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1 Symmetry

What does it mean by ‘a certain law of physics is symmetric under certain
transfor- mations’ ? To be specific, consider the statement ‘classical mechanics
is symmetric under mirror inversion’ which can be defined as follows: take any
motion that satisfies the laws of classical mechanics. Then, reflect the motion
into a mirror and imagine that the motion in the mirror is actually happening
in front of your eyes, and check if the motion satisfies the same laws of clas-
sical mechanics. If it does, then classical mechanics is said to be symmetric
under mirror inversion. Or more precisely, if all motions that satisfy the laws of
classical mechanics also satisfy them after being re- flected into a mirror, then
classical mechanics is said to be symmetric under mirror inversion. In general,
suppose one applies certain transformation to a motion that follows certain law
of physics, if the resulting motion satisfies the same law, and if such is the case
for all motion that satisfies the law, then the law of physics is said to be sym-
metric under the given transformation.

It is important to use exactly the same law of physics after the transfor-
mation is applied. For example, I could use my right hand to specify the law
physics, say, to state the direction of the force felt by a moving charge inside a
magnetic field. Then, I have to use the same hand to see the law is still satisfied
by the mirror-inverted motion. If I also mirror-invert my right hand to apply
the law, then the law would be trivially satisfied by the transformed motion.

In the context of quantum mechanics, the above criterion for the symmetry
of physical law can be stated as follows: for the state vectors |i〉 and |f〉 repre-
senting certain initial and final states, there exist |i′〉 = U |i〉 and |f ′〉 = U |f〉
that represent the corresponding states reflected into a mirror, where U is an
operator in the Hilbert space that corresponds to mirror inversion. Then, if the
laws of physics are symmetric under mirror inversion, the transition probability
is the same before and after the transformation:

|〈f ′|S|i′〉|2 = |〈f |S|i〉|2 (1)

Note that the same S operator, not S′ ≡ USU†[Recall, under the change of
basis from {|α〉} → {|i〉} through {|i〉} = U{|α〉}, then an operator O → UOU†

], is used for the transformed states.
In fact, if S′ is used instead of S, the transition probability is trivially in-

variant:

|〈f | S |i〉|2 = |〈f ′|S′|i′〉|2 [always] (2)

Just insert U†U in the two above specified gaps.
In general, a transformation |ψ′〉 = U |ψ〉 is called a symmetry transformation

if it preserves inner products between any physical states

|〈ψ′1|ψ′2〉|2 = |〈ψ1|ψ2〉|2 (3)
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2 Parity Transformation

The parity transformation P is the operation to change the signs of the three
space coordinates, which is equivalent to:
(a)the mirror inversion followed by
(b) a rotation by π radian.
To be specific, the mirror inversion of the z-axis(say) : z → −z followed by
a rotation around the z axis by π (x → −x & y → −y) flips the sign of all
three coordinates. Since rotating a whole motion by a certain angle does not
affect the motion(isotropy of space), the parity transformation and the mirror
inversion are equivalent.

Let’s take an example of a Coulomb scattering of an electron by a nucleus
N where an incoming e is polarized right-handed (helicity +) and the outgoing
e is also right-handed.

Figure 1: Mirror reflection

The nucleus could recoil, but we will focus on the motion of the electron.
After the mirror inversion, the electrons in the reflected process are left-handed
for both the initial and final state. In fact, by rotating the reflected process by
180 degrees around the vertical axis, one can make it completely overlap with
the original process except that the spins are in the opposite direction. If the
physics involved is symmetric under parity, the original and reflected processes
should occur with the same cross section. This is experimentally confirmed. As
far as we know, every process caused by QED and its mirror inversion occur
with same probability, and thus we believe that QED is symmetric under parity.

2.1 Parity in CM

The effect of a parity transformation is defined as the inversion of the spatial
coordinates with respect to the origin

~x
P−→ ~xp = −~x [in 3D] (4)

and its passive interpretation corresponds to the reversal of the three spa-
tial axes, under which a right handed coordinate system becomes a left-handed
one(and vice-versa). Note that space inversion cannot be obtained through any
rotation and, therefore, it is not a continuous transformation.
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Scalar ⇒ +1, pseudo-scalar ⇒ -1
vector ⇒ -1, pseudo-vector ⇒ +1

Let’s note the transformation properties of some of the well known classical
variables under parity:

Applying parity transformation twice, returns the coordinates to their orig-
inal value, namely P2(~x) = ~x, so that even classically parity operation defines
a group with two elements, namely, I and P with P2 = I.

Classically, the dynamical laws of physics(for example, Newton’s law) remain
invariant under parity transformation, hence it’s a symmetry. However, in CM
this does not result any constant of motion, but it puts constraint on the form
the solutions.

2.2 Parity in QM

The concept of parity is introduced in quantum theory through the correspon-
dence principle(Ehrenfest theorem ⇒ expectation values of quantum operators
behave like classical objects). For simplicity, let us consider an one dimensional
quantum mechanical system. In this case, the parity transformation would re-
sult in

〈X〉 P−→ −〈X〉 (5)

〈P 〉 P−→ −〈P 〉 (6)

As in standard QM, Parity can be analysed in two equivalent ways: active
and passive.
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2.2.1 Active viewpoint

• States ⇒ transform
operators ⇒ do not transform
such that (5) and (6) hold. Namely,

|ψ〉 P−→ |ψP〉 ≡ P|ψ〉 such that(in 1D) (7)

〈ψ|X|ψ〉 P−→ 〈ψP |X|ψP〉 = 〈ψ|P†XP|ψ〉 = −〈ψ|X|ψ〉 (8)

Similarly for momentum operator.
Since parity inverts space coordinates :

|x〉 P−→ |xP〉 ≡ P|x〉 = | − x〉 (9)

See, this satisfies (8). Hence,

〈xP |yP〉 = 〈x|P†P|y〉 (10)

⇒ 〈−x| − y〉 = 〈x|P†P|y〉 (11)

⇒ δ(x− y) = 〈x|P†P|y〉 (12)

⇒ P†P = I (13)

⇒ P is unitary. (14)

Furthermore,

P2|x〉 = I|x〉 (15)

⇒ P2 = I ⇒ eigenvalues can be ± 1 (16)

Also, unitarity and idempotent ⇒ Hermitian. Hence,

P† = P = P−1 with P2 = I (17)

• Any arbitrary state :

|ψ〉 P−→ |ψP〉 = P|ψ〉 = P
∫
dx|x〉〈x|ψ〉 (18)

= P
∫
dxψ(x)|x〉 (19)

=

∫
dxψ(x)| − x〉 (20)

⇒ 〈x|ψP〉 = ψP(x) = ψ(−x) (21)

Hence,

ψ(x)
P−→ ψP(x) = ψ(−x) (22)
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• If |ψ〉 is an eigenstate of P then,

P|ψ〉 = ±|ψ〉 (23)

⇒ψ(x)
P−→ ψP(x) = ψ(−x) = ±ψ(x) (24)

Wave function associated with the eigenstate of a parity operator is either
even or odd.
We have seen, eigenvalues of a parity operator are just phase factors.
Hence, we denote:

P|ψ〉 = ηP |ψ〉 (25)

with ηp = ±1 as a phase factor. (26)

2.2.2 Passive viewpoint

• states ⇒ do not transform
operators ⇒ transform
such that (5) and (6) hold. Namely,

O P−→ OP ≡ P†OP such that in 1D (27)

〈ψ|X|ψ〉 P−→ 〈ψ|XP |ψ〉 = 〈ψ|P†XP|ψ〉 = −〈ψ|X|ψ〉 (28)

Hence,

X
P−→ XP = P†XP = −X (29)

⇒ {P, X} = 0 (30)

Similarly,

{P, P} = 0 (31)

Note that, only states with zero momentum can possibly be eigenstates of
parity operator.
In general,

O(X,P )
P−→ OP(X,P ) = O(−X,−P ) (32)

• Note that, if the Hamiltonian of a theory remains invariant under parity
then the quantum theory would be parity invariant.

H(X,P )
P−→ P†H(X,P )P = H(−X,−P ) = H(X,P ) (33)

⇒ [P, H] = 0 (34)

⇒ eigenstates of the Hamiltonian would be either even or odd. (35)

• Also if the Hamiltonian is time independent and commutes with parity
operator then

|ψ(t)〉 = exp(−iHt)|ψ(0)〉 = U(t)|ψ(0)〉 (36)

⇒ [P, U(t)] = 0 (37)

⇒ parity of the state remains unchanged upon time evolution. (38)
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• Though only states with zero momentum can only possibly be eigenstates
of a parity operator, nevertheless state with non-zero angular momentum
can be an eigenstate of a parity operator since angular momentum and
parity operator do commute with each other:

[L,P] = 0⇔ P†LP = L

⇒ angular momentum eigenstates are also parity eigenstates

Consider AM eigenstates: ψl(r, θ, φ) = fl(r)Ylm(θ, φ)

Now, ~x
P−→ −~x

⇒r P−→ r, θ
P−→ π − θ, φ P−→ π + φ

⇒Ylm(θ, φ)
P−→ Ylm(π − θ, π + φ) = (−1)lYlm(θ, φ)

⇒PYlm(θ, φ) = (−1)lYlm(θ, φ)

So, under parity transformation the wave function of a state with AM
quantum number l acquires a sign (−1)l with respect to the l = 0 state.

And the effect of parity on the spin operator S is defined to be

S → SP ≡ P†SP = S (39)

in analogy with the behaviour of orbital AM L. More formally, since rota-
tions and space inversion are commuting operations, P and the generator
of an infinitesimal rotation(the total AM J)must commute too, and since
J = L+ S, the above transformation is obtained.

2.3 Parity in Relativistic QM

There is no such consistent relativistic quantum mechanics, but QFT.

2.4 Parity in QFT

• In quantum field theory the parity transformation is represented by a
unitary operator P in Hilbert space, whose effect on the creation or anni-
hilation operator of definite momentum ~p and spin s should be:

P†a(~p, s)P = ηPa(−~p) (40)

P†a†(~p, s)P = η∗Pa
†(−~p, s) (41)

with |ηP | = 1; (42)

ηP is called the intrinsic parity of the particle created by this
creation operator.

Clearly vacuum should transform to itself under parity up to a phase(because
P does not interchange creation and annihilation operators)

P|O〉 = ηvac|O〉 (43)

We assume the intrinsic parity of the vacuum is +1 i.e. P|O〉 =
|O〉

9



• For a non-Hermitian (charged) scalar field the effect of a parity transfor-
mation is(followed from the earlier definitions (44) & (45))

P†ψ(t, ~x)P = ηPψ(t,−~x) (44)

P†ψ†(t, ~x)P = η∗Pψ
†(t,−~x) (45)

• Take an n-particle state(free field theory)

|~p1, ..., ~pn〉 = a†(~p1)a†(~p2)...a†(~pn)|O〉 (46)

Under parity this state transforms as

P|~p1, ..., ~pn〉 = Pa†(~p1) a†(~p2) ... a†(~pn) |O〉 (47)

⇒P†|~p1, ..., ~pn〉 = Pa†(~p1) a†(~p2) ... a†(~pn) |O〉 (48)

Now, insert PP† at every gap:

P†|~p1, ..., ~pn〉 = P†a†(~p1) a†(~p2) ... a†(~pn) |O〉 (49)

⇒P†|~p1, ..., ~pn〉 = η∗1η
∗
2 ...η

∗
na
†(−~p1)a†(−~p2)...a†(−~pn)|O〉 (50)

⇒P†|~p1, ..., ~pn〉 = η∗totala
†(−~p1)a†(−~p2)...a†(−~pn)|O〉 (51)

See, intrinsic parity is a multiplicative quantum number.

So, if there is a state corresponding to

ψPl (~x, t) = ηψψl(−~x, t) = ηψ(−1)lψl(~x, t) (52)

then, we can define the total parity for the state(with orbital AM quantum
number l) as

ηtot = ηψ(−1)l

• If parity is a symmetry of the theory, the total parity quantum number
must be conserved in a physical process and this leads to the fact that for
a decay (in the rest frame of A) of a spin zero particle into two spin zero
particles

A→ B + C

We must have

ηA = ηBηC(−1)l

where ηA, ηB , ηC are the intrinsic parities of the particles A, B and C
respectively and l is the orbital angular momentum quantum number of
the B-C system.

• First note that (48) ⇒ P†ψ(t,~0)P = ηPψ(t,~0) ⇒ intrinsic parity indeed
corresponds to the phase factor(or sign) which the field acquires at the
origin of the coordinates under parity transformation.
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Also, this ηP denotes the parity eigenvalue of the single particle state at
rest(Remember that parity and the momentum operators do not commute
and, therefore, cannot have simultaneous eigenstates unless the eigenvalue
of momentum vanishes.).

Thus we see that ηP really measures the intrinsic behaviour (and
not the space part) of the single particle state under space in-
version.

• The concept of intrinsic parity only plays a role in QFT, where particles
can be created and destroyed: in single-particle quantum mechanics the
intrinsic parities are identical in the initial and final states for any physical
process and therefore need not be taken into account. In QFT, however,
the ηP factor in the field transformation can have observable consequences,
as it defines the transformation law for an operator which may appear in
interaction terms of the Lagrangian together with other different fields.

2.4.1 Parity in Photon field

• But, how do we know the parity of a particle?
⇒ By convention we assign positive intrinsic parity (+) to spin 1/2 fermions:
+parity: proton, neutron, electron, muon.The sign here is simply due
to convention, because baryons are conserved and the nucleon parities
cancel in any reaction. While the intrinsic parity of a fermion is a matter
of convention, the relative parity of a fermion and anti-fermion is not. The
Dirac theory of fermions requires particle and antiparticle to have opposite
intrinsic parity.

Bosons and their anti-particles have the same intrinsic parity.

• What about the photon?
⇒ Strictly speaking, we can not assign a parity to the photon since it
is never at rest. But, it is necessary to assign an intrinsic parity to
photon.For example, in case of electric dipole transitions between atomic
states(s,p,d,f..which are characterized by various values of l) are charac-
terised by the selection rule ∆l = ±1, so that as a result of the transition,
the parity of the atomic state must change. The electromagnetic (El) ra-
diation (photons) emitted in this case must have an intrinsic parity such
that the parity of the whole system (atom + photon) is conserved(being
EM interaction). And for this reason, by convention, the parity of the
photon is given by the radiation field involved.

We determine the parity of other particles using the above conventions
and assuming parity is conserved in the strong and electromagnetic inter-
action. Usually we need to resort to experiment to determine the parity
of a particle.

• First let’s look at the electromagnetic current U(1) associated with a
charged KG system.

Jµ(t, ~x) = iψ†(t, ~x)∂µψ(t, ~x)− (∂µψ†(t, ~x))ψ(t, ~x)
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Under Parity

Jµ(t, ~x)
P−→ JPµ(t, ~x) ≡ P†JµP (53)

=iP†ψ†(t, ~x)PP†∂µψ(t, ~x)P − P†(∂µψ†(t, ~x))PP†ψ(t, ~x)P (54)

=iψP†(t, ~x)∂µψP(t, ~x)− (∂µψP†(t, ~x))ψP(t, ~x) (55)

=i|ηψ|2[ψ†(t,−~x)∂µψ(t,−~x)− (∂µψ†(t,−~x))ψ(t,−~x)] (56)

which leads

~JP(t, ~x) = − ~J(t,−~x), JP0(t, ~x) = J0(t,−~x)

Symbolically we denote

Jµ(t, ~x)
P−→ Jµ(t,−~x)

Now, experiments⇒ electrodynamics respects parity symmetry⇒Maxwell
equations should also respect.So,

∇. ~E = ρ = J0, ∇× ~B =
∂ ~E

∂t
+ ~J

To make these invariant

~E(t, ~x)
P−→ − ~E(t,−~x), ~B(t, ~x)

P−→ ~B(t,−~x)

Furthermore,

~E = −∂
~A

∂t
−∇A0, ~B = ∇× ~A

Hence,

~A(t, ~x)
P−→ − ~A(t,−~x), A0(t, ~x)

P−→ A0(t,−~x)

Symbolically we denote

Aµ(t, ~x)
P−→ Aµ(t,−~x)

Photon has odd intrinsic parity.

• For the electromagnetic field if we take the temporal gauge :
A0 = 0 & ∇. ~A = 0⇒ �Aµ = 0⇒ �Ai = 0⇒ ~A(x) ∝ ~ε(~k)e±ik.x.

~A(x) =

2∑
λ=1

∫
d3k

(2π)3
1√
2k0

[ε(~k, λ)e−ik.xa(~k, λ) + ε∗(~k, λ)eik.xa†(~k, λ)]

(57)

inverting (58)

a(~k, λ) = i

∫
d3x

1√
2k0

[eik.x
←→
∂0 ~A(x).ε∗(~k, λ) (59)

a†(~k, λ) = −i
∫
d3x

1√
2k0

[e−ik.x
←→
∂0 ~A(x).ε(~k, λ) (60)
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Now, ∇. ~A(x) = 0 ⇒ ~k.~ε(~k) = 0 ⇒polarization vector characterizing the
vector potential must be transverse to the propagation of the plane wave⇒
two independent polarization vector : ~ε(~k, λ) with λ = 1, 2. We normalize
these such they obey

~k

|~k|
= ~ε(~k, 1)× ~ε(~k, 2) (61)

[We can think of ε(1), ε(2) along x & y axis respectively.] (62)

⇒−
~k

|~k|
= ~ε(−~k, 1)× ~ε(−~k, 2) (63)

But the LHS

−
~k

|~k|
= −~ε(~k, 1)× ~ε(~k, 2) (64)

So, (58) & (59) should match ⇒ one choice could be

~ε(−~k, 1) = −~ε(~k, 1), ~ε(−~k, 2) = ~ε(~k, 2) (65)

In order to have ~A(t, ~x)
P−→ P† ~A(t, ~x)P = − ~A(t,−~x) under parity one

needs the following transformation law of creation and annihilation oper-
ators under parity:

P†a(~k, 1)P = +a(−~k, 1) & P†a(~k, 2)P = −a(−~k, 2) (66)

These follow from (59),(60) & (64).

• Since we have chosen ε(1) & ε(2) along x and y axis respectively, we can
identify a†(1) as creation operator of a photon polarized along the x-axis
and a†(2) as creation operator of a photon polarized along the y-axis.Then
the operators

a†(~k,R) =
1√
2

(a†(~k, 1) + ia†(~k, 2)) (67)

a†(~k, L) =
1√
2

(a†(~k, 1)− ia†(~k, 2)) (68)

would create photons which are left and right circularly polarized respec-
tively[These one photon states are eigenstates of helicity operator with
eigenvalue ±1].
Now, what would be the corresponding polarization vectors? To answer
this let’s do the following:∑

λ

~ε∗(~k, λ)a†(~k, λ) =~ε∗(~k, 1)a†(~k, 1) + ~ε∗(~k, 2)a†(~k, 2) (69)

=
1

2
(~ε(1)∗ + i~ε(2)∗)(a†(1)− ia†(2)) (70)

+
1

2
(~ε(1)∗ − i~ε(2)∗)(a†(1) + ia†(2)) (71)

≡~ε∗(~k, L)a†(~k, L) + ~ε∗(~k,R)a†(~k,R) (72)
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So,

~ε(~k,R) =
1√
2

[~ε(~k, 1) + i~ε(~k, 2)] (73)

~ε(~k, L) =
1√
2

[~ε(~k, 1)− i~ε(~k, 2)] (74)

Now, under parity transformation:

P†a†(~k,R)P =
1√
2

(P†a†(~k, 1)P + iP†a†(~k, 2)P) (75)

=
1√
2

[a†(−~k, 1)− ia†(−~k, 2)] (76)

= a†(−~k, L) (77)

and

P†a†(~k, L)P =
1√
2

(P†a†(~k, 1)P − iP†a†(~k, 2)P) (78)

=
1√
2

[a†(−~k, 1) + ia†(−~k, 2)] (79)

= a†(−~k,R) (80)

Hence,

P†a†(~k,R)P = a†(−~k, L) & P†a†(~k, L)P = a†(−~k,R) (81)

Same for annihilation operators.
If we operate (81) on the vacuum then we see under the parity transfor-
mation

|R〉 ↔ |L〉 (82)

Specifically,

P|~k,R〉 = | − ~k, L〉 P|~k, L〉 = | − ~k,R〉 (83)

Physically this is expected if we see the below figure: under parity ~p →
−~p⇒ L↔ R.

3 Decay of The Neutral Pion

• The spinless neutral pion decays to two photons: π0 → γγ.

• This decay is driven by electromagnetic interaction which obeys the parity
symmetry.Hence,

P(π0) = P(γ1)P(γ2)

Now, we observe the decay in CM frame of the pion⇒ P(π0) = P(intrinsic).

And, total P of the RHS : Pγγ = (−1)LγγP2
intrP

γγ
spin

14



Figure 2: circular polarization

• Consider two-photon decay(one along +z axis and another along -z axis)
in the CM frame of the neutral pion in full generality. For two photons
with momenta ~k & −~k, one can define the states:

|RR〉 ≡ a†(~k,R)a†(−~k,R)|0〉, |LL〉 ≡ a†(~k, L)a†(−~k, L)|0〉 (84)

|RL〉 ≡ a†(~k,R)a†(−~k, L)|0〉, |LR〉 ≡ a†(~k, L)a†(−~k,R)|0〉 (85)

Figure 3: polarization of two photons

• This system has certain symmetries:

1. Rotation about the z-axis[Rzφ],

2. Rotation about the x-axis through an angle π[Rxπ] ⇒ interchange of
+z & -z directions ⇒ interchange of two γ-rays.

3. Parity symmetry since the decay is governed by the EM interaction.

Hence the final two photon state would be a simultaneous
eigenstate of these three operators.
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• Consider the symmetry for the rotation around z-axis. Photon has

helicity ±1 ⇒ Jz = ~J.
~k

|~k|
= (~S + ~L).

~k

|~k|
= ~S.

~k

|~k|
= Sz = ±1. Thus for the

two photons the total z-component of the AM is

Jz = Sz = ±2 for LR(-2) & RL(+2) : parallel spins(see fig. 3) (86)

Jz = Sz = 0 for LL & RR : anti-parallel spins(see fig. 3) (87)

 So, all four states are the eigenstates of Rzφ.

Now, initial AM, Jπ0 = 0⇒ Jfinal = 0 = Lγγ + Sγγ .
Also from (86) & (87) Sγγ = 0, 2.
If Sγγ = 0 then Lγγ also has to be zero to satisfy AM conservation.
If Sγγ = 2 then

1. let Lγγ = 0⇒ Jγγ = 2⇒ not possible.

2. let Lγγ = 1⇒ Jγγ = 1, 2, 3⇒ not possible.

3. let Lγγ = 2 ⇒ Jγγ = 0, 1, 2, 3, 4 ⇒ possible since Jγγ = 0 is a
possible solution.

4. Higher Lγγ is not possible since they cannot render Jγγ = 0.

Hence calculation the parity of the final state becomes Pγγ = Pγγspin

• Now take the rotation of π about the x-axis ⇒ interchange of +z &
-z directions ⇒ interchange of two γ-rays ⇒ system should be remained
invariant. Then all angles θ measured from +z become (π − θ), L(~k) ↔
L(−~k) & R(~k)↔ R(−~k).
Also, from the last physical argument:

Rxπ|L(~k)R(−~k)〉 = |L(−~k)R(~k)〉 ⇒ not an eigenstate of Rxπ (88)

Rxπ|R(~k)L(−~k)〉 = |R(−~k)L(~k)〉 ⇒ not an eigenstate of Rxπ (89)

Rxπ|L(~k)L(−~k)〉 = |L(−~k)L(~k)〉 ⇒ an eigenstate of Rxπ (90)

Rxπ|R(~k)R(−~k)〉 = |R(−~k)R(~k)〉 ⇒ an eigenstate of Rxπ (91)

• Now, let us consider the effect of the parity transformation which cor-
responds to a rotation of π about z-axis plus inversion of the z-axis. From
(83):

P|L(~k)R(−~k)〉 = |R(−~k)L(~k)〉 ⇒ an eigenstate of Rxπ (92)

P|R(~k)L(−~k)〉 = |L(−~k)R(~k)〉 ⇒ an eigenstate of Rxπ (93)

P|L(~k)L(−~k)〉 = |R(−~k)R(~k)〉 ⇒ not an eigenstate of Rxπ (94)

P|R(~k)R(−~k)〉 = |L(−~k)L(~k)〉 ⇒ not an eigenstate of Rxπ (95)

However, the following combinations are eigenstates of parity operator:

P[|R(~k)R(−~k)〉+ |L(~k)L(−~k)〉] = [|R(~k)R(−~k)〉+ |L(~k)L(−~k)〉] (96)

P[|R(~k)R(−~k)〉 − |L(~k)L(−~k)〉] = −[|R(~k)R(−~k)〉 − |L(~k)L(−~k)〉] (97)

16



 Hence, the simultaneous eigenstates of 3-symmetry operators can only
be |R(~k)R(−~k)〉 ± |L(~k)L(−~k)〉.

• Now, it is straightforward to show

1√
2

(|R(~k)R(−~k)〉+ |L(~k)L(−~k)〉) ∝ ( ~A1. ~A2)|0〉 parallel polariz (98)

1√
2

(|R(~k)R(−~k)〉 − |L(~k)L(−~k)〉) ∝ ( ~A1 × ~A2).~k|0〉 perpend polariz

(99)

So, we conclude that information on the neutral pion parity can be
obtained from the polarization of the decay photons by measur-
ing the state of linear polarization of both photons.

parallel ⇒ Pintrπ0 = +1⇒ scalar (100)

perpendicular ⇒ Pintrπ0 = −1⇒ pseudoscalar. (101)

π0 can’t be a vector or pseudo-vector being a spin zero particle.

• Experimental Result: The direct measurement of the relative polar-
ization of low energy photons(67 MeV for a π0 decaying at rest) is ex-
perimentally challenging; however, the photon polarization plane is highly
correlated to the plane of an e+e− pair which it can produce. The plane
of each pair is predominantly is that of ~E, so that the measurement of the
angle between the plane of pairs allows one to infer about pions parity.

In the experiment performed by Steinberger mostly relative perpendic-
ular polarization was obtained ⇒ Pintrπ0 = −1⇒ pseudoscalar.

4 Bibliography

• Discrete Symmetries and CP Violation : From Experiment to Theory by
M. S. Sozzi.

• Selection Rules for the Dematerialization of a Particle into Two Photons
by C.N. Yang(1950).

• Elementary Particles by I.S. Hughes.

• Quantum Field Theory by Ashok Das.

• Introduction to High Energy Physics, Donald H. Perkins.

17


