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Introduction/Plan

Fuzzy spaces-quantum Hall effect connection

Extending the quantum Hall effect to higher dimensions

Landau problem, primarily on CP
k

Lowest Landau level as a fuzzy space, copy of CP
k

Edge states and their action

General result for the large N limits of the Chern-Simons one-form

∫
dt Tr D0 −→ SCS(A0, Ai)

Matrix model Continuous field theory

A0, Ai parametrize the different large N limits

Comment on relation to Bergman metric

Gauge fields correspond to gauging of isometries → gravity

Evolution of states for space ∼ evolution of states for matter

Fuzzy spaces lead to Chern-Simons gravity (almost unique)
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QHE-Fuzzy Space Connection

Fuzzy spaces can be defined by the triple (HN , MatN , ∆N )

HN = N -dimensional Hilbert space

MatN = matrix algebra of N × N matrices which act as linear

transformations on HN

∆N = matrix analog of the Laplacian.

In the large N approximation

HN −→ Phase space M
MatN −→ Algebra of functions on M
∆N −→ needed to define metrical and geometrical properties.

MF ≡ (HN , MatN , ∆N ) defines a noncommutative and finite mode

approximation to M.

Quantum Hall Effect on a compact space M, LLL ∼ HN

Observables restricted to the lowest Landau level ∈ MatN

Can we utilize this to study fuzzy spaces by analyzing QHE?
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Landau problem on CP
k

Hu and Zhang introduced QHE on S4 where the background

magnetic field = SU(2) "instanton"

We will start by generalizing to arbitrary even dimensions

QHE on CP
k (U(1) and SU(k) background fields) (mostly with Dimitra

Karabali)

CP
k is given as

CP
k =

SU(k + 1)

U(k)
∼ SU(k + 1)

U(1) × SU(k)

This allows the introduction of constant background fields which are

valued in U(k) ∼ U(1) ⊕ SU(k)

Useful comparison:

Minkowski = Poincaré/Lorentz
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Landau problem on CP
1

Since CP
1 ∼ S2 = SU(2)/U(1), start with choosing

g = exp(iσ · θ/2) ∈ SU(2) as coordinates for the space (and a

gauge direction).

Wave functions are given by

D(j)
ms(g) = 〈j, m| exp(iJ · θ)|j, s〉

subject to a condition on s.

Define right tgranslations as Ra g = g ta.

The covariant derivatives D± = iR±/r. Since

[R+, R−] = 2R3 =⇒ [D+, D−] = −2R3

r2

we must choose R3 to be −n for the Landau problem.

This corresponds to a field a = in tr(t3g
−1dg).
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Landau problem on CP
1 (cont’d.)

The wave functions are thus

Ψm(g) ∼ D(j)
m,−n(g)

Choose the Hamiltonian as

H =
1

4mr2
[R+R− + R−R+]

The lowest Landau level has the further condition (holomorphicity

condition)

R−Ψm(g) = 0

The left action

La g = ta g

correspond to magnetic translations.
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QHE on CP
k (continued)

On CP
k one can have "constant" background magnetic fields in U(1)

or U(k) (field strengths ∼ Riemannian curvature ∼ U(k) structure

constants)

CP
k = SU(k + 1)/U(k) ∼ SU(k + 1)/{U(1) × SU(k)}

Parametrize using the (k + 1) × (k + 1) matrix, g ∈ SU(k + 1), with

g ∼ gh, h ∈ U(k)

The constant fields correspond to

a = in

√

2k

k + 1
tr(tk2+2kg−1dg), U(1) field

Āa = 2i tr(tag−1dg), SU(k) field

ta ⊂ SU(k), a = 1, · · · , k2 − 1

tA tk2+2k ⊂ U(1)

tα ⊂ coset t+I , t−I
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QHE on CP
k (continued)

Wave functions form SU(k + 1) representations; expressed in terms of

Wigner D-functions

Ψ ∼ D(J)
L,R(g) = 〈L | ĝ |R〉

quantum numbers characterizing
states in J-representation

Abelian case (U(1) background field)

Under U(1)R : a → a − nk√
2k(k+1)

dθ

Under SU(k)R : a → a

Ψm ∼ 〈m | ĝ |Ra = 0, Rk2+2k = − nk
√

2k(k + 1)
︸ ︷︷ ︸

〉

m = 1, · · · , dimJ SU(k)R singlet with fixed U(1)R charge
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QHE on CP
k (continued)

Nonabelian case (U(k) background field)

Āa transforms under SU(k)R → wavefunctions carry SU(k)R

charge

Ψa′

m ∼ 〈 m | ĝ |R 〉

m = 1, · · · , dimJ

particular SU(k)R repr. J ′ with fixed U(1)R charge

a′ internal gauge index =1, · · · , N ′ = dimJ ′

The Hamiltonian can be taken as

H =
1

2MR2

k∑

I=1

R+IR−I + constant

=
1

2MR2

[
C

SU(k+1)
2 (J) − C

SU(k)
2 (J ′) − n2k

2(k + 1)

]

For the lowest Landau level, R−IΨ = 0 (holomorphicity condition).
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LLL Hilbert space

In the Abelian case

Ψ ∈ symmetric rank n representation J

N = dimJ =
(n + k)!

n!k!
→ nk

k!

These are coherent states for CP
k

Think of CP
k as a phase space, quantization leads to the finite

dimensional Hilbert space of LLL states.

LLL of CP
k with U(1) ≡ "fuzzy" CP

k

In the large N limit, matrices which are operators on LLL states

become functions on CP
k

This gives an approach to building smooth spaces as large N limits of

finite-dimensional Hilbert spaces

A similar story for the nonabelian case.
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Matrix formulation of LLL dynamics

The LLL has N available states, K occupied by fermions,

1 ≪ K ≪ N

Form a QH droplet, specified by the density matrix: ρ̂0 =
∑K

i=1 |i〉〈i|,

1
1

1
...

1
0

0
...

0

K

N − K

ρ̂0 =

Under time evolution: ρ̂0 → ρ̂ = Û ρ̂0Û
†

Û = N × N unitary matrix: "collective" variable describing all

LLL excitations
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Matrix formulation of LLL dynamics (cont’d.)

The dynamics of ρ is given by

S =

∫

dt Tr
[

iρ̂0Û
†∂tÛ − ρ̂0Û

†V̂ Û
]

This leads to the evolution equation for density matrix

i
dρ̂

dt
= [V̂ , ρ̂]

(No explicit dependence on properties of space on which QHE is

defined, abelian or nonabelian nature of fermions etc)

The symbol for a matrix is

X(~x, t) =
1

N

X

m,l

Ψm(~x)Xml(t)Ψ
∗
l (~x)

Xa′b′(~x, t) =
1

N

X

m,l

Ψa′

m(~x)Xml(t)Ψ
∗b′

l (~x), a′, b′ = 1, · · ·N ′ = dimJ ′
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Matrix formulation of LLL dynamics (cont’d.)

We seek a simplification at large N in terms of the symbol for U .

This utilizes the usual rules,

ρ̂0, Û , V̂
︸ ︷︷ ︸

→ ρ0(~x), U(~x, t), V (~x)
︸ ︷︷ ︸

(N × N) matrices Symbols

Matrix multiplication → * product

Trace operation Tr → N
∫

dµ
(
Ô1Ô2

)

symbol
= O1(~x, t) ∗ O2(~x, t)

Bosonic action can be written in terms of G ∈ U(N ′)

S =
1

4π

Z

∂D

tr
h“

G†Ġ + ω G†
LG

”

G†
LG

i

+
1

4π

Z

D

tr
h

−d
“

iĀdGG† + iĀG†dG
”

+
1

3

“

G†dG
”

3
i „

Ω

2π

«k−1

| {z }

WZW-term in 2k + 1 dim

L = 1
n
(Ω−1)ij r̂jDiφ = covariant derivative along the boundary droplet
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Edge effective action (continued)

In the presence of gauge interactions

S = N

∫

dt dµ tr
[
iρ0 ∗ U † ∗ ∂tU − ρ0 ∗ U † ∗ (V + A) ∗ U

]

= Sedge + Sbulk

Sedge ∼ SWZW

(
AL = A + Ā , AR = Ā

)

= chirally gauged WZW action generalized in 2k (droplet + time)

dimensions

The bulk action is

Sbulk =
(−1)k+1

(2π)kk!

∫

tr

[

A (−nΩ)k

+
k

2

(

(A + Ā + V )d(A + Ā + V ) +
2i

3
(A + Ā + V )3

)

(−nΩ)k−1

+
k(k − 1)

2

(

(A + Ā)d(A + Ā) +
2i

3
(A + Ā)3

)

dV (−nΩ)
k−2

]

+ · · ·

(Dimitra Karabali)
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Edge effective action (continued)

The bulk action is a CS action, Sbulk ∼ S2k+1
CS (Ã)

Ã = (A0 + V, ai + Āi + Ai) = background + fluctuations

Gauge Invariance ⇒ Anomaly Cancellation

δSedge 6= 0, δSbulk 6= 0

δSedge + δSbulk = 0

The edge action for S4 case obtained by using the fact that CP
3 is

locally S4 × CP
1.

The excitations do not have Lorentz invariance

The bulk fields are gauging the isometries of the space; hence they

should be interpreted in terms of gravity on the fuzzy space.
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A General Result on Large N

A deformation of background is of the form

Ω =⇒ Ω + F

This can give same Hilbert space if the characteristic class of Ω is

unchanged; for example, in two dimensions if

∫

Ω + F =

∫

Ω

However, the wave functions can be modified. This leads to new

symbols

X(~x, t) =
1

N

∑

m,l

Ψm(~x, A)Xml(t)Ψ
∗
l (~x, A)

Introduction of background fields leads to new wave functions, new

symbols, new large N limit or, turning this around, large N limits

can be labeled by possible background fields.
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A General Result on Large N (cont’d.)

The change due to change in A can be obtained in two ways:

Work out changes in Ψm(~x, A) as we change A and the

corresponding changes in the symbol

OR, we can write a general matrix function as sums of monomials

of the form

K = Kµ1µ2...µn Dµ1
Dµ2

· · ·Dµn

and work out changes as we shift D → D + δA

(K = D0 wil be needed for the effective action.)

For a shift of Dµ we can write

δDµ = 1
2

[

ξα[Dα, Dµ] + [Dα, Dµ]ξ̃α

]

ξα = δDλ(Ω−1)λα, ξ̃α = (Ω−1)λαδDλ, Ωµν = [Dµ, Dν ]
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A General Result on Large N (cont’d.)

For the change of K under a shift of Dµ, we get

δK = 1
2

[
δ1K + δ2K

]

δ1K = ξα[Dα, K] +

n−1∑

k=1

Dµ1
...Dµk−1

[Dµk
, ξα][Dα, Kµ1...µk ]

δ2K = [K, Dα]ξ̃α +

2∑

n

[K̃µk...µn , Dα][ξ̃α, Dµk
]Dµk+1...Dµn

The Kµ1...µk are determined iteratively by recursion rules

Kµ = (Ω−1)µλ[Dλ, K] − (Ω−1)µλDν [Dλ, Kν ]

Kµν = (Ω−1)νλ[Dλ, Kµ] − (Ω−1)νλDα[Dλ, Kµα]

... ... ... ...

And similarly for K̃µk...µn .
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A General Result on Large N (cont’d.)

The bulk action is given by

S = iTr
(

ρ̂0Û
†D0Û

)

= iTr
(

ρ̂0Û
†∂0Û

)

− Tr
(

ρ̂0Û
†Â0Û

)

where we can take ρ̂0 = 1.

For example, for CP
1, the variation is given by

δS = iTr(ρ̂0δD0) ≈ iTr[δDµ(Ω−1)µνFν0]

Integration of this will give the action.

We take the large n limit, taking a background U(1) field

(corresponding to the symplectic form) and fluctuations which

may be nonabelian. i.e., Ω−1 ≈ ω−1 − ω−1Fω−1 + · · · , where F is

the fluctuation from the background value ω
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A General Result on Large N (cont’d.)

There is also a change in the symbol of a product,

(AB)0 = (AB) − 1
2 tr [ω−1)µνFµν(AB + BA)]

The effective action becomes

δS =

∫

detω

[

1
2 tr [δAµFν0 + Fν0δAµ)](ω−1)µν

− 1
4 tr [δAα(Fβ0Fµν + FµνFβ0)](ω

−1)αβ(ω−1)µν

− 1
2 tr [δAα(Fβ0Fµν + FµνFβ0)][(ω

−1)αµ(ω−1)νβ

]

Integration of this leads to the action

S =

∫ [

ω ∧ ω ∧ A + ω ∧ (C.S.)(3) +
1

3
(C.S.)(5)

]

= SCS(A), A = a + A, da = ω
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A General Result on Large N (cont’d.)

The general result is

i

∫

dt Tr(D0) ≈ S
(2k+1)
∗CS (a + A) + · · · , as N → ∞

≈ S
(2k+1)
CS (a + A)

The latter form is background independent, just like the matrix

action iTr
(

ρ̂0Û
†D0Û

)

. The expansion of the matrix action in

terms of different backgrounds is obtained, in the large n limit, by

expanding the CS action around the corresponding gauge

potentials.

This is a general matrix result, the CS one-form can generate all the

higher CS forms as appropriate large N limits

Before we turn to gravity, we comment on how this is related to the

Bergman metric
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A Comment on the Bergman Metric

The density ρ can be written in terms of the wave functions as

ρ =
1

N

∑

m

Ψm(~x, A)Ψ∗
m(~x, A)

The Bergman metric for Kähler manifolds is given by

g =
1

n
∂∂̄ log ρ

The expansion of this in powers of curvatures is important for

approximating Einstein metrics for Kähler manifolds, for example,

for Calabi-Yau manifolds in CP
k.

Tian, Yau &Zelditch and Lu & Catlin derived the expansion

ρ ≈ ωk+ωk−1 R

2
+ ωk−1

(
1

3
∆R +

1

24
|Riem|2 − 1

6
|Ric|2 +

1

8
R2

)

+· · ·
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A Comment on the Bergman Metric (cont’d.)

More recently, Dai, Liu & Ma ands Ma & Marinescu obtained

ρ ≈ ωk + ωk−1

(
R

2
1E + iRE

)

+ · · ·

These results (and some higher terms) are reproduced by our results

by taking

ρ =
δS

δA0

and expanding around ω.
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Gravity on a Fuzzy Space

The gauge fields in

i

∫

dt Tr(D0) ≈ S
(2k+1)
CS (a + A) + · · · , as N → ∞

lead to gauging of the isometry group SU(k + 1) of CP
k, so a

natural interpretation is in terms of gravity

We will take an approach of starting with the Hilbert space of (Matter

+Gravity), an already quantized theory, and extracting the notion of

continuous spacetime in the large N limit.

Hilbert space H = Hs ⊗Hm, general state

|A, r〉

space matter
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Gravity on a Fuzzy Space (cont’d.)

For D0, make an ansatz

〈A, r|D0|B, s〉 = δrs 〈A|D(s)
0 |B〉 + 〈A, r|D(m)

0 |B, s〉

〈A, r|ρ0|B, s〉 = δAB 〈r|ρ0|s〉

A0 (or H) specifies the choice of matter system. For spacetime, the

geometry is not a priori determined

D(s) should be regarded as an arbitrary matrix

Comment on entropy of de Sitter space, eS ∼ exp(1/Λ) ⇒ There are

states in the Hilbert space representing pure space

Dynamics of space should be treated exactly as dynamics of matter

Action, as for any quantum theory, is given by

S = i

∫

dt Tr(ρ U †D0U)
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Gravity on a Fuzzy Space (cont’d.)

Extremization of the action can be used to determine the "best"

background.

If we ignore all matter degrees of freedom as a first approximation,

the action becomes

S ≈ i

∫

dt Tr(D
(s)
0 )

For large number of states, the action is effectively SCS . Thus, fuzzy

spaces (matrix models, QH model) =⇒ Chern-Simons gravity

Indications of CS gravity action in M -theory

Leads to something of an “ultra-Machian” description of spacetime

As an example, take a large N limit which leads to the 7-dim. CS

action, starting with CP
3 × R

Gauge group ∼ U(4) ∼ SO(6) × U(1)

NCGQFT-08 – p. 26/28



Gravity on a Fuzzy Space (cont’d.)

Choose M7 = M5 × S2, with FU(1) = l ω, where ω is the Kähler

form on S2.

The effective large N action is

S = −i
l

24π2

∫

Tr

(

A dA dA +
3

2
A3 dA +

3

5
A5

)

A = P a ea
µdxµ + 1

2Jab ωab
µ dxµ

O(6)/O(5) O(5)

Euclidean de Sitter space is a solution

A further choice e5
5 = 1, ω5a = 0, ωab

5 = 0, for a, b = 1, ..., 4, leads to

the Einstein action in 4 dimensions,

S =
lΛ

16π

∫ √
g d4x (R − 3Λ)
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Gravity on a Fuzzy Space (cont’d.)

This is similar to the McDowell-Mansouri formulation of Einstein

gravity.

Minkowski signature, details of matter-gravity couplings are not yet

clear.

It is not clear if we will have holography.

There is no issue of quantizing a classical theory of gravity, we start

with the Hilbert space.

Spacetime is nothing more than a convenient framework for

formulating matter interactions.

GN ∼ θ ∼ 1
N2/k , smallness of GN is related to the large number of

degrees of freedom. Also, this suggests GN ∼ exp(− 1
Λ ).
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