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Triangle Inequality

One of the important results we learn in plane geometry at high school is
that in any triangle, the sum of the lengths of any two sides is strictly
greater than the length of the third side.

This has been generalized as the triangle inequality when defining a metric
(which generalizes the notion of distance) in topology and plays a very key
role in the study of metric spaces. A particular case of this is the
inequality bearing the same name when defining a norm on vector spaces.
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Polygonal Paths

Definition

A polygonal path joining two points in the plane is a path which is made
up of line segments.

Figure 1
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In this figure, we see that AB < AC + CB, CB < CD + DB and
DB < DE + EB and combining these, we see that

AB < AC + CD + DE + EB.
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We can generalize this, using mathematical induction, to any number of
points and we deduce the following result.

Theorem

Of all polygonal paths joining two points in the plane, the straight line
joining the points has the shortest length.
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Recifiable Arcs

A curve in the plane can be considered as a continuous map
γ : [0, 1]→ R2. The end points of the curve are γ(0) and γ(1). The curve
is said to be a simple curve if γ is injective on (0, 1) and it is a closed
curve if γ(0) = γ(1).

Consider a partition P of the interval [0, 1]:

P : 0 = t0 < t1 < t2 < · · · < tn = 1.

The points {γ(ti )}ni=0 lie on the curve and if we connect pairs of
consecutive points γ(ti ) and γ(ti+1), for 0 ≤ i ≤ n − 1, by line segments,
we get a polygonal path from γ(0) to γ(1). Let `(P) denote the length of
this polygonal path.
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Definition

The curve γ is said to be rectifiable if

sup
P
`(P) < +∞

where the supremum is taken over all possible partitions of the interval
[0, 1]. The finite supremum thus obtained is called the length of the curve.

As a consequence of the above definition and Theorem 1, we deduce the
following result.

Corollary

Of all paths connecting two points in the plane, the straight line joining
them has the shortest length.
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Heron’s Theorem

Consider two points A and B in the plane and a line ` lying below them.
Consider all possible polygonal paths from A to B consisting of two line
segments AP and PB, where P lies on the line `. What is the shortest
possible such path?

Figure 2
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Proof of Heron’s Theorem

α α

Figure 3
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Thus the optimal point Q is such that the ‘angle of incidence’ is equal to
the ‘angle of reflection’. This result is called Heron’s theorem.

This is also the law governing the reflection of light on a plane mirror. It
follows from Fermat’s principle that light always follows the shortest
possible path. This principle can also be used to derive the laws of
refraction of light passing through different media.
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Exercise:

Given two arbitrary lines ` and m in the plane and two points A and B
between them, find the shortest polygonal path APQB where P lies on `
and Q lies on m (see Figure 4). �

Figure 4
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Optimal Triangles

Let a, b ∈ R be fixed positive constants. Amongst all triangles ∆ABC
with base length BC = b and area equal to a, we look for the triangle such
that AB + AC is the least possible.

h

Figure 5
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Theorem

Of all triangles with fixed base and fixed area, the isosceles triangle
minimizes the sum of the lengths of the other two sides.

A Dual Problem

Of all triangles with fixed base length and fixed sum of the lengths of the
other two sides, find the triangle with maximum area.
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Figure 6
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Theorem

Of all triangles with fixed base length and such that the sum of the
lengths of the other two sides is a fixed constant, the isosceles triangle has
the maximum area.

For those who are familiar with conic sections in coordinate geometry, we
can give another proof of Theorem 3. If B and C are fixed, then the locus
of A which moves such that AB + AC is a constant, L, is an ellipse. Then,
the semi-major axis a is given by 2a = L and the eccentricity e of the
ellipse is given by BC = 2ae. The semi-minor axis b is then defined by
b2 = a2(1− e2).
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If the origin O is at the midpoint of BC and if θ is the angle the ray OA
makes with the major axis (which is along BC ), then the coordinates of A
are given by (a cos θ, b sin θ). The height of the triangle ∆ABC is
therefore b sin θ and its area is

1

2
.BC .b sin θ

which is maximal when θ = π
2 , i.e. A lies on the minor axis, which implies

that the triangle ∆ABC is isosceles.
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Isoperimetric Problem for Polygons

Let N ≥ 3 be a fixed positive integer. Consider the following problem:

Problem

Of all N-sided polygons with the same perimeter L, find that which
encloses the maximum area.
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Triangles

If N = 3, we are dealing with triangles. If L is the perimeter of a triangle
of sides a, b and c , then L = 2s = a + b + c , where s is the
semi-perimeter. Then by Hero’s formula, we know that the area is given by

A =
√

s(s − a)(s − b)(s − c).

Thus, to maximize the area, we need to maximize the product of three
positive numbers

(s − a)(s − b)(s − c)

whose sum equals 3s − (a + b + c) = s which is a is constant (= L/2).
From the classical AM-GM inequality, we know that this is possible only
when the three numbers are equal. Thus it follows that a = b = c , i.e. the
triangle is equilateral.
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Quadrilaterals

Let us now consider the case N = 4, i.e. the case of quadrilaterals. First
of all, it is enough to consider convex quadrilaterals.

Figure 7
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Figure 8
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Thus, given any convex quadrilateral, we can construct a rhombus of equal
perimeter but of larger area. If θ ≤ π

2 is an internal angle of the rhombus
(whose side is L/4, where L is the perimeter), its area is(

L

4

)2

sin θ

and this is maximal when θ = π
2 .

Of all quadrilaterals of given perimeter L, the square has the maximum
area.

Theorem

Of all N-sided (N ≥ 3) polygons of fixed perimeter, the regular polygon
encloses the maximum area.

By a regular polygon, we mean one which has all sides of equal length and
all of whose vertices all lie on a circle.
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Unlike the cases of triangles and quadrilaterals, the proof in the general
case is more involved. We will present here an ingeneous argument due to
Steiner for polygons with an even number of sides.
Up to now (N = 3, 4), we have actually verified that the regular polygon
indeed maximizes the area. We will now change our mode of proof. We
will first prove that there exists an optimal polygon and based on this
assumption of existence, deduce that it must be the regular polygon.
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Existence

For the existence of an optimal polygon, we argue as follows. The N
vertices of an N-sided polygon are fixed by 2N coordinates in the plane.
Since the perimeter is fixed, say, L, the diameter of the polygon cannot
exceed L. Hence all such polygons can be considered to lie inside a
sufficiently large box. In other words, these 2N coordinates vary in some
fixed bounded interval. The area and perimeter are continuous functions
of the coordinates.
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Thus the set of all N-sided polygons with perimeter L is represented by a
closed and bounded set in 2N-dimensional space and such a set is
compact. Since the area is a continuous function it attains its maximum
at some point in the compact set which corresponds to the optimal
polygon. This proves the existence of the optimal polygon.
Henceforth we will assume the existence of an optimal polygon of 2N
sides, N ≥ 2, and deduce its properties. As in the case of quadrilaterals, it
is clear that such a polygon has to be convex.
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Now consider an arbitrary pair of adjacent sides of this polygon.Let us
name the corresponding vertices A,B and C . Let us freeze all the vertices
except B.

Figure 9
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We vary the polygon by just moving the vertex B in a manner that
BA + BC is fixed so that the perimeter is not altered. The area of the
polygon can be altered only by altering the area of the triangle ∆BAC .
Since AC is also frozen and since BA + BC is constant, it follows from
Theorem 3 that for the optimal polygon, we must have BA = BC . Thus
any pair of adjacent sides are equal and so it must be an equilateral
polygon (i.e. all its sides are equal in length).
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Now let us draw a diagonal of this polygon with N sides on either side of
it, i.e. it bisects the perimeter. We claim that it simultaneously bisects the
area as well. If not, if one side had larger area than the other, we can
reflect this side with respect to the diagonal to produce a polygon of the
same perimeter but of larger area, contradicting the optimality of the
polygon.
From now on, we will work with half the polygon defined by this diagonal
(this is the reason why the argument works only for an even number of
sides).
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Figure 10

L M
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θ

Let AB be the diagonal and consider the upper half of the polygon. Let P
be a fixed vertex (other than A and B). The points A and B will be
allowed to slide on the line ` defining the diagonal. The vertices will move
so that the distances PA and PB are fixed and the areas shaded in the
figure are fixed.
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The new polygon got by reflecting this figure across the line ` will still be
a regular polygon with the same perimeter. The change in the area is got
by changing the area of the triangle ∆PAB which is given by

1

2
PA.PB. sin θ

where θ is the angle subtended at P by AB, and this area is maximal when
θ is a right angle. Thus, in the optimal polygon, the diagonal bisecting the
perimeter and the area subtends a right angle at all the other vertices.
This shows that the optimal polygon is regular with the vertices lying on
the circle with the bisecting diagonal as diameter.
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Now, let L be the perimeter and A the area of a 2N-sided polygon.
Consider the corresponding regular cyclic polygon with the same
perimeter. Then each side has length L/2N. The angle subtended by each
side at the centre O of the circumscribing circle is 2π/2N = π/N.

θ π /2Ν=

h

L/2N

θ

Figure 11

O
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The height of the triangle with one side as base and the centre of the
circumscribing circle as the vertex is then given by

h =
L

4N

1

tan(π/2N)

and so its area is then seen to be

L2

16N2

1

tan(π/2N)
.

The area of the regular cyclic polygon is then 2N times this quantity, since
there are in all 2N identical triangles, which yields

L2

8N

1

tan(π/2N)
.
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Since this is the optimal area, we deduce the following result.

Theorem

If L is the perimeter and A is the area of any 2N-sided polygon in the
plane, then

L2 ≥ 8NA tan
( π

2N

)
.
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The Isoperimetric Inequality

Consider a simple closed curve of length L enclosing a region Ω in the
plane, whose area is A. Pick 2N points on the curve which will form a
polygon of 2N sides. Let LN be the perimenter of this polygon and let AN

be its area.We can choose these points in such a way that, as N →∞, we
have LN → L and AN → A. Now, we have seen that

L2
N ≥ 8NAN tan

( π

2N

)
= 4πAN

tan
(

π
2N

)
π
2N

which yields, as N →∞,
L2 ≥ 4πA.
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This is called the classical isoperimetric inequality in the plane. It can be
shown that equality occurs if, and only if, the curve is a circle. Indeed, for
a circle of radius r , we have L = 2πr and A = πr2, which shows that
L2 = 4πA. The converse is also true.

Rephrasing this, if L is the perimeter of a simple closed curve, the
maximum area it can enclose is L2/4π and, if A is the area enclosed by a
simple closed curve, the perimeter should at least be

√
4πA. The circle

alone achieves these optimal values.
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In other words, of all simple closed curves with fixed perimeter, the circle
alone encloses the maximal area, and of all simple closed curves enclosing
a fixed area, the circle alone has the least perimeter.

In ancient literature, Virgil’s Aeneid mentions Dido’s problem. Dido was a
queen who founded Carthage (modern Tunisia) and she was told that she
could have as much land as she could enclose with a piece of oxhide.
Interpreting the word ‘enclose’ broadly, she cut the oxhide into very thin
strips which she then knotted together to form a closed rope. Thus she
had a rope of fixed length and she had to place it on the earth so as to
enclose the maximum possible area.
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In three dimensions, the isoperimetric inequality reads as follows:

S3 ≥ 36πV 2.

Here S denotes the surface area of a bounded domain in R3 and V is its
volume. Again equality holds only for the ball (S = 4πr2,V = 4

3πr3).
Thus of all possible surfaces of fixed surface area, the sphere alone
encloses the maximum volume and of all domains of fixed volume, the ball
has the least surface area.
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This has a nice application in case of soap bubbles. A soap bubble involves
an interface of a liquid and air. The bubble will be stable only if the
potential energy due to the surface tension is minimal. This quantity is
proportional to the surface area of the liquid-air interface. Thus, when we
blow a bubble enclosing a fixed volume of air, nature adjusts the shape of
the bubble so that the surface area is minimal and this occurs for the
spherical shape and so soap bubbles are round in shape.
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The isoperimetric inequality is the starting point of the subject of shape
optimization problems, where we look for shapes which optimize some
functional subject to some geometric constraints. This is a very active area
of research today and lies in the confluence of several areas of mathematics
like geometry, partial differential equations, functional analysis and so on.
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Thank You!
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