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Motivations....

◮ Quantum gravity can be, possibly modeled using
non-commutative space-time

◮ lPlanck =
√

hG
c3

may have a significant role to play in

q-gravity.
(a) String theory models predict existence of minimum
length scale
(b) Area and volume operators in certain loop gravity
models have discrete spectra with minimal values. These
minimal values are proportional to l2p and lp3 respectively.

◮ lp sets a minimum length scale lmin in models describing
quantum gravity
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◮ Special Theory of Relativity: Laws of physics must be
same in all inertial frames

◮ If ls ≥ lmin, ls′ ≥ lmin.

◮ But this is not guaranteed(!) due to Lorentz-Fitsgerald
length contraction

◮ Modify STR Space-time structure is governed not only
by a fundamental velocity scale c, but also by a
fundamental length scale lp. Doubly Special Relativity

◮ DSR introduces a minimum length scale without singling
out any preferred frame

◮ The Energy-Momentum relation get a length scale
dependent modification.

◮ Ex: E2 = p2c2 +m2c4 + αlpE
3 + βl2pE

4 + ......
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Modified dispersion relations

◮ Many Q-gravity models do give modified
Energy-Momentum relations

◮ Observations of ultra high energy cosmic ray scattering
contradicts standard notions of astroparticle physics.

◮ These observations can be explained if the threshold
energies required for these processes are not dictated by
usual Energy-Momentum relations but by modified ones
involving a length scale!

◮ DSR: Two seemingly different models were constructed
recently.

◮ Are they related? Equivalent?

◮ IS DSR UNIQUE?

◮ We will come back to this.
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DSR and k-deformed space-time

◮ There are certain q-gravity models whose low energy
limit shows modified Energy-Momentum relations as in
DSR.

◮ These q-gravity models with Λ > 0 ( and goes over to
Λ = 0 limit smoothly) are shown to have deformed de
Sitter group as the symmetry group. The deformation
parameter q here is related to lp as in q = lp

√
Λ.

◮ In the Λ → 0 limit, the symmetry group reduces to
k-Poincare group and NOT Poincare group.

◮ Algebraic structure governing the deformation of
Energy-Momentum relation in these models at Planck
scale is k-Poincare algebra
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Moyal space: summary of essential results

◮ Generic NC spaces are defined with co-ordinates obeying

[X̂µ, X̂ν ] =
i

k2
Θµν(kx̂)

◮ Θµν(kx̂) = θ0
µν + θ λ

µν x̂λ + θ λσ
µν x̂λx̂σ + ..........

◮ Moyal space is the one where θ λ
µν , θ

λσ
µν , ..... all are set

to ZERO.
[X̂µ, X̂ν ] = iθµν

◮ Weyl-Moyal map:

f̂ =

∫

dkdxf(x)eik·(X̂−x)
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Moyal space:......

◮ f̂ ĝ induces a modified product rule:
Moyal Star Product f ∗ g

◮

f ∗ g = f(x)e
i
2
∂x

µθµν∂
y
ν g(y)|x=y

◮ 1. ∗ product is associative
2.

∫

dxf ∗ g =
∫

dxfg

3.
∫

dx(f ∗ g ∗ h) =
∫

dx(g ∗ h ∗ f) =
∫

dx(h ∗ f ∗ g)
4. (f ∗ g)cc = gcc ∗ f cc

◮ Quadratic part of the NC action is same as the
commutative one

Propagator is not modified: no change in dispersion
relations

Interactions are modified
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Twisted symmetry

◮ [X̂µ, X̂ν ] = iθµν breaks the Lorentz invariance of Moyal
plane.

◮ The notion of fields transforming under representations of
Poincare group is in trouble -Can not view field quanta as
particles with definite spin and mass
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◮ in commutative space fρσ = (xρxσ) transform as a rank-2
tensor,

Mµνfρσ = i(fµσηνρ − fνσηµρ + fρνηµσ − fρνηµσ − fρµηνσ)

◮ Chaichian and co workers showed that the symmetry
algebra of Moyal spacetime is realised by the twisted

Poincare-Hopf algebra and not by the Poincare algebra

◮ fρσ = 1
2
(xρ ∗ xσ + xσ ∗ xρ) transform as a rank-2 tensor

under twisted action, i.e.,

M t
µνfρσ = i(fµσηνρ − fνσηµρ + fρνηµσ − fρνηµσ − fρµηνσ).

◮

M t
µν([xρ, xσ]∗) = 0 = M t

µνθρσ

.
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◮ Attempts to construct NC gravity by demanding a
compatibility between ∗ product and the action of
deformed generators led to the twisted Leibnitz rule for
the symmetry generators.

α⊗ β −→ (ρ⊗ ρ)∆(g)α⊗ β

m ↓ ↓ m

m(α⊗ β) −→ ρ(g)m(α⊗ β)

◮ It was argued that the twisted Hopf structure of the
symmetries have interesting implications in field theory

◮ We study the k-Poincare algebra which is the symmetry
algebra of k-deformed spacetime, construction of field
theory on k-spacetime and some of the interesting
properties of this theory.
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k-spacetime

◮ Generic NC spaces are defined with co-ordinates obeying

[X̂µ, X̂ν ] =
i

k2
Θµν(kx̂)

where Θµν(kx̂) = θ0
µν + θ λ

µν x̂λ + θ λσ
µν x̂λx̂σ + ..........

◮ with θ0
µν = 0, θ λσ

µν = 0, ...

◮ Only non-vanishing term θ λ
µν

◮ Thus we have [x̂µ, x̂ν ] = iCλ
µν x̂λ Lie algebraic type NC

◮ choice: Cλ
µν = aµδνλ − aνδµλ, aµ, µ = 0, 1, ...., n− 1 are

real

◮ choice: a0 = a = 1
k
, ai = 0, i = 1, 2, ......, n− 1
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µν + θ λ

µν x̂λ + θ λσ
µν x̂λx̂σ + ..........

◮ with θ0
µν = 0, θ λσ

µν = 0, ...

◮ Only non-vanishing term θ λ
µν

◮ Thus we have [x̂µ, x̂ν ] = iCλ
µν x̂λ Lie algebraic type NC

◮ choice: Cλ
µν = aµδνλ − aνδµλ, aµ, µ = 0, 1, ...., n− 1 are

real

◮ choice: a0 = a = 1
k
, ai = 0, i = 1, 2, ......, n− 1



k-spacetime.......

◮ k-spacetime co-ordinates satisfy:

[x̂i, x̂j] = 0, [x̂0, x̂i] = iax̂i

◮ The symmetry algebra of this spacetime is k-Poincare
algebra

[Mµν ,Mαβ] = i(ηµβMνα − ηµαMνβ + ηναMµβ − ηνβMµα)

[Mi, Pµ] = iǫiµjPj, [Pµ, Pν ] = 0, [Ni, P0] = iPi

[Ni, Pj] = iδij

(

1

2a
(1 − e−2aP0) +

a

2
~P 2

)

− iaPiPj

with Casimir m2 = ( 2
a
sinh(aPo

2
))2 − ~P 2eaP0
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◮ Another k-deformed algebra studied is one where

[Ni, Pj ] = i(δijP0 − aPiPj), [Ni, P0] = i(1 − aP0)Pi

with Casimir M2 = (P 2
0 − ~P 2)(1 − aP0)

−2

◮ The two DSR models constructed have energy-momentum
relations given by these two Casimirs respectively.

◮ The non-commutative structure of the underlying
space-time of both DSRs are same, showing the
equivalence of the physical models.
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Symmetry algebra of k-spacetime

◮ There are different approaches to construct field theory
on k-spacetime.

◮ Using fields which are functions of x̂µ and defining the
action which is invariant under k-Poincare algebra.

◮ Map kappa-spacetime co-ordinates and their functions to
commutative ones and work with these commutative
functions.

◮ We take the second approach
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Symmetry......

◮ We derive the action of Lorentz algebra on k-spacetime
co-ordinates and also obtain their derivative operators.

◮ These operators satisfy usual Poincare algebra relations,
but have modified Casimirs

◮ We obtain different possible invariant actions for scalar
theory.

◮ We derive the modified Leibnitz rule( twisted co-products)
of these generators and compatible flip operator.

◮ Using this, we derive the deformed commutation rules
between A,A†/twisted statistics.
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K-spacetime, ordering, Leibnitz rules

◮ We have [x̂0, x̂i] = iax̂i, [x̂i, x̂j] = 0

◮ x̂µ = xαΦαµ(∂) This defines a unique mapping of
functions on k-spacetime to that on commutative space
time

F (x̂ϕ)|0 >= Fϕ(x)

◮ Any M(x̂) can be expanded as a power series in x̂µ.
M(x̂) can be written as LC of monomials of
x̂0, x̂1, ....., x̂n−1 with m0,m1, ....mn−1 as powers and
polynomials of lower order P (x̂). Thus

[M(x̂) − P (x̂)] |0 >= M(x)

◮ Natural ordering:x̂0 to the right/left of x̂i

x̂0 and x̂i treated symmetrically.
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K-spacetime, ordering, Leibnitz rules

◮ Imposing

[∂i, x̂j] = δijϕ(A), [∂i, x̂0] = ia∂iγ(A)

[∂0, x̂i] = 0, [∂0, x̂0] = 1,

with A = ia∂0, we get from x̂µ = xαΦαµ(∂)
◮

x̂i = xiϕ(A)

x̂0 = x0ψ(A) + ia∂iγ(A)

◮ from the commutators we get ϕ′

ϕ
ψ = γ − 1

( ϕ(0) = 1, ψ(0) = 1, γ(0) = ϕ′(0) + 1)
◮ Leibnitz rule for ∂i is modified

∆ϕ(∂i) = ∂x
i

ϕ(Ax + Ay)

ϕ(Ax)
+ ∂

y
i

ϕ(Ax + Ay)

ϕ(Ay)

◮ ∆ϕ(∂0) = ∂0 ⊗ I + I ⊗ ∂0 = ∂x
0 I

y + Ix∂
y
0
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k-Poincare algebra, Casimir and Dispersion relation

◮ No modification in the Lorentz algebra

◮ Demand Mµν and x̂µ close linearly, satisfy Jacobi identity,
smooth commutative limit

◮

[Mi0, x̂0] = x̂i + iaMi0

[Mi0, x̂j] = −δijx̂0 − iaMij

◮ Leibnitz rule

∆ϕ(Mij) = Mij ⊗ I + I ⊗Mij

∆ϕ(Mi0) = Mi0 ⊗ I + eA ⊗Mi0 + ia∂j

1

ϕ(A)
⊗Mij
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k-Poincare algebra, Casimir and Dispersion relation

◮ Enlarge the algebra:

[Mµν , Dλ] = δνλDµ − δµλDν

[Dµ, Dν ] = 0

[Dµ, x̂ν ] = δµν

√

1 − a2DαDα + ia0(δµ0Dν − δµνD0)

D0 = −i∂0
sinhA

A
− ia △

e−A

2ϕ2
; Di = ∂i

e−A

ϕ

◮

[Mµν ,�] = 0, [�, x̂µ] = 2Dµ

� =△
e−A

ϕ2
+ 2∂2

0(1 − coshA)A2
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k-Poincare algebra, Casimir and Dispersion relation

◮ The Casimir

DµDµ = �(1 − a2

4
�) quartic

◮ � is quadratic in space derivatives.

◮ (�(1 − a2

4
�) −m2)Φ(x) = 0

A−m2 − a2

4
A2 = 0

with A = a2

4
Sinh2(ap0

2
) − p2

i
e−aP0

ϕ2(ap0)

◮ (� −m2)Φ(x) = 0

4

a2
Sinh2(

ap0

2
) − p2

i

e−ap0

ϕ(ap0)2
−m2 = 0
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Star Product

◮ x̂µ = xαΦαµ(∂)

Fϕ(x̂ϕ)Gϕ(x̂ϕ)|0 >= Fϕ∗ϕGϕ

◮ (f ∗ϕ g)(x) = m0[e
xi(△ϕ−△0)∂if(u)g(v)]|u=t=xi

△ϕ is the twisted co-product of ∂i

◮

Fϕ = e
Nxln

ϕ(Ax+Ay)

ϕ(Ax)
+Ny(Ax+ln

ϕ(Ax+Ay)

ϕ(Ay)
)

◮ Twist element FΛ = e−ΛN⊗A+(1−Λ)A⊗N , Λ = 1, 0 for
L/R ordering. Here N = xi∂i.
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Twisted Flip Operator

◮ (anti)Symmetric states of the physical Hilbert space are
projected from the tensor product state

1

2
(1 ± τ0)(f ⊗ g) =

1

2
(f ⊗ g ± g ⊗ f).

◮ g : f ⊗ g = (D ⊗D) △ (g)f ⊗ g, g ∈ symm. algebra

◮ [△ (g), τ0] = 0

◮ for the NC case [∆ϕ, τϕ] = 0

△ϕ= F−1
ϕ ∆0Fϕ

τϕ = F−1
ϕ τ0Fϕ = ei(xiPi⊗A−A⊗xiPi)τ0
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◮ for bosons f ⊗ g = τϕ(f ⊗ g)

◮ φ(x) ⊗ φ(y) − e−(A⊗N−N⊗A)φ(y)φ(x) = 0

◮ (� −m2)Φ(x) = 0 with ϕ = e−
A
2 = e−

ia∂0
2 is

[

∂2
i +

4

a2
Sinh2(

ia∂0

2
) −m2

]

Φ = 0

◮ Φ(x) =
∫

d4p

2Ωk(p)

[

A(ωk, ~p)e
−ip·x + A†(ωk, ~p)e

ip·x
]

A†(±ωk, ~p) = A†(∓ωk, ~p).

p±0 = ±ωk(p) = ± 2
a
sinh−1(a

2

√

p2
i +m2),

Ωk(p) = 1
a
Sinh(aωk(p))



Twisted Flip Operator

◮ for bosons f ⊗ g = τϕ(f ⊗ g)

◮ φ(x) ⊗ φ(y) − e−(A⊗N−N⊗A)φ(y)φ(x) = 0

◮ (� −m2)Φ(x) = 0 with ϕ = e−
A
2 = e−

ia∂0
2 is

[

∂2
i +

4

a2
Sinh2(

ia∂0

2
) −m2

]

Φ = 0

◮ Φ(x) =
∫

d4p

2Ωk(p)

[

A(ωk, ~p)e
−ip·x + A†(ωk, ~p)e

ip·x
]

A†(±ωk, ~p) = A†(∓ωk, ~p).

p±0 = ±ωk(p) = ± 2
a
sinh−1(a

2

√

p2
i +m2),

Ωk(p) = 1
a
Sinh(aωk(p))



Twisted Flip Operator

◮ for bosons f ⊗ g = τϕ(f ⊗ g)

◮ φ(x) ⊗ φ(y) − e−(A⊗N−N⊗A)φ(y)φ(x) = 0

◮ (� −m2)Φ(x) = 0 with ϕ = e−
A
2 = e−

ia∂0
2 is

[

∂2
i +

4

a2
Sinh2(

ia∂0

2
) −m2

]

Φ = 0

◮ Φ(x) =
∫

d4p

2Ωk(p)

[

A(ωk, ~p)e
−ip·x + A†(ωk, ~p)e

ip·x
]

A†(±ωk, ~p) = A†(∓ωk, ~p).

p±0 = ±ωk(p) = ± 2
a
sinh−1(a

2

√

p2
i +m2),

Ωk(p) = 1
a
Sinh(aωk(p))



Twisted Flip Operator

◮ for bosons f ⊗ g = τϕ(f ⊗ g)

◮ φ(x) ⊗ φ(y) − e−(A⊗N−N⊗A)φ(y)φ(x) = 0

◮ (� −m2)Φ(x) = 0 with ϕ = e−
A
2 = e−

ia∂0
2 is

[

∂2
i +

4

a2
Sinh2(

ia∂0

2
) −m2

]

Φ = 0

◮ Φ(x) =
∫

d4p

2Ωk(p)

[

A(ωk, ~p)e
−ip·x + A†(ωk, ~p)e

ip·x
]

A†(±ωk, ~p) = A†(∓ωk, ~p).

p±0 = ±ωk(p) = ± 2
a
sinh−1(a

2

√

p2
i +m2),

Ωk(p) = 1
a
Sinh(aωk(p))



Twisted commutators

◮

A†(p)A(q) − e−a(q0∂pi
pi+∂qi

qip0)A(q)A†(p) = −δ3(~p− ~q)

A†(p0, ~p)A
†(q0, ~q)−e−a(−q0∂pi

pi+∂qi
qip0)A†(q0, ~q)A

†(p0, ~p) = 0

A(p0, ~p)A(q0, ~q) − e−a(q0∂pi
pi−∂qi

qip0)A(q0, ~q)A(p0, ~p) = 0

p0, q0 as given above



Deformed Product

◮

A(p) ◦ A(q) = e−
3a
2

(p0−q0)A(p0, e
aq0
2 ~p)A(q0, e

−
ap0
2 ~q)

A†(p) ◦ A†(q) = e
3a
2

(p0−q0)A†(p0, e
−

aq0
2 ~p)A(q0, e

ap0
2 ~q)

A†(p) ◦ A(q) = e
3a
2

(p0+q0)A†(p0, e
aq0
2 ~p) ◦ A(q0, e

ap0
2 ~q)

A(p) ◦ A†(q) = e−
3a
2

(p0+q0)A(p0, e
−

aq0
2 ~p) ◦ A†(q0, e

−
ap0
2 ~q).

◮ Using this, we can re-express commutators as in the
commutative case
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Conclusion

◮ We have obtained the twisted co-product for the
symmetry algebra of kappa-space time.

◮ Using the casimirs, we have shown that more than one
invariant action for scalar field is possible ( having correct
commutative limit).

◮ Flip operator compatible with the twisted co-product is
derived.

◮ Twisted commutators between creation and annihilation
operators are obtained.
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