θ-deformed Quantum Fields on the Noncommutative Minkowski Space

Harald Grosse & Gandalf Lechner [JHEP 11, 012, 2007 & JHEP 0809:131,2008]

Department of Physics, University of Vienna

Workshop on NCG & QFT, Chennai 19.12.2008

Introduction

Classical gravity and quantum uncertainty \rightarrow non-commutative spacetime.

• "two quantizations":

 \hbar measures quantum nature of matter

 λ_P measures quantum nature of geometry

$$\begin{array}{c|c} (\hbar = 0, \lambda_P = 0) & \xrightarrow{\text{usual quantization}} & (\hbar = 1, \lambda_P = 0) \\ \\ \text{NC classical} & \text{Actions} & \text{NC} & \text{NC} & \text{deform. of QFT} \\ \hline (\hbar = 0, \lambda_P = 1) & \xrightarrow{\text{quant. of NC fields}} & (\hbar = 1, \lambda_P = 1) \end{array}$$

- Different (inequivalent!) constructions possible: $\downarrow \rightarrow$ or $\rightarrow \downarrow$.
- Here: " $\rightarrow \downarrow$ ", i.e. investigate NC effects on quantum field theory

Image: Image:

Quantum Fields on Non-Commutative Minkowski Space

Ingredients for the construction:

(Simple) model for NC Minkowski space: Selfadjoint coordinate operators X₀, ..., X₃ satisfying

$$[X_{\mu}, X_{\nu}] = i \,\theta_{\mu\nu} \cdot 1 \,,$$

regularly represented on some Hilbert space \mathcal{V} , e.g. $\mathcal{V} = L^2(\mathbb{R}^2)$.

2 Description of undeformed QFT: Wightman framework

- ϕ : (scalar) quantum field on commutative Minkowski space ${\rm I\!R}^4$,
- $\bullet\,$ formulated as operator-valued distribution on Hilbert space ${\cal H}\,$
- On \mathcal{H} : Unitary positive energy representation U of Poincare group, with vacuum vector $\Omega \in \mathcal{H}$
- Usual locality and covariance requirements:

$$\begin{split} [\phi(x),\phi(y)] &= 0 \qquad (x-y)^2 < 0 \\ U(y,\Lambda)\phi(x)U(y,\Lambda)^{-1} &= \phi(\Lambda x + y) \end{split}$$

• On the X_{μ} , the translations act via

$$X_{\mu} \longmapsto X_{\mu} + x_{\mu} \cdot 1, \qquad x \in \mathbb{R}^4.$$

• Suggestion for deformed field operator on NC ${
m I\!R}^4$ ([DFR] for free case)

$$\phi^{\otimes}(x) := \int d^4p \; e^{ip \cdot (X+x)} \otimes \tilde{\phi}(p)$$

- ϕ^\otimes can be rigorously defined as operator-valued distribution on dense domain in $\mathcal{V}\otimes\mathcal{H}$
- Polynomial algebra of the smeared fields $\phi^\otimes(f)$ replaces the field algebra of the QFT on commutative ${\rm I\!R}^4$

- For doing QFT, need also a vacuum state
- simplest suggestion for vacuum state: product states

 $\omega := \nu \otimes \langle \Omega, \, . \, \Omega \rangle,$

with some states u on the algebra of the X_{μ}

• "no correlations between field and geometry degrees of freedom"

The vacuum representation

• The state $\omega = \nu \otimes \langle \Omega, . \Omega \rangle$ is actually independent of ν :

$$\begin{split} &\omega(\phi^{\otimes}(x_1)\cdots\phi^{\otimes}(x_n))\\ &=\int dp_1\cdots dp_n\,\nu(e^{iX\cdot\sum_{k=1}^n p_k})\prod_{1\leq l< r\leq n}e^{-\frac{i}{2}p_l\theta p_r}\langle\Omega,\tilde{\phi}(p_1)\cdots\tilde{\phi}(p_n)\Omega\rangle\\ &=\int dp_1\cdots dp_n\,\prod_{1\leq l< r\leq n}e^{-\frac{i}{2}p_l\theta p_r}\langle\Omega,\tilde{\phi}(p_1)\cdots\tilde{\phi}(p_n)\Omega\rangle \end{split}$$

because of translation invariance of $\boldsymbol{\Omega}$

- Same procedure can be used for any translationally invariant state, e.g. thermal equilibrium states
- Given algebra of fields $\phi^{\otimes}(x)$ and state ω , go over to vacuum (GNS) representation

• GNS construction yields $(\mathcal{H}_{\omega}, \Omega_{\omega}, \pi_{\omega})$:

$$\begin{aligned} \mathcal{H}_{\omega} &= \mathcal{H} \\ \Omega_{\omega} &= \Omega \\ \tilde{\phi}^{\theta}(p) &:= \pi_{\omega}(\tilde{\phi}^{\otimes}(p)) = \tilde{\phi}(p) \, e^{-\frac{i}{2}p\theta P} \,, \end{aligned}$$

with $U(y,1)=e^{iy_{\mu}P^{\mu}}$ energy-momentum operators of undeformed theory.

- Rigorous definition with twisted tensor product on algebra of test functions
- Example: Free scalar massive field. Here ϕ^{\otimes} is made out of annihilation/creation operators (on $\mathcal{V} \otimes \mathcal{H}$)

$$a_{\otimes}(p)^* := e^{ip \cdot X} \otimes a(p)^*, \qquad a_{\otimes}(p) := e^{-ip \cdot X} \otimes a(p),$$

and the GNS-represented field out of

$$a(\theta,p)^* := e^{-\frac{i}{2}p\theta P} a(p)^*, \qquad a(\theta,p)^* \qquad := e^{\frac{i}{2}p\theta P} a(p)^*$$

(on \mathcal{H}). [Akofor/Balachandran/Jo/Joseph 07, Grosse 79, GL 06, ...]

• *n*-point functions of the deformed fields:

$$\langle \Omega, \tilde{\phi}^{\theta}(p_1) \cdots \tilde{\phi}^{\theta}(p_n) \Omega \rangle = \prod_{1 \le l, r \le n} e^{-\frac{i}{2} p_l \theta p_r} \cdot \langle \Omega, \tilde{\phi}(p_1) \cdots \tilde{\phi}(p_n) \Omega \rangle$$

- continuous commutative limit (in *n*-point functions)
- The deformation $\phi \to \phi^{\theta}$ can also be defined in a more general operator-algebraic setting [Buchholz/Summers]

Here: Stick to the field-theoretic setting, and study properties of φ^θ.
In particular: φ^θ is neither local nor covariant if θ ≠ 0,

$$\begin{split} [\phi^{\theta}(x), \phi^{\theta}(y)] &\neq 0 \qquad (x-y)^2 < 0 \\ U(y, \Lambda) \phi^{\theta}(x) U(y, \Lambda)^{-1} &\neq \phi^{\theta}(\Lambda x + y) \end{split}$$

Covariance Properties of ϕ^{θ}

- Consider usual "untwisted" representation U of Poincaré group on \mathcal{H} : ($(y, \Lambda)x = \Lambda x + y$, j(x) = -x total reflection)
- Transformation behaviour of $\phi^{\theta}(x)$ under U can be computed:

$$U(y,\Lambda)\phi^{\theta}(x)U(y,\Lambda)^{-1} = \phi^{\pm\Lambda\theta\Lambda^{T}}(\Lambda x + y).$$

- ΛθΛ^T = θ for all Lorentz transformations Λ only possible for θ = 0
 ⇒ φ^θ(x) is not covariant for fixed θ ≠ 0.
- Lorentz symmetry generates family of fields

$$\{\phi^{\theta} \, : \, \theta \in \Theta\}$$

with Lorentz orbit $\Theta = \{\Lambda \theta_1 \Lambda^T : \Lambda \in \mathcal{L}\}$ and reference noncommutativity θ_1

Covariance Properties of $\phi^{\theta}(x)$

- Transformation behaviour $\phi^{\theta}(x) \rightarrow \phi^{\Lambda\theta\Lambda^{T}}(\Lambda x + y)$ similar to string-localized fields [Mund/Schroer/Yngvason 05]
- \rightarrow does $\phi^{\theta}(x)$ describe an extended field configuration?
- For the "standard θ " in d = 4 dimensions,

$$\theta = \theta_1 = \vartheta \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \qquad \vartheta \neq 0,$$

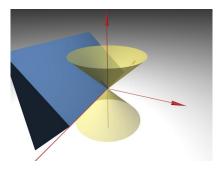
we have $\Lambda \theta_1 \Lambda^T = \theta_1$ only for

- $\Lambda = \text{Boost in } x_1 \text{-direction}$
- $\Lambda = \text{Rotation in } x_2 \text{-} x_3 \text{-plane}$
- These are precisely the symmetries of the wedge region

$$W_1 = \{ x \in \mathbb{R}^4 : x_1 > |x_0| \}$$

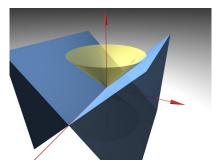
Wedges in ${\rm I\!R}^{d'}$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $W_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d = 3:



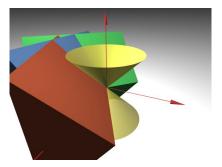
Wedges in ${\rm I\!R}^{d'}$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $W_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d = 3:



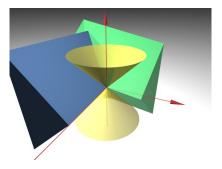
Wedges in ${\rm I\!R}^{d}$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $W_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d = 3:



Wedges in ${\rm I\!R}^{d'}$

- Reference region $W_1 := \{x \in \mathbb{R}^d : x_1 > |x_0|\}$
- Set of wedges: $W_0 := \mathcal{L}W_1$ (Lorentz transforms of W_1)
- $W \in \mathcal{W}_0$ satisfies W' = -W.
- Pictures in d = 3:



• As homogeneous spaces for the proper Lorentz group, \mathcal{W}_0 and Θ are isomorphic:

$$\theta: \mathcal{W}_0 \longrightarrow \Theta, \qquad \theta(\Lambda W_1) := \pm \Lambda \theta_1 \Lambda^T$$

• \Rightarrow noncommutativity corresponding to causal complement:

$$\theta(W') = \theta(-W) = -\theta(W), \quad W \in \mathcal{W}_0.$$

- P, T broken in d = 4, but TCP not, i.e. $j: x \mapsto -x$ is a symmetry
- Matching of symmetries of wedges and nc. parameters
- As far as covariance is concerned, φ^θ(x) can consistently be interpreted as being localized in the wedge region W(θ) + x.

• Is $\phi^{\theta}(x)$ localized in $W(\theta) + x$ in the sense of Einstein, i.e.

 $[\phi^{\theta}(x), \phi^{\theta'}(x')] = 0$ for $(W(\theta) + x) \subset (W(\theta') + x')'$?

- The condition that $W(\theta) + x$ and $W(\theta') + x'$ are spacelike separated is strong: It implies in particular $\theta' = -\theta$.
- sufficient to consider $[\phi^{\theta}(x), \phi^{-\theta}(x')]$ with $x \in W(\theta)$, $x' \in -W(\theta)$.
- In the example of the deformed free field, consider full algebra of creation/ann. operators:

$$\begin{aligned} a(\theta, p)a(\theta', p') &= e^{-\frac{i}{2}p(\theta+\theta')p'}a(\theta', p')a(\theta, p) \\ a^*(\theta, p)a^*(\theta', p') &= e^{-\frac{i}{2}p(\theta+\theta')p'}a^*(\theta', p')a^*(\theta, p) \\ a(\theta, p)a^*(\theta', p') &= e^{+\frac{i}{2}p(\theta+\theta')p'}a^*(\theta', p')a(\theta, p) + \omega_{\mathbf{p}}\delta(\mathbf{p}-\mathbf{p}')e^{\frac{i}{2}p(\theta-\theta')\mathbf{p}'}a^*(\theta', p')a(\theta, p) \\ \end{aligned}$$

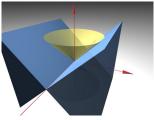
• many cancellations for $\theta' = -\theta \Rightarrow$ deformed free field is wedge-local.

Situation for general quantum fields:

- If the undeformed field ϕ is local and the energy is positive in every Lorentz frame (spectrum condition), then the deformed field operator $\phi^{\theta}(x)$ is localized in the wedge $W(\theta) + x$.
- First proof in operator-algebraic setting by [Buchholz-Summers 08], then in a field-theoretic setting [Grosse-GL 08].
- Wedge-locality is a remnant of the usual locality which is compatible with noncommutativity

Scattering processes

- Observable consequences of the deformation? Investigate
 - Scattering processes (here)
 - Also interesting: Thermal correlations [Grosse/GL, work in progress]
- In scattering theory, need to separate single particle states asymptotically \to Non-locality of $\phi^\theta(x)$ problematic
- but wedge-locality allows causal separation of two wedges



- → two-particle scattering can be done (Method: Haag-Ruelle scattering theory)
- Construct two-particle states with the right asymptotic localization and momentum space properties [Borchers/Buchholz/Schroer 00]

Gandalf Lechner (Uni Vienna)

 θ -deformed fields

- Two-particle scattering states can be computed
- they depend on non-commutativity (choice of wedge-fields)

$$_{\rm in}\langle p, \tilde{p}|q, \tilde{q}\rangle_{\rm out} = e^{ip\theta_1 \tilde{p}}\langle p, \tilde{p}|q, \tilde{q}\rangle \qquad \text{for} \quad p_1 > \tilde{p}_1, \ q_1 > \tilde{q}_1$$

- NC leads to change of S-matrix: non-trivial scattering!
- despite the Lorentz covariance of the model, the S-matrix breaks the Lorentz symmetry
- similar to "background field"
- $|e^{ip\theta q}| = 1 \Rightarrow$ No change in cross sections, but in time delays
- Situation similar to integrable models in d = 1 + 1

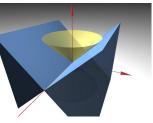
Optimal localization

• The noncommutativity

$$\theta = \vartheta \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array} \right)$$

has two commuting ("classical") directions

 $\bullet \to$ Sharp localization in two directions should be possible, i.e. in intersection of two opposite wedges



• Do there exist such "optimally localized" observables in our model?

• An optimally localized observable A must satisfy

$$[A, \phi_1^{\theta}(x)] = [A, \phi^{-\theta_1}(x')] = 0 \qquad x_1 > \varepsilon, \ x'_1 < -\varepsilon$$

Set A_ε of all solutions of this condition is a (v. Neumann) algebra.
A_ε ≠ C · 1? question still open

Same method can be applied to find algebras $\mathcal{A}(\mathcal{O})$ of observables localized in bounded spacetime regions $\mathcal{O} \subset \mathbb{R}^4$.

- $\overline{\mathcal{A}(\mathcal{O})\Omega} \neq \mathcal{H}$ local violation of Reeh-Schlieder property
- Model defined by the fields ϕ^{θ} is not generated by a local QFT ("intrinsic nonlocality")
- Probably even $\mathcal{A}(\mathcal{O}) = \mathbb{C} \cdot 1$ (no local observables at all)

New family of model QFTs:

- deformation of fields on comm. Minkowski space to fields on NC Minkowski space
- Example: related to "free" field on NC Minkowski space
- Consequent application of Poincaré symmetry leads to wedge-local fields
- Remnants of Covariance and Locality found in NC model:

$$U(y,\Lambda)\phi^{\theta}(x)U(y,\Lambda)^{-1} = \phi^{\pm\Lambda\theta\Lambda^{T}}(\Lambda x + y).$$

$$(W(\theta) + x) \subset (W(\theta') + x')' \Longrightarrow [\phi^{\theta}(x), \phi^{\theta'}(x')] = 0.$$

 Two-particle scattering can be computed, and S-Matrix becomes non-trivial

Properties of the NC deformation

- local fields \rightarrow wedge-local fields
- free fields \rightarrow interacting fields
- Comparison to usual approach starting from *_θ-deformed action? (Phases on Feynman diagrams differ)
- Euclidean formulation also possible.
 Passage Euclidean ↔ Minkowskian in this setting probably manageable [Grosse/GL, work in progress]