coordinates and Twisted Products Moyal Expansion; Drinfeld Twist Twisted Poincaré Action Twisted Covariance; is θa Tensor? Tensor or not? Back to Interpretation! Weyl quantisation requires θ tensor

2 Part II. From DFR Model to Twisted Covariance DFR coordinates

Algebra of generalised symbols DFR C*algebra, and symbol calculus A certain class of localisation states $\theta - Universality$ Twisted Covariance Recovered

(日) (日) (日) (日) (日) (日) (日)

1 Part I. Tensor character of θ

NC Coordinates and Twisted Products Moyal Expansion; Drinfeld Twist Twisted Poincaré Action Twisted Covariance; is θa Tensor? Tensor or not? Back to Interpretation! Weyl quantisation requires θ tensor

2 Part II. From DFR Model to Twisted Covariance

DFR coordinates Algebra of generalised symbols DFR C*algebra, and symbol calculus A certain class of localisation states $\theta - Universality$ Twisted Covariance Recovered

- Interlude: Many Events
- 4 Conclusions

(日) (日) (日) (日) (日) (日) (日)

1 Part I. Tensor character of θ

NC Coordinates and Twisted Products Moyal Expansion; Drinfeld Twist Twisted Poincaré Action Twisted Covariance; is θa Tensor? Tensor or not? Back to Interpretation! Weyl quantisation requires θ tensor

2 Part II. From DFR Model to Twisted Covariance

DFR coordinates Algebra of generalised symbols DFR C*algebra, and symbol calculus A certain class of localisation states $\theta - Universality$ Twisted Covariance Recovered

- 3 Interlude: Many Events
 - 4 Conclusions

Part I Tensor character of θ

NC Coordinates and Twisted Products

Commutation Relations: $[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}, \theta$ fixed once and for all in a given reference frame. Weyl Form:

$$e^{ihq}e^{ikq} = e^{-\frac{i}{2}h\theta k}e^{i(h+k)q}$$

Weyl quantisation:

$$W_ heta(f) = \int dk\,\check{f}(k) e^{ikq}.$$

Twisted Product defined by:

$$W_{ heta}(f)W_{ heta}(g) = W_{ heta}(f\star_{ heta} g).$$

Easier to work in momentum space:

$$f \star_{\theta} g = \check{f} \times_{\theta} \check{g}$$

where $h\theta k = h_{\mu}\theta^{\mu\nu}k_{\nu} = h^t G\theta Gk$ and

$$(\check{f} \times_{\theta} \check{g})(k) = \int dh\check{f}(h)\check{g}(k-h)e^{-\frac{i}{2}h\theta k}.$$

NC Coordinates and Twisted Products

Commutation Relations: $[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}, \theta$ fixed once and for all in a given reference frame. Weyl Form:

$$e^{ihq}e^{ikq} = e^{-\frac{i}{2}h\theta k}e^{i(h+k)q}$$

Weyl quantisation:

$$W_ heta(f) = \int dk\,\check{f}(k) oldsymbol{e}^{ikq}.$$

Twisted Product defined by:

$$W_{ heta}(f)W_{ heta}(g) = W_{ heta}(f\star_{ heta} g).$$

Easier to work in momentum space:

$$f\star_{ heta} g = \widecheck{f} imes_{ heta} \widecheck{g}$$

where $h\theta k = h_{\mu}\theta^{\mu\nu}k_{\nu} = h^t G\theta Gk$ and

$$(\check{f} \times_{\theta} \check{g})(k) = \int dh \check{f}(h) \check{g}(k-h) e^{-\frac{i}{2}h\theta k}.$$

Let's write for the ordinary and twisted convolution

 $c(\check{f}\otimes\check{g})(k)=(\check{f}\times\check{g})(k),\quad c_{ heta}(\check{f}\otimes\check{g})(k)=(\check{f} imes_{ heta}\check{g})(k);$

We define the multiplication operator

$$(T_{\theta}\check{f}\otimes\check{g})(h,k)=e^{-rac{i}{2}h\theta k}\check{f}(h)\check{g}(k),$$

fulfilling $T_{\theta}^{-1} = T_{-\theta}$ and (only on analytic symbols!)

$$(\widetilde{T_{\theta} f \otimes \check{g}})(x, y) = \left(e^{-\frac{i}{2}\theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}f \otimes g\right)(x, y),$$

so that

$$c_{\theta} = c \circ T_{\theta}.$$

We recover position space definition

$$\widehat{c_{\theta}(f\otimes g)} = m_{\theta}(f\otimes g) = m(F_{\theta}f\otimes g)$$

(日) (日) (日) (日) (日) (日) (日)

Let's write for the ordinary and twisted convolution

 $c(\check{f}\otimes\check{g})(k)=(\check{f}\times\check{g})(k),\quad c_{ heta}(\check{f}\otimes\check{g})(k)=(\check{f} imes_{ heta}\check{g})(k);$

We define the multiplication operator

$$(T_{\theta}\check{f}\otimes\check{g})(h,k)=e^{-rac{i}{2}h\theta k}\check{f}(h)\check{g}(k),$$

fulfilling $T_{\theta}^{-1} = T_{-\theta}$ and (only on analytic symbols!)

$$(\widetilde{T_{\theta}}\check{f}\otimes\check{g})(x,y)=\Big(e^{-rac{i}{2}\theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}f\otimes g\Big)(x,y),$$

so that

$$c_{\theta} = c \circ T_{\theta}.$$

We recover position space definition

$$\widehat{c_{\theta}(f\otimes g)} = m_{\theta}(f\otimes g) = m(F_{\theta}f\otimes g)$$

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Let's write for the ordinary and twisted convolution

 $c(\check{f}\otimes\check{g})(k)=(\check{f}\times\check{g})(k),\quad c_{ heta}(\check{f}\otimes\check{g})(k)=(\check{f} imes_{ heta}\check{g})(k);$

We define the multiplication operator

$$(T_{\theta}\check{f}\otimes\check{g})(h,k)=e^{-rac{i}{2}h\theta k}\check{f}(h)\check{g}(k),$$

fulfilling $T_{\theta}^{-1} = T_{-\theta}$ and (only on analytic symbols!)

$$(\widehat{T_{\theta}\check{f}\otimes\check{g}})(x,y)=\Big(e^{-rac{i}{2}\theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}f\otimes g\Big)(x,y),$$

so that

$$c_{\theta} = c \circ T_{\theta}.$$

We recover position space definition

$$\widehat{c_{\theta}(f\otimes g)} = m_{\theta}(f\otimes g) = m(F_{\theta}f\otimes g)$$

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Let's write for the ordinary and twisted convolution

 $c(\check{f}\otimes\check{g})(k)=(\check{f}\times\check{g})(k),\quad c_{ heta}(\check{f}\otimes\check{g})(k)=(\check{f} imes_{ heta}\check{g})(k);$

We define the multiplication operator

$$(T_{\theta}\check{f}\otimes\check{g})(h,k)=e^{-rac{i}{2}h\theta k}\check{f}(h)\check{g}(k),$$

fulfilling $T_{\theta}^{-1} = T_{-\theta}$ and (only on analytic symbols!)

$$(\widehat{T_{\theta}\check{f}\otimes\check{g}})(x,y)=\Big(e^{-rac{i}{2}\theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}f\otimes g\Big)(x,y),$$

so that

$$c_{\theta} = c \circ T_{\theta}.$$

We recover position space definition

$$\widehat{c_{\theta}(f\otimes g)} = m_{\theta}(f\otimes g) = m(F_{\theta}f\otimes g).$$

(日) (日) (日) (日) (日) (日) (日)

Twisted Poincaré Action

Define

$$(\alpha(L)\check{f})(k) = e^{-ika}\check{f}(\Lambda^{-1}k), \quad L \in \mathscr{P}$$

(Fourier Transform of $f \mapsto {}_{L}f(x) = f(L^{-1}x)$). Twisted product not covariant in general (θ constant):

$$\alpha(L)\boldsymbol{c}_{\theta}(\check{\boldsymbol{f}}\otimes\check{\boldsymbol{g}})\neq\boldsymbol{c}_{\theta}(\alpha(L)\check{\boldsymbol{f}}\otimes\alpha(L)\check{\boldsymbol{g}}).$$

Solution (Chaichian & cols, Wess & cols): twist the coproduct action: namely replace $\alpha^{(2)}(L) = \alpha(L) \otimes \alpha(L)$ by

$$\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta}.$$

Is an action:

$$\alpha^{(2)}(L)\alpha^{(2)}(M) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta} T_{\theta}^{-1} \alpha^{(2)}(M) T_{\theta} =$$
$$= T_{\theta}^{-1} \alpha^{(2)}(L)\alpha^{(2)}(M) T_{\theta} = \alpha_{\theta}^{(2)}(LM).$$

Twisted Poincaré Action

Define

$$(\alpha(L)\check{f})(k) = e^{-ika}\check{f}(\Lambda^{-1}k), \quad L \in \mathscr{P}$$

(Fourier Transform of $f \mapsto {}_{L}f(x) = f(L^{-1}x)$). Twisted product not covariant in general (θ constant):

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})\neq c_{\theta}(\alpha(L)\check{f}\otimes\alpha(L)\check{g}).$$

Solution (Chaichian & cols, Wess & cols): twist the coproduct action: namely replace $\alpha^{(2)}(L) = \alpha(L) \otimes \alpha(L)$ by

$$\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta}.$$

Is an action:

$$\alpha^{(2)}(L)\alpha^{(2)}(M) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta} T_{\theta}^{-1} \alpha^{(2)}(M) T_{\theta} =$$

= $T_{\theta}^{-1} \alpha^{(2)}(L)\alpha^{(2)}(M) T_{\theta} = \alpha_{\theta}^{(2)}(LM).$

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{(*)}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = A \theta A^t (\theta'^{\mu\nu} = A^{\mu}{}_{\mu'}A^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

 $[h^{t}G\theta Gk \mapsto (\Lambda^{-1}h)^{t}G\theta G\Lambda^{-1}k, \text{ use } \Lambda^{-1} = G\Lambda^{t}G, G^{2} = 1.]$ so that $\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1}\alpha^{(2)}(L)T_{\theta} = T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)$ and

 $\begin{aligned} c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) &= c(T_{\theta}\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = \\ &= c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'. \end{aligned}$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

◆□ → < □ → < Ξ → < Ξ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{(*)}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = A \theta A^t (\theta'^{\mu\nu} = A^{\mu}{}_{\mu'}A^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

 $[h^{t}G\theta Gk \mapsto (\Lambda^{-1}h)^{t}G\theta G\Lambda^{-1}k, \text{ use } \Lambda^{-1} = G\Lambda^{t}G, G^{2} = 1.]$ so that $\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1}\alpha^{(2)}(L)T_{\theta} = T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)$ and

 $\begin{aligned} c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) &= c(T_{\theta}\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = \\ &= c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'. \end{aligned}$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{(*)}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = A \theta A^t (\theta'^{\mu\nu} = A^{\mu}{}_{\mu'}A^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

 $[h^t G\theta Gk \mapsto (\Lambda^{-1}h)^t G\theta G\Lambda^{-1}k, \text{ use } \Lambda^{-1} = G\Lambda^t G, G^2 = 1.]$ so that $\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta} = T_{\theta}^{-1} T_{\theta'} \alpha^{(2)}(L)$ and

 $\begin{aligned} c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) &= c(T_{\theta}\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = \\ &= c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'. \end{aligned}$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{(*)}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = A \theta A^t (\theta'^{\mu\nu} = A^{\mu}{}_{\mu'}A^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

 $[h^t G \theta G k \mapsto (\Lambda^{-1} h)^t G \theta G \Lambda^{-1} k, \text{ use } \Lambda^{-1} = G \Lambda^t G, G^2 = 1.]$ so that $\alpha_{\theta}^{(2)}(L) = T_{\theta}^{-1} \alpha^{(2)}(L) T_{\theta} = T_{\theta}^{-1} T_{\theta'} \alpha^{(2)}(L)$ and

 $\begin{aligned} c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) &= c(T_{\theta}\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = \\ &= c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'. \end{aligned}$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{(*)}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = A \theta A^t (\theta'^{\mu\nu} = A^{\mu}{}_{\mu'}A^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

$$[h^{t}G\theta G k \mapsto (\Lambda^{-1}h)^{t}G\theta G \Lambda^{-1}k, \text{ use } \Lambda^{-1} = G\Lambda^{t}G, G^{2} = 1.]$$
so that $\alpha^{(2)}_{\theta}(L) = T^{-1}_{\theta}\alpha^{(2)}(L)T_{\theta} = T^{-1}_{\theta}T_{\theta'}\alpha^{(2)}(L)$ and
$$c_{\theta}(\alpha^{(2)}_{\theta}(L)\check{f}\otimes\check{g}) = c(T_{\theta}\alpha^{(2)}_{\theta}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'.$$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Easy to check that

$$\alpha(L)c_{\theta}(\check{f}\otimes\check{g})=c_{\theta}(\alpha_{\theta}^{(2)}(L)\check{f}\otimes\check{g}). \tag{*}$$

Standard interpretation: θ not a tensor! Is that obvious? Other way to check (*). Set $\theta' = \Lambda \theta \Lambda^t (\theta'^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}\theta^{\mu'\nu'})$. Remark that

$$\alpha^{(2)}(L)T_{\theta} = T_{\theta'}\alpha^{(2)}(L)$$

$$[h^{t}G\theta G k \mapsto (\Lambda^{-1}h)^{t}G\theta G \Lambda^{-1}k, \text{ use } \Lambda^{-1} = G\Lambda^{t}G, G^{2} = 1.]$$
so that $\alpha^{(2)}_{\theta}(L) = T^{-1}_{\theta}\alpha^{(2)}(L)T_{\theta} = T^{-1}_{\theta}T_{\theta'}\alpha^{(2)}(L)$ and
$$c_{\theta}(\alpha^{(2)}_{\theta}(L)\check{f}\otimes\check{g}) = c(T_{\theta}\alpha^{(2)}_{\theta}(L)\check{f}\otimes\check{g}) = c(T_{\theta}T_{\theta}^{-1}T_{\theta'}\alpha^{(2)}(L)\check{f}\otimes\check{g}) = c_{\theta'}(\check{f}'\otimes\check{g}') = \check{f}'\times_{\theta'}\check{g}'.$$

where $\check{f}'(k) = e^{-ika}\check{f}(\Lambda^{-1})$. in other words: (twstd covariance + θ invariant) \Leftrightarrow (ordinary cov'nce + θ tensor): $(f \star_{\theta} g)' = f' \star_{\theta'} g'$.

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.

Problem is: above only formal remark. To decide, go back to interpretation of $i\theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by *L*.

- Jane:
 - $[q^{\prime\mu},q^{\prime\nu}]=?$ (no a priori assumption)
 - $W'(f') = \int dk \,\check{f}'(k) e^{ikq}$

(same phy) () $W'(\sigma')$ (twstd

(日) (日) (日) (日) (日) (日) (日)

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity. Problem is: above only formal remark. To decide, go back to interpretation of $i\theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by *L*.

Jane:

- $[q'^{\mu},q'^{\nu}]=?$ (no a priori assumption),
- $W'(f') = \int dk \, f'(k) e^{ikq'}$
- $W'(m_{\theta}(\alpha_{\theta}^{(2)}(f\otimes g))=W'(f')W'(g')$

ı priori assumption), (same physics), (twstd cov).

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity. Problem is: above only formal remark. To decide, go back to interpretation of $i\theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by *L*.

Jane:

- $[q'^{\mu}, q'^{\nu}] = ?$ (no a priori assumption),
- $W'(f') = \int dk \check{f}'(k) e^{ikq'}$

(same physics),

• $W'(m_{\theta}(\alpha_{\theta}^{(2)}(f\otimes g)) = W'(f')W'(g')$

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity. Problem is: above only formal remark. To decide, go back to interpretation of $i\theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by L.

Jane:

- $[q'^{\mu}, q'^{\nu}] = ?$ (no a priori assumption),
- $W'(f') = \int dk \check{f}'(k) e^{ikq'}$

(same physics).

• $W'(m_{\theta}(\alpha_{\theta}^{(2)}(f \otimes q)) = W'(f')W'(q')$

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity. Problem is: above only formal remark. To decide, go back to interpretation of $i\theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by *L*.

Jane:

- $[q'^{\mu}, q'^{\nu}] =$? (no a priori assumption),
- $W'(f') = \int dk \,\check{f}'(k) e^{ikq'}$

(same physics),

• $W'(m_{ heta}(lpha_{ heta}^{(2)}(f\otimes g))=W'(f')W'(g')$

(twstd cov).

We first compute ($L = (\Lambda, 0)$ for simplicity))

$$W'(f')W(g') = \left(\int dh\check{f}'(h)e^{ihq'}\right) \left(\int dh\check{g}'(k)e^{ikq'}\right) = \\ = \int dh \int dk\check{f}'(h)\check{g}'(k)e^{ihq'}e^{ikq'}, \\ f'(m_{\theta}(\alpha_{\theta}^{(2)})(f\otimes g)) = \int dk e^{ikq'} \int dh e^{-\frac{i}{2}h\theta k}e^{\frac{i}{2}(h\theta k - h\theta' k)} \\ \check{f}'(h)\check{g}'(k - h) = \\ = \int dk e^{i(h+k)q'} \int dh\check{f}'(h)\check{g}'(k)e^{-\frac{i}{2}h\theta'(k+h)q'}$$

where $\theta'^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}\theta^{\mu'\nu'}$. It follows

 $e^{ihq'}e^{ikq'}=e^{-rac{i}{2}h\theta k}e^{i(h+k)q'},$

i.e. the Weyl form of $[q'^{\mu}, q'^{\nu}] = i\theta'^{\mu\nu}$. Conclusion: θ is a tensor! $\sigma_{\alpha\alpha}$

We first compute ($L = (\Lambda, 0)$ for simplicity))

$$W'(f')W(g') = \left(\int dh\check{f}'(h)e^{ihq'}\right) \left(\int dh\check{g}'(k)e^{ikq'}\right) = \\ = \int dh \int dk\check{f}'(h)\check{g}'(k)e^{ihq'}e^{ikq'}, \\ W'(m_{\theta}(\alpha_{\theta}^{(2)})(f\otimes g)) = \int dk e^{ikq'} \int dh e^{-\frac{i}{2}h\theta k}e^{\frac{i}{2}(h\theta k - h\theta' k)} \\ \check{f}'(h)\check{g}'(k - h) = \\ = \int dk e^{i(h+k)q'} \int dh\check{f}'(h)\check{g}'(k)e^{-\frac{i}{2}h\theta'(k+h)} \end{cases}$$

where $\theta'^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}\theta^{\mu'\nu'}$. It follows

 $e^{ihq'}e^{ikq'}=e^{-rac{i}{2}h heta k}e^{i(h+k)q'},$

i.e. the Weyl form of $[q'^{\mu}, q'^{\nu}] = i\theta'^{\mu\nu}$. Conclusion: θ is a tensor! $\sigma_{\alpha\alpha}$

We first compute ($L = (\Lambda, 0)$ for simplicity))

$$W'(f')W(g') = \left(\int dh\check{f}'(h)e^{ihq'}\right) \left(\int dh\check{g}'(k)e^{ikq'}\right) = \\ = \int dh \int dk\check{f}'(h)\check{g}'(k)e^{ihq'}e^{ikq'}, \\ W'(m_{\theta}(\alpha_{\theta}^{(2)})(f\otimes g)) = \int dk e^{ikq'} \int dh e^{-\frac{i}{2}h\theta k}e^{\frac{i}{2}(h\theta k - h\theta' k)} \\ \check{f}'(h)\check{g}'(k - h) = \\ = \int dk e^{i(h+k)q'} \int dh\check{f}'(h)\check{g}'(k)e^{-\frac{i}{2}h\theta'(k+k)} \end{cases}$$

where $\theta'^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}\theta^{\mu'\nu'}$. It follows

 $e^{ihq'}e^{ikq'}=e^{-rac{i}{2}h\theta k}e^{i(h+k)q'},$

i.e. the Weyl form of $[q'^{\mu}, q'^{\nu}] = i\theta'^{\mu\nu}$. Conclusion: θ is a tensor! $\sigma_{\alpha\alpha}$

We first compute ($L = (\Lambda, 0)$ for simplicity))

$$W'(f')W(g') = \left(\int dh\check{f}'(h)e^{ihq'}\right) \left(\int dh\check{g}'(k)e^{ikq'}\right) = \\ = \int dh \int dk\check{f}'(h)\check{g}'(k)e^{ihq'}e^{ikq'}, \\ W'(m_{\theta}(\alpha_{\theta}^{(2)})(f\otimes g)) = \int dk e^{ikq'} \int dh e^{-\frac{i}{2}h\theta k}e^{\frac{i}{2}(h\theta k - h\theta' k)} \\ \check{f}'(h)\check{g}'(k - h) = \\ = \int dk e^{i(h+k)q'} \int dh\check{f}'(h)\check{g}'(k)e^{-\frac{i}{2}h\theta'(k+k)} \end{cases}$$

where $\theta'^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}\theta^{\mu'\nu'}$. It follows

$$e^{ihq'}e^{ikq'}=e^{-\frac{i}{2}h\theta k}e^{i(h+k)q'}$$

i.e. the Weyl form of $[q'^{\mu}, q'^{\nu}] = i\theta'^{\mu\nu}$. Conclusion: θ is a tensor!

Part II From DFR Model to Twisted Covariance

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

DFR coordinates

 \exists ! the regular representation of the relations

$$[q^{\mu},q^{\nu}]=iQ^{\mu\nu}, \quad [q^{\mu},Q^{\nu,\rho}]=0,$$

where

$$jSp(\boldsymbol{Q}) = \boldsymbol{\Sigma} = \{ \boldsymbol{\sigma} : \boldsymbol{\sigma} = \boldsymbol{\Lambda} \boldsymbol{\sigma}_{0} \boldsymbol{\Lambda}^{t}, \boldsymbol{\Lambda} \in \boldsymbol{\mathscr{L}} \}.$$

Motivations: cf preceding talk. Covariance:

$$U(a,\Lambda)^{-1}q^{\mu}U(a,\Lambda) = \Lambda^{\mu}{}_{\mu'}q^{\mu'} + a^{\mu},$$
$$U(a,\Lambda)^{-1}Q^{\mu\nu}U(a,\Lambda) = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}Q^{\mu'\nu'}$$

Weyl quantisation:

$$W(f)=\int dk\check{f}(k)e^{ikq}.$$

Problem with twisted product: they depend on an operator Q, not on a C-number matrix. Need more general symbols.

Algebra of generalised symbols

Symbol in Fourier space:

$$\varphi: \Sigma \to L^1(\mathbb{R}^4)$$
 continuous, vanish at ∞

Generalised twisted product:

$$(\varphi \tilde{\times} \psi)(\sigma; \mathbf{k}) = \int d\mathbf{k} \, \varphi(\sigma; \mathbf{h}) \psi(\sigma; \mathbf{k} - \mathbf{h}) \mathbf{e}^{-\frac{i}{2}\mathbf{h}\sigma\mathbf{k}}$$

Involution and norm:

$$\|\varphi\| = \sup_{\sigma} \|\varphi(\sigma; \cdot)\|_{L^1}, \quad \varphi^*(\sigma; k) = \overline{\varphi(\sigma; -k)}.$$

Action of Poincaré group:

$$(\alpha(a,\Lambda)\varphi)(\sigma;k) = (\det\Lambda)e^{-ika}\varphi(\Lambda^{-1}\sigma\Lambda^{-1};\Lambda^{-1}k).$$

N.B. maps each fibre over sigma onto the fibre onto $\varphi_{\pm}^{\prime} = 4 \sigma \Lambda_{\pm}^{t}$

Algebra of generalised symbols

Symbol in Fourier space:

$$\varphi: \Sigma \to L^1(\mathbb{R}^4)$$
 continuous, vanish at ∞

Generalised twisted product:

$$(\varphi \tilde{\times} \psi)(\sigma; \mathbf{k}) = \int d\mathbf{k} \, \varphi(\sigma; \mathbf{h}) \psi(\sigma; \mathbf{k} - \mathbf{h}) \mathbf{e}^{-\frac{i}{2}\mathbf{h}\sigma\mathbf{k}}$$

Involution and norm:

$$\|\varphi\| = \sup_{\sigma} \|\varphi(\sigma; \cdot)\|_{L^1}, \quad \varphi^*(\sigma; k) = \overline{\varphi(\sigma; -k)}.$$

Action of Poincaré group:

$$(\alpha(\boldsymbol{a},\Lambda)\varphi)(\sigma;\boldsymbol{k}) = (\det\Lambda)\boldsymbol{e}^{-\boldsymbol{i}\boldsymbol{k}\boldsymbol{a}}\varphi(\Lambda^{-1}\sigma\Lambda^{-1}\boldsymbol{i};\Lambda^{-1}\boldsymbol{k}).$$

N.B. maps each fibre over sigma onto the fibre onto $\sigma' = A \sigma A^t_{z}$

DFR C*algebra, and symbol calculus

Theorem [DFR 95]; there is a unique C*-norm; the corresponding C*-completion is isomorphic (as a continuous field of C*-algebras) to $\mathcal{C}_0(\Sigma, \mathcal{K})$, \mathcal{K} =compact operators.

Representation of the algebra:

$$\pi(arphi) = \int dk arphi({m Q};k) {m e}^{ikq}$$

(replacement $\sigma \rightarrow Q$ understood as functional calculus). Relation with Weyl quantisation:

$$W(f) = \pi(\check{f}).$$

Symbol calculus:

$$W(f)W(g) = W(f \star_Q g),$$

$$(f \star_Q g)(k) = (\check{f} \tilde{\times} \check{g})(Q; k).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

DFR C*algebra, and symbol calculus

Theorem [DFR 95]; there is a unique C*-norm; the corresponding C*-completion is isomorphic (as a continuous field of C*-algebras) to $\mathcal{C}_0(\Sigma, \mathcal{K})$, \mathcal{K} =compact operators.

Representation of the algebra:

$$\pi(arphi) = \int dm{k} arphi(m{Q};m{k})m{e}^{im{k}m{q}}$$

(replacement $\sigma \rightarrow Q$ understood as functional calculus).

Relation with Weyl quantisation:

$$W(f) = \pi(\check{f}).$$

Symbol calculus:

$$W(f)W(g) = W(f \star_Q g),$$

$$(f \star_Q g)(k) = (\check{f} \times \check{g})(Q; k).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

DFR C*algebra, and symbol calculus

Theorem [DFR 95]; there is a unique C*-norm; the corresponding C*-completion is isomorphic (as a continuous field of C*-algebras) to $\mathcal{C}_0(\Sigma, \mathcal{K})$, \mathcal{K} =compact operators.

Representation of the algebra:

$$\pi(arphi) = \int dm{k} arphi(m{Q};m{k})m{e}^{im{k}m{q}}$$

(replacement $\sigma \rightarrow Q$ understood as functional calculus). Relation with Weyl quantisation:

$$W(f)=\pi(\check{f}).$$

Symbol calculus:

$$W(f)W(g) = W(f \star_Q g),$$

$$(f \star_Q g)(k) = (\check{f} \times \check{g})(Q; k).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

DFR C*algebra, and symbol calculus

Theorem [DFR 95]; there is a unique C*-norm; the corresponding C*-completion is isomorphic (as a continuous field of C*-algebras) to $\mathcal{C}_0(\Sigma, \mathcal{K})$, \mathcal{K} =compact operators.

Representation of the algebra:

$$\pi(arphi) = \int dm{k} arphi(m{Q};m{k})m{e}^{im{k}m{q}}$$

(replacement $\sigma \rightarrow Q$ understood as functional calculus). Relation with Weyl quantisation:

$$W(f)=\pi(\check{f}).$$

Symbol calculus:

$$W(f)W(g) = W(f \star_Q g),$$

(f \star_Q g)(k) = (\check{f} \times \check{g})(Q; k).

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

A certain class of localisation states

A localisation state is a linear functional formally written as

$$\varphi \mapsto \iint d\sigma \, dk \, K(\sigma; k) \varphi(\sigma; k)$$

with K such to ensure positivity and normalisation. We are interested in states with kernel of the form

$$K(\sigma; k) = \delta(\sigma - \theta) w(k),$$

which give

$$\varphi \mapsto \int dk \, w(k) \varphi(\theta; k)$$

More cleanly: we define the projection on the fibre over θ :

$$\Pi_{\theta}[\varphi](k) = \varphi(\theta; k);$$

extend it by continuity to a map $\Pi_{\theta} : \mathcal{C}(\Sigma, \mathcal{K}) \to \mathcal{K}$. Then we are interested in the states of the form $\omega \circ \Pi_{\theta}$ with $\omega \in \mathcal{S}(\mathcal{K})$.

A certain class of localisation states

A localisation state is a linear functional formally written as

$$\varphi \mapsto \iint d\sigma \, dk \, K(\sigma; k) \varphi(\sigma; k)$$

with K such to ensure positivity and normalisation.We are interested in states with kernel of the form

$$K(\sigma; k) = \delta(\sigma - \theta) W(k),$$

which give

$$\varphi \mapsto \int dk \, w(k) \varphi(\theta; k)$$

More cleanly: we define the projection on the fibre over θ :

$$\Pi_{\theta}[\varphi](k) = \varphi(\theta; k);$$

extend it by continuity to a map $\Pi_{\theta} : \mathcal{C}(\Sigma, \mathcal{K}) \to \mathcal{K}$. Then we are interested in the states of the form $\omega \circ \Pi_{\theta}$ with $\omega \in \mathcal{S}(\mathcal{K})$.

A certain class of localisation states

A localisation state is a linear functional formally written as

$$\varphi \mapsto \iint d\sigma \, dk \, K(\sigma; k) \varphi(\sigma; k)$$

with K such to ensure positivity and normalisation.We are interested in states with kernel of the form

$$K(\sigma; k) = \delta(\sigma - \theta) W(k),$$

which give

$$\varphi \mapsto \int dk \, w(k) \varphi(\theta; k)$$

More cleanly: we define the projection on the fibre over θ :

$$\Pi_{\theta}[\varphi](k) = \varphi(\theta; k);$$

extend it by continuity to a map $\Pi_{\theta} : \mathcal{C}(\Sigma, \mathcal{K}) \to \mathcal{K}$. Then we are interested in the states of the form $\omega \circ \Pi_{\theta}$ with $\omega \in \mathcal{S}(\mathcal{K})$.

We now make an additional assumption: while in the DFR model all localisation states are available to each observer,

θ -universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form ω ∘ Π_θ, where ω ∈ S(K);

We now make an additional assumption: while in the DFR model all localisation states are available to each observer,

θ -universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form ω ∘ Π_θ, where ω ∈ S(K);

We now make an additional assumption: while in the DFR model all localisation states are available to each observer,

θ -universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form ω ∘ Π_θ, where ω ∈ S(K);

We now make an additional assumption: while in the DFR model all localisation states are available to each observer,

θ -universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form ω ∘ Π_θ, where ω ∈ S(K);

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ ; he only sees θ -twisted products:

$$\Pi_{\theta}\varphi\tilde{\times}\psi = (\Pi_{\theta}\varphi)\times_{\theta}(\Pi_{\theta}\psi)$$

Let

$$\varphi'(\sigma; k) = (\det \Lambda)\varphi(\Lambda^{-1}\sigma\Lambda^{-1}; \Lambda^{-1}k)$$

be the Lorentz transform of φ , and analogously for ψ' ; the (possibly) unprivileged primed observer only sees the fibre over $\theta' = A\theta A^t$:

$$(\Pi_{\theta'}\varphi')(k) = \varphi'(\theta'; k) = (\det \Lambda)\varphi(\theta; \Lambda^{-1}k),$$

as expected. Finally the primed observer only sees θ' -twisted products:

$$\Pi_{\theta'}(\varphi' \tilde{\times} \psi') = (\Pi_{\theta'} \varphi') \times_{\theta'} (\Pi_{\theta'} \psi').$$

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ ; he only sees θ -twisted products:

$$\Pi_{\theta}\varphi\tilde{\times}\psi = (\Pi_{\theta}\varphi)\times_{\theta}(\Pi_{\theta}\psi)$$

Let

$$\varphi'(\sigma; k) = (\det \Lambda)\varphi(\Lambda^{-1}\sigma\Lambda^{-1}; \Lambda^{-1}k)$$

be the Lorentz transform of φ , and analogously for ψ' ; the (possibly) unprivileged primed observer only sees the fibre over $\theta' = A\theta A^t$:

$$(\Pi_{\theta'}\varphi')(k) = \varphi'(\theta'; k) = (\det \Lambda)\varphi(\theta; \Lambda^{-1}k),$$

as expected. Finally the primed observer only sees θ' -twisted products:

$$\Pi_{\theta'}(\varphi' \tilde{\times} \psi') = (\Pi_{\theta'} \varphi') \times_{\theta'} (\Pi_{\theta'} \psi').$$

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ ; he only sees θ -twisted products:

$$\Pi_{\theta}\varphi\tilde{\times}\psi = (\Pi_{\theta}\varphi)\times_{\theta}(\Pi_{\theta}\psi)$$

Let

$$\varphi'(\sigma; k) = (\det \Lambda)\varphi(\Lambda^{-1}\sigma\Lambda^{-1}; \Lambda^{-1}k)$$

be the Lorentz transform of φ , and analogously for ψ' ; the (possibly) unprivileged primed observer only sees the fibre over $\theta' = A\theta A^t$:

$$(\Pi_{\theta'}\varphi')(k) = \varphi'(\theta';k) = (\det \Lambda)\varphi(\theta;\Lambda^{-1}k),$$

as expected. Finally the primed observer only sees θ' -twisted products:

$$\Pi_{\theta'}(\varphi' \tilde{\times} \psi') = (\Pi_{\theta'} \varphi') \times_{\theta'} (\Pi_{\theta'} \psi').$$

Interlude Many Events

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

・ロト・日本・日本・日本・日本

Different inequivalent possibilities for defining polylocal products:

- Translations: f(q)f(q + a₂)f(q + a₃) ···; investigated in DFR. Feature: they depend on one single localisation state.
- Independent coordinates: [q_j^μ, q_k^μ] = iδ_{jk}Q^{μν}; investigated in P,BDFP. They naturally lead to ultraviolet finite theories. Note that [q_j, q_j] = iQ does not depend on *j*; corresponds to tensor products of *Z*-moduli. Irreps:

$$q_1 = q_\sigma \otimes I \otimes I \cdots, \quad q_2 = I \otimes q_\sigma \otimes \cdots, \quad \cdots$$

fulfil $[q_i, q_k] = i\delta_{ik}\sigma$.

• Fiore Wess:

$$[q_j^{\mu}, q_k^{\nu}] = i\theta^{\mu\nu}$$

(no δ_{jk})

Different inequivalent possibilities for defining polylocal products:

- Translations: f(q)f(q + a₂)f(q + a₃)...; investigated in DFR. Feature: they depend on one single localisation state.
- Independent coordinates: [q_j^μ, q_k^μ] = iδ_{jk}Q^{μν}; investigated in P,BDFP. They naturally lead to ultraviolet finite theories. Note that [q_j, q_j] = iQ does not depend on *j*; corresponds to tensor products of *Z*-moduli. Irreps:

$$q_1 = q_\sigma \otimes I \otimes I \cdots, \quad q_2 = I \otimes q_\sigma \otimes \cdots, \quad \cdots$$

fulfil $[q_j, q_k] = i\delta_{jk}\sigma$.

• Fiore Wess:

$$[q_j^{\mu}, q_k^{\nu}] = i\theta^{\mu\nu}$$

(no δ_{ik})

Different inequivalent possibilities for defining polylocal products:

- Translations: f(q)f(q + a₂)f(q + a₃)...; investigated in DFR. Feature: they depend on one single localisation state.
- Independent coordinates: [q_j^μ, q_k^μ] = iδ_{jk}Q^{μν}; investigated in P,BDFP. They naturally lead to ultraviolet finite theories. Note that [q_j, q_j] = iQ does not depend on *j*; corresponds to tensor products of *Z*-moduli. Irreps:

$$q_1 = q_\sigma \otimes I \otimes I \cdots, \quad q_2 = I \otimes q_\sigma \otimes \cdots, \quad \cdots$$

fulfil
$$[q_j, q_k] = i\delta_{jk}\sigma$$
.

• Fiore Wess:

 $[q_i^{\mu}, q_k^{\nu}] = i\theta^{\mu\nu}$

(no δ_{ik})

Different inequivalent possibilities for defining polylocal products:

- Translations: f(q)f(q + a₂)f(q + a₃)...; investigated in DFR. Feature: they depend on one single localisation state.
- Independent coordinates: [q_j^μ, q_k^μ] = iδ_{jk}Q^{μν}; investigated in P,BDFP. They naturally lead to ultraviolet finite theories. Note that [q_j, q_j] = iQ does not depend on *j*; corresponds to tensor products of *Z*-moduli. Irreps:

$$q_1 = q_\sigma \otimes I \otimes I \cdots, \quad q_2 = I \otimes q_\sigma \otimes \cdots, \quad \cdots$$

fulfil $[q_j, q_k] = i\delta_{jk}\sigma$.

• Fiore Wess:

$$[q_j^{\mu}, q_k^{\nu}] = i\theta^{\mu\nu}$$

(no δ_{jk})

"No Relations without Representation!"

Problem with Fiore Wess coordinates: assume q_j regular irrep, then:

$$[q_j^{\mu}, (q_k - q_l)^{\nu}] = 0$$
 strongly

hence by Schur's Lemma:

$$q_k - q_l = b_{kl} \in \mathbb{R}^4.$$

Set

 $a_j = b_{j1}$

so that

$$q_j = q_1 + a_j$$

There is only one set of 4 coordinates; all the other sets are just translates of the basic coordinates of a single event.

(ロ) (同) (三) (三) (三) (○) (○)

"No Relations without Representation!"

Problem with Fiore Wess coordinates: assume q_j regular irrep, then:

$$[q_j^{\mu}, (q_k - q_l)^{\nu}] = 0$$
 strongly

hence by Schur's Lemma:

$$q_k - q_l = b_{kl} \in \mathbb{R}^4.$$

Set

$$a_j = b_{j1}$$

so that

$$q_j = q_1 + a_j$$

There is only one set of 4 coordinates; all the other sets are just translates of the basic coordinates of a single event.

(ロ) (同) (三) (三) (三) (○) (○)

"No Relations without Representation!"

Problem with Fiore Wess coordinates: assume q_j regular irrep, then:

$$[q_j^{\mu}, (q_k - q_l)^{\nu}] = 0$$
 strongly

hence by Schur's Lemma:

$$q_k - q_l = b_{kl} \in \mathbb{R}^4.$$

Set

$$a_j = b_{j1}$$

so that

 $q_j = q_1 + a_j$

There is only one set of 4 coordinates; all the other sets are just translates of the basic coordinates of a single event.

(ロ) (同) (三) (三) (三) (○) (○)

(ロ) (同) (三) (三) (三) (○) (○)

We have shown that (twisted covariance + θ invariant) is equivalent to (untwisted covariance + θ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model + θ -universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

(ロ) (同) (三) (三) (三) (○) (○)

We have shown that (twisted covariance + θ invariant) is equivalent to (untwisted covariance + θ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model + θ -universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

(ロ) (同) (三) (三) (三) (○) (○)

We have shown that (twisted covariance + θ invariant) is equivalent to (untwisted covariance + θ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model + θ -universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state *z*-universality: the preferred observers only can see motions with z(0) > 0. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around *x* axis, only sees z'(0) < 0.

The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.

In the same way, on QST every observer should reach any θ' together with θ .

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state *z*-universality: the preferred observers only can see motions with z(0) > 0. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around *x* axis, only sees z'(0) < 0. The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.

In the same way, on QST every observer should reach any θ' together with θ .

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state *z*-universality: the preferred observers only can see motions with z(0) > 0. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around *x* axis, only sees z'(0) < 0. The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.

In the same way, on QST every observer should reach any θ' together with $\theta.$

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state *z*-universality: the preferred observers only can see motions with z(0) > 0. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around *x* axis, only sees z'(0) < 0. The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers.

including the privileged ones.

In the same way, on QST every observer should reach any θ' together with θ .