
PARTIAL FRACTIONS
A CRITICAL LOOK

K. N. RAGHAVAN

Abstract. Partial fractions are typically introduced in school mathematics textbooks as a

method of integration. The integration of rational functions in one variable reduces, by the

division algorithm, to that of proper fractions, which are then handled by expressing them

as partial fractions. We take a critical look at this method of partial fractions, with special

reference to its treatment in the NCERT Class XII Mathematics text.

1. Introduction
[s:intro]

The integration of rational functions reduces, by the division algorithm, to that of proper

fractions. Each proper fraction decomposes as a sum of simple proper fractions called partial

fractions , each of which is easily integrated. This method of partial fractions is the sub-

ject of this article, which started off as notes of a lecture addressed to school teachers of

mathematics. It inherits from the lecture special focus on the subject material as it appears

in §7.3 of the NCERT Mathematics Book for Class XII, which is referred to throughout as

the “text”.

In the next three sections below, we consider proper fractions of special types: the text

restricts itself to cases where the denominator is of degree at most 3. Later on, in §5, we

consider the theoretical basis that underlies the method of partial fractions. In particular,

we justify the tacit assumptions in the text about the method. The treatment here is

comprehensive: it covers all proper fractions and in turn all rational functions.

2. Proper fractions with denominator a product of distinct linear factors
[s:x2]

In this section, we consider integration of proper fractions where the denominator is a product

of distinct linear factors.

2.1. The text’s solution. As a simple example of this type, let us consider

Find

∫
1

x2 − 9
dx (1)

We first apply to the above example the text’s suggested method of solution. Begin by

factoring: x2 − 9 = (x+ 3)(x− 3). Put

1

(x+ 3)(x− 3)
=

A

x+ 3
+

B

x− 3
(2)

This article started off as notes of a lecture given on 30 September 2013 at a workshop at IMSc for school

mathematics teachers. Corrections, comments, suggestions for improvement, criticisms, etc. are welcome.

Please send them to the author at knr.imsc@gmail.com or knr@imsc.res.in.
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where A and B are unknowns to be determined. Multiplying both sides of the equation by

(x+ 3)(x− 3), we get

1 = A(x+ 3) +B(x− 3) (3)

Equating the coefficients of x and the constant terms on both sides, we get:

A + B = 0

3A− 3B = 1
(4)

which we solve to find A and B. Multiplying the first equation by 3 and adding the result

to the second, we get 6A = 1 or A = 1/6. Plugging this into the first, we get B = −1/6.

Substituting these into (2) and integrating, we get:∫
1

x2 − 9
dx =

∫
1

(x+ 3)(x− 3)
dx =

∫
1

6(x+ 3)
dx −

∫
1

6(x− 3)
dx

=
1

6
log |x+ 3| − 1

6
log |x− 3| + constant

(5)

[ss:t1:altsol]
2.2. An alternative method. We now suggest an alternative, quick, way to determine A

and B in (3), with which perhaps the reader is already familiar. Putting x = 3, we get

1 = A · 6, so A = 1/6; putting x = −3, we get 1 = B · (−6), so B = −1/6.

The advantage of the above method over that of equating coefficients becomes more pro-

nounced when the denominator has three or more distinct factors, as for instance in:

x

(x− 1)(x− 2)(x− 3)
=

A

x− 1
+

B

x− 2
+

C

x− 3
(6)

Multiplying through by (x− 1)(x− 2)(x− 3), we get

x = A(x− 2)(x− 3) +B(x− 1)(x− 3) + C(x− 1)(x− 2) (7)

To determine A, B, and C, we need only set x equal to 1, 2, and 3:

1 = A(−1)(−2) so A = 1/2; 2 = B(1)(−1) so B = −2; 3 = C(2)(1) so C = 3/2. (8)

2.3. Closed form expression in general for the coefficients. The alternative method

is powerful enough to let us fearlessly tackle the general case when the denominator is a

product of an arbitrary number of distinct linear factors. In fact, we can write down closed

form formulas for the coefficients in the expression of the integrand as partial fractions. We

illustrate how to do this when the denominator is a product of four distinct linear factors.

The restriction to four factors is only for the sake of notational simplicity.

Let f(x) be a polynomial of degree at most 3. Let a, b, c, d be distinct numbers. Wanting

to integrate f(x)/(x− a)(x− b)(x− c)(x− d), we put1

f(x)

(x− a)(x− b)(x− c)(x− d)
=

A

x− a
+

B

x− b
+

C

x− c
+

D

x− d
(9)

1The justification for (2), (6), (9), and all such subsequent assumptions is provided by (73).
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Multiplying through by (x− a)(x− b)(x− c)(x− d), and setting successively x equal to a,

b, c, d, we get:

A =
f(a)

(a− b)(a− c)(a− d)
B =

f(b)

(b− a)(b− c)(b− d)

C =
f(c)

(c− a)(c− b)(c− d)
D =

f(d)

(d− a)(d− b)(d− c)

(10)

It is time now to pose the question:

Does the method of equating coefficients have any advantage at all
over the alternative method of plugging values in for x?

(11)

See Exercise 1 for an answer.
[ss:li]

2.4. Lagrange interpolation. The underlying idea in the alternative method above also

underlies the method of Lagrange interpolation which we now describe. Let f(x) be a

linear function of x:

f(x) = αx+ β (12)

where α and β are constants. The graph of f(x) is a line. Suppose we know that the line

passes through two points (a, u) and (b, v) where a 6= b. There being always one and only

such line, it is clear that if we specify the values f(a) and f(b) at a and b of f(x), then the

function f(x) is determined.

In a similar way, for any positive integer m, there is one and only one polynomial f(x) of

degree less than m with specified values at m distinct values of x. See Exercise 1 for a proof.

The question now is: how to determine the polynomial given the values? For example, which

polynomial of degree at most 2 has values 2, 1, and 4 at 1, 2, and 4 respectively?

Lagrange interpolation is a method to write the polynomial down. Put

f(x) = A(x− 2)(x− 4) +B(x− 1)(x− 4) + C(x− 1)(x− 2) (13)

where A, B, and C are constants to be determined. Clearly f(x) is a polynomial of degree at

most 2. The constants A, B, and C are now readily determined by plugging in successively

x equal to 1, 2, 4 and respectively f(x) equal to 2, 1, 4:

2 = A(−1)(−3), so A = 2/3; 1 = B(1)(−2), so B = −1/2; 4 = C(3)(2), so C = 2/3 (14)

Plugging these values of A, B, and C into (13) and simplifying, we get

f(x) =
5

6
x2 − 7

2
x+

14

3
(15)

Let us now consider a polynomial f(x) of degree at most 3 whose values f(a), f(b), f(c),

and f(d) at four distinct values a, b, c, and d are specified. Put

f(x) = A(x− b)(x− c)(x− d) + B(x− a)(x− c)(x− d)

+ C(x− a)(x− b)(x− d) + D(x− a)(x− b)(x− c)
(16)

Plugging in successively the values a, b, c, d for x and corresponding values for f(a), f(b),

f(c), f(d) for f(x), we see that A, B, C, D are given by the formulas (10).
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3. Fractions with denominator a power of a linear form
[s:x2]

In this section, we consider integration of rational functions where the denominator is of the

form (x−a)n. We consider only proper fractions first, but in §3.6 there is no such restriction.

3.1. The text’s method of solution. As a simple example of this type, consider∫
3x− 1

(x+ 2)2
dx (17)

Let us first follow the suggested method of solution in the text. Put

3x− 1

(x+ 2)2
=

A1

(x+ 2)
+

A2

(x+ 2)2
(18)

Multiply through by (x+ 2)2:

3x− 1 = A1(x+ 2) + A2 (19)

Equate the coefficient of x and the constant term on both sides:

3 = A1 − 1 = 2A1 + A2 (20)

Solve these for A1 and A2 and substitute back into (18):

3x− 1

(x+ 2)2
=

3

(x+ 2)
+

−7

(x+ 2)2
(21)

Finally, integrate:∫
3x− 1

(x+ 2)2
dx =

∫
3

(x+ 2)
dx+

∫
−7

(x+ 2)2
dx = 3 log |x+ 2|+ 7

x+ 2
+ constant (22)

3.2. Comments on the text’s method of solution. The text’s procedure above gener-

alizes to the case when the denominator is a higher power, for instance, (x+ 2)6. Indeed, for

f(x) a polynomial of degree at most 5, we put

f(x)

(x+ 2)6
=

A1

(x+ 2)
+

A2

(x+ 2)2
+

A3

(x+ 2)3
+

A4

(x+ 2)4
+

A5

(x+ 2)5
+

A6

(x+ 2)6
(23)

Multiply through by (x+ 2)6:

f(x) = A1(x+ 2)5 + A2(x+ 2)4 + A3(x+ 2)3 + A4(x+ 2)2 + A5(x+ 2) + A6 (24)

Looking to equate coefficients of powers of x on both sides, we consider the coefficients of

x5, x4, x3, x2, x1, x0 on the right side. Using the binomial theorem to expand the powers of
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(x+ 2), we see that these coefficients are, respectively:

A1(
5

1

)
21A1 + A2(

5

2

)
22A1 +

(
4

1

)
21A2 + A3(

5

3

)
23A1 +

(
4

2

)
22A3 +

(
3

1

)
21A1 + A4(

5

4

)
24A1 +

(
4

3

)
23A2 +

(
3

2

)
22A3 +

(
2

1

)
21A4 + A5(

5

5

)
25A1 +

(
4

4

)
24A2 +

(
3

3

)
23A3 +

(
2

2

)
22A4 +

(
1

1

)
21A5 + A6

(25)

While these expressions get increasingly complicated, there is a pattern in them. Namely,

the first expression involves only A1, the second only A1, A2, the third only A1, A2, A3, etc.

Moreover, the coefficient of A1 in the first, of A2 in the second, of A3 in the third, etc. are

all 1.

It is clear how to solve the system of linear equations obtained from equating coefficients

of powers of x: the first equation—the one obtained by equating coefficients of x6—gives

A1 directly; substituting this value into the second—the one for coefficients of x5—we solve

for A2; substituting the values of A1 and A2 into the third, we solve for A3; and so on.

Example 3.2.1. If the degree of f(x) is small, then the linear system above is especially sim-

ple and readily solved. For example, if f(x) = 5x+ 3, then it is clear—equating successively

the coefficients of x5, x4, x3, x2—that A1, A2, A3, A4 vanish. Equating the coefficients of x,

we get A5 = 5. Equating the constant terms, we get 2A5 + A6 = 3, so A6 = 3− 2 · 5 = −7.

We have:∫
5x+ 3

(x+ 2)6
dx =

∫
5

(x+ 2)5
dx+

∫
−7

(x+ 2)6
dx =

−5

4(x+ 2)4
+

7

5(x+ 2)5
+ constant (26)

[e:long]
Example 3.2.2. If however the degree of f(x) is large—note that it can at most be 5 for

the fraction f(x)/(x+2)6 to be proper—e.g., if f(x) = x5 +2x4 +3x+1, then the procedure,

although still within reach of calculation by hand, is much easier described than carried out!

We will soon return to this example (see Example 3.3.1 below), where we try out on it the

alternative procedure described in the next subsection for finding the coefficients Ai. The

reader is invited to compare the levels of difficulty of carrying out the two procedures.

3.3. Alternative method of solution. We now look at an alternative way of determining

the Ai in (24), the idea behind which is far-reaching. Recall that our alternative solution

in Examples of type 1 (see §2.2) consisted of plugging in various values for x. These values

were precisely the zeros of the various linear factors appearing in the denominator of the

original given fraction (to be integrated). There were as many of these values as there were
5



coefficients to be determined, and we were able to determine all the coefficients directly by

plugging in these values.

Here there is only one such value, namely x = −2. Substituting this into (24), we get A6:

A6 = f(−2). (27)

But what do we do next? While we may plug in any value of x of our choice, no other value

especially suggests itself. So, how do we proceed? Here is the idea:

differentiate (24) and then substitute x = −2 (28)

Differentiating (24), we get

f ′(x) = 5A1(x+2)4+4A2(x+2)3+3A3(x+2)2+2A4(x+2)+A5 where f ′(x) =
df

dx
(29)

Substituting x = −2 into the above, we get

A5 = f ′(−2) (30)

And we may repeat the process . Differentiting (29), we get

f ′′(x) = 4 · 5A1(x+ 2)3 + 3 · 4A2(x+ 2)2 + 2 · 3A3 · (x+ 2) + 2A4 (31)

where f ′′(x) = df ′(x)/dx = d2f(x)/dx2. Substituting x = −2 into the above, we get

A4 =
f ′′(−2)

2
(32)

By successive differentiations and evaluations, we get:

A3 =
f (3)(−2)

3!
A2 =

f (4)(−2)

4!
A1 =

f (5)(−2)

5!
(33)

where f (m)(x) stands for the mth derivative dmf/dxm of the polynomial f(x). Note the

pattern of progression in (27), (30), (32), and (33). Substituting these into (24), we have:

f(x) =
f (5)(−2)

5!
(x+ 2)5 +

f (4)(−2)

4!
(x+ 2)4 +

f (3)(−2)

3!
(x+ 2)3 +

f (2)(−2)

2!
(x+ 2)2 +

f (1)(−2)

1!
(x+ 2) + f(−2)

(34)

We have thus determined the coefficients A1, A2, A3, A4, and A5 in (24).

There are several comments we would like to make about (34). But first let’s look at

Example 3.2.2 in its light.
[e:long:alt]

Example 3.3.1. Consider, as in Example 3.2.2, the problem of integrating f(x)/(x + 2)6

where f(x) = x5 + 2x4 + 3x + 1. We apply (34) to write f(x) in the form (24). An easy

calculation gives us:

f ′(x) = 5x4 + 8x3 + 3
f (2)(x)

2!
= 10x3 + 12x2

f (3)(x)

3!
= 10x2 + 8x

f (4)(x)

4!
= 5x+ 2

f (5)(x)

5!
= 1

(35)
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Plugging in x = −2, we get2

f(−2) = −5, f ′(−2) = 19,
f 2(−2)

2!
= −32,

f 3(−2)

3!
= 24,

f 4(−2)

4!
= −8,

f 5(−2)

5!
= 1 (36)

Applying (34), we get:

f(x) = x5 +2x4 +3x+1 = (x+2)5−8(x+2)4 +24(x+2)3−32(x+2)2 +19(x+2)−5 (37)

Dividing through by (x+ 2)6, we get:

f(x)

(x+ 2)6
=

1

(x+ 2)
− 8

(x+ 2)2
+

24

(x+ 2)3
− 32

(x+ 2)4
+

19

(x+ 2)5
− 5

(x+ 2)6
(38)

Finally, integrating term by term, we get:∫
f(x)

(x+ 2)6
dx = log |x+2|+ 8

(x+ 2)
− 12

(x+ 2)2
+

32

3(x+ 2)3
− 19

4(x+ 2)4
+

1

(x+ 2)5
+C (39)

The advantage over the text’s method of the alternative one is perhaps now clear. In

analogy with (11) let us ask

Does the method of equating coefficients have any advantage at all over
the alternative method of repeatedly differentiating and evaluating?

(40)

See Exercise 4 for an answer.
[ss:consolidate]

3.4. More on the idea behind the alternative solution: Taylor series. As already

remarked, the idea behind the the alternative solution is far-reaching. In the remaining

subsections of this section, we will explore the idea a little more. As the reader may guess,

what we will see is only the tip of the iceberg.3

Following the same steps as in the alternative solution, we can establish the following: see

Exercise 2. Given a polynomial f(x) of degree m and a number a, we have:

f(x) = f(a)+
f (1)(a)

1!
(x−a)+

f (2)(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+ · · ·+ f (m)(a)

m!
(x−a)m (41)

We may remove the reference to the degree of the polynomial f(x) and write

f(x) = f(a) +
f (1)(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · (42)

If f(x) has degree m, then derivatives of f(x) of order higher than m are identically zero,

so (42) reduces to (41). Thus (42) is justified. Although its right hand side looks like an

infinite sum, it is a finite one for any specific polynomial.

Equation (42), or its more succinct version

f(x) =
∑
m≥0

f (m)(a)

m!
(x− a)m (43)

is called the Taylor series expansion of f(x) at a.
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[ss:ecossin]
3.5. Taylor series expansions of exponential, sine, and cosine functions. Taylor

series expansions (43) can be made sense of for a large class of functions of which polynomials

are but a small subset. We now give some examples of such expansions.4 Unlike in the case

of polynomials, the right hand side of (43) is not a finite sum in these examples, and so needs

to be appropriately interpreted.

3.5.1. Geometric series. Put f(x) = 1/(1 − x) and a = 0. As an easy calculation shows,

f ′(x) = 1/(1 − x)2, f ′′(x)/2! = 1/(1 − x)3, . . . , f (m)(x)/m! = 1/(1 − x)m+1. So all the

derivatives are 1 when evaluated at 0, and (43) becomes

1

1− x
= 1 + x + x2 + x3 + · · · (44)

The reader is perhaps familiar with the sum of the geometric series:

1− xr

1− x
= 1 + x + x2 + · · · + xr (45)

Equation (44) may be viewed as the limit in case |x| < 1 of (45) as r tends to infinity.5

3.5.2. Exponential series. Put f(x) = ex and a = 0. Then, for all m ≥ 0, f (m)(x) = ex,

so f (m)(0) = 1. Thus (43) becomes the famous exponential series with which the reader is

perhaps familiar:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (46)

3.5.3. Sine series. Put f(x) = sin x and a = 0. Then f ′(x) = cos x, f ′′(x) = − sinx,

f (3)(x) = − cosx, f (4)(x) = sinx, and the pattern repeats:

f (m)(x) is sinx, cos x, − sinx, or − cosx, accordingly as

m leaves remainder 0, 1, 2, or 3 on division by 4.

We have

f (m)(0) =

{
0 if m is even

(−1)(m−1)/2 if m is odd
(47)

Thus the Taylor series expansion of sinx at 0 is:

sinx = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ − · · · (48)

3.5.4. Cosine series. By calculations similar to those above for the sine series, we get the

Taylor series expansion of cos x at 0:

cosx = 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ − · · · (49)
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[ss:t2:gensol]
3.6. The general solution to Examples of type 2. Using the Taylor expansion (43),

we can even write a closed form expression for the integral of f(x)/(x − a)n where f(x) is

any polynomial. In this subsection, f(x) may have any degree: in other words, the fraction

f(x)/(x − a)n need not be proper. All sums in the next two equations are actually finite.

Indeed, for any polynomial f(x), all derivatives of orders larger than its degree vanish.

By the Taylor expansion (43) of f(x), we have

f(x)

(x− a)n
=
∑
m≥0

(f (m)(a)/m!)(x− a)m

(x− a)n
=
∑
m≥0

f (m)(a)

m!
(x− a)m−n (50)

The integral of (x − a)m−n being, up to addition of a constant, (x − a)m−n+1/(m − n + 1)

except when m− n = −1, in which case it is log |x− a|, we get:∫
f(x)

(x− a)n
dx =

f (n−1)(a)

(n− 1)!
log |x− a| +

∑
m≥0, m6=n−1

f (m)(a)

m!

(x− a)m−n+1

(m− n+ 1)
+ constant (51)

[ss:graph]
3.7. Shifting of axis and the Taylor expansion. Choice of an appropriate co-ordinate

system can be important in problem solving. Suppose that we need to shift the y-axis as in:

-

6
y-axis

x-axis

-�
a units

-

6
y-axis

x′-axis

y = f(x) = g(x′)

We have, as a result of the shift, x′ = x − a. Suppose that y = f(x) is given explicitly,

for example, y = x5 − 3x4 + 8x + 11, and that we want to find the polynomial g such that

y = g(x′), where a is say 2. One way to do this would be to substitute x = x′ + 2 into the

formula for y to get y = (x′ + 2)5 − 3(x′ + 2)4 + 8(x′ + 2) + 11. We could then expand using

the binomial formula and thereby would have expressed y as a polynomial in x′.

An alternative (and perhaps better) way to accomplish the calculation is to expand the

given function y = f(x) in Taylor series (41) around a = 2. To this end, we compute the

derivatives of orders up to 5 at 2 of y = f(x):

f ′(x) = 5x4 − 12x3 + 8,
f ′′(x)

2!
= 10x3 − 18x2,

f (3)

3!
= 10x2 − 12x,

f (4)

4!
= 5x− 3,

f (5)

5!
= 1

2Observe that these values are all integers. Is this a coincidence? See Exercise 5.
3The iceberg in this case is enormous.
4In all the examples below, a = 0. Taylor series with a = 0 are also referred to as Maclaurin series.
5For more on this matter, one may refer to the talk by Professor D. S. Ramana in this workshop.
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Plugging x = 2 we get:

f(2) = 11, f ′(x) = −8,
f ′′(x)

2!
= 8,

f (3)

3!
= 16,

f (4)

4!
= 7,

f (5)

5!
= 1

Thus we have

y = f(x) = 11 − 8(x− 2) + 8(x− 2)2 + 16(x− 2)3 + 7(x− 2)4 + (x− 2)5

= 11 − 8x′ + 8x′2 + 16x′3 + 7x′4 + x′5

[ss:dva]
3.8. Rectilinear motion with constant acceleration. The reader is in all likelihood

familiar with the following formula from kinematics:

s = s0 + ut+
1

2
at2 (52)

Here t denotes time and s the displacement of a point particle as measured from a given

point of reference. The particle is assumed to move along a straight line with constant

acceleration a, as for example a freely falling stone that is dropped or thrown upwards or

downwards from a tower, where we ignore altogether the effect of air resistance on the falling

stone; s0 and u are the initial values of displacement and velocity.

Equation (52) is just the Taylor expansion (43) at time t = 0 for the displacement func-

tion s. Indeed, velocity and acceleration are by definition just the first and second derivatives

of displacement with respect to time. Thus s0, u, and a are just the values at time t = 0

of s and its first two derivatives. The assumption about constant acceleration means that

all derivatives of orders 3 or higher vanish.

4. Proper fractions of degree at most 3
[s:x3]

In a proper fraction N(x)/D(x), we may assume D(x) is monic, by dividing both numerator

and denominator by the leading coefficient of D(x). We suppose in this section that D(x)

is monic of degree at most 3.

If D(x) is of degree 1, then it is of the form x− a; if it is of degree 2, then it is of one of

three forms:

(x− a)(x− b) with a 6= b, (x− a)2, or x2 + 2bx+ c with b2 − c < 0 (53)

Suppose D(x) has degree 3. Then it has at least one linear factor, say x− a. The quotient

by this linear factor being of degree 2 has one of three forms above, and so there are four

possibilities for D(x) in this case:

(x− a)(x− b)(x− c) with a, b, c distinct, (x− a)2(x− b) with a 6= b,

(x− a)3, (x− a)(x2 + 2bx+ c) with b2 − c < 0
(54)

Out of the eight forms above, three are not treated by the earlier sections: namely, the last

one of (53), the second and fourth of (54). We treat these in turn in the subsections below.
10



[ss:Q]
4.1. Proper fraction with denominator x2 + 2bx + c, b2 − c < 0. Complete the square

to write

x2 + 2bx+ c = (x+ b)2 + (c− b2) = E(y2 + 1) where y =
x+ b√
E

and E = c− b2 (55)

We have ∫
fx+ g

x2 + 2bx+ c
dx =

∫
f(
√
Ey − b) + g

E(y2 + 1)

√
E dy

=
f

2

∫
2y

y2 + 1
dy +

−bf + g√
E

∫
dy

y2 + 1

=
f

2
log (y2 + 1) +

−bf + g√
E

tan−1 y + constant

=
f

2
log (

x2 + 2bx+ c

c− b2
) +

−bf + g√
c− b2

tan−1
x+ b√
c− b2

+ constant

(56)

[ss:a2b]
4.2. Proper fraction with denominator (x−a)2(x−b), a 6= b. Let f(x) be a polynomial

of degree at most 2. Put

f(x)

(x− a)2(x− b)
=

A1

x− a
+

A2

(x− a)2
+

B

x− b
(57)

Let us solve for A1, A2, and B in a fashion that generalizes to the case when the denominator

is a product of several repeated linear factors: see Exercise 7. First multiply through by

(x− b) to get:

f(x)

(x− a)2
=

A1(x− b)
(x− a)

+
A2(x− b)
(x− a)2

+ B (58)

Put x = b to get B = f(b)/(b− a)2. Now, multiply (57) through by (x− a)2 to get

f(x)

x− b
= A1(x− a) + A2 +

B(x− a)2

x− b
(59)

Put x = a to get A2 = f(a)/(a − b). Now differentiate (63) and put x = a to get A1 =

(f(x)/(x− b))′(a) = (f ′(a)(a− b)− f(a))/(a− b)2. Thus∫
f(x)

(x− a)2(x− b)
dx =

f ′(a)(a− b)− f(a)

(a− b)2
log |x− a|

− f(a)

(a− b)
1

(x− a)
+

f(b)

(b− a)2
log |x− b| + constant

(60)

[ss:aQ]
4.3. Proper fraction with denominator (x− a)(x2 + 2bx + c), b2 − c < 0. Let f(x) be

a quadratic polynomial of degree at most 2, and set Q(x) = x2 + 2bx + c (for notational

convenience). Put

f(x)

(x− a)Q(x)
=

A

x− a
+

Bx+ C

Q(x)
(61)

11



Once we determine A, B, and C, we are done. Indeed, the first term on the right is easy to

integrate, and we know the integral of the second term from §4.1: we need only substitute

the values of B, C respectively for f , g in (56).

First multiply (62) through by (x− a) to get:

f(x)

Q(x)
= A +

Bx+ C

Q(x)
(x− a) (62)

Put x = a in the above to get A = f(a)/Q(a).

Now multiply (62) through by Q(x):

f(x)

x− a
=

AQ(x)

x− a
+ Bx+ C (63)

Thus Bx+C is the quotient on division by x− a of f(x)−AQ(x) = f(x)− f(a)Q(x)/Q(a).

Expanding f(x)− f(a)Q(x)/Q(a) by (41):

f(x)− f(a)

Q(a)
Q(x) = (f ′(a)− f(a)

Q(a)
Q′(a))(x− a) +

1

2
(f ′′(a)− f(a)

Q(a)
Q′′(a))(x− a)2 (64)

Equating Bx + C = B(x − a) + (aB + C) with the quotient of the right hand side of the

above equation by x− a:

B =
1

2
(f ′′(a)− f(a)

Q(a)
Q′′(a)) =

f ′′(a)

2
− f(a)

Q(a)
,

C = −aB + (f ′(a)− f(a)

Q(a)
Q′(a)) = f ′(a) − f(a)Q′(a)

Q(a)
− af ′′(x)

2
+

af(a)

Q(a)

(65)

5. Integration of rational functions in general
[s:general]

Here we look at the theoretical basis for the method of partial fractions. Let N(x)/D(x)

be an arbitrary rational function. This means that N(x) and D(x) are polynomials with

real coefficients in a single variable x, and D(x) 6= 0. Dividing both N(x) and D(x) by the

leading coefficient of D(x), we may assume that D(x) is monic, that is, its leading coefficient

is 1.

Our goal is to integrate N(x)/D(x), that is, to find its anti-derivative. We reach it in

three steps, described respectively in the three subsections below. First we reduce to the

case when the the rational function is a proper fraction, that is, when the degree of N(x) is

less than that of D(x). Then we show that an arbitrary proper fraction has an expression

as a sum of certain special types of proper fractions, called partial fractions. Finally, we

integrate all partial fractions.
[ss:divalg]

5.1. Reduction to the case of proper fraction: division algorithm. The Division

algorithm for polynomials states:

Given polynomials N(x) and D(x), with D(x) 6= 0, there exist unique poly-

nomials Q(x) and R(x) with degR(x) < degD(x) such that

N(x) = Q(x)D(x) +R(x) or, equivalently
N(x)

D(x)
= Q(x) +

R(x)

D(x)
(66)

12



The polynomials Q(x) and R(x) are found by the process of “long division”.

Given a rational function N(x)/D(x) to be integrated, we write it in the form (66). Now,

Q(x) being a polynomial, we know how to integrate it, so it suffices to integrate R(x)/D(x).

Thus we are reduced to the integration of proper fractions. We will see what to do with

proper fractions in §5.3. Until then, we take a long detour in which we prove results that we

will need. These results being interesting in their own right, we hope not to lose the reader

on the detour.

5.1.1. Corollaries of division algorithm; Euclidean algorithm. In the rest of this subsection, we

record some corollaries of the division algorithm that are used in what follows, not always

explicitly:

Corollary 5.1.1. (Remainder theorem) A number a is the root of a polynomial P (x)

(which by definition means P (a) = 0) if and only if x− a divides P (x).

Corollary 5.1.2. If a complex number α is a root of a polynomial P (x) with real coefficients,

then so is its complex conjugate ᾱ.

Proof. Write P (x) = (x − α)Q(x). Taking complex conjugates of coeffiecients in this equa-

tion, we get P (x) = (x− ᾱ)Q̄(x), so ᾱ is also a root of P (x). �

Let K(x) and L(x) be polynomials. We say that a monic polynomial G(x) is the greatest

common divisor , GCD for short, of K(x) and L(x) if it divides both of them and is divisible

by any polynomial that divides both of them.

Corollary 5.1.3. (Euclidean algorithm for the GCD) GCDs always exist. They may be

found by the Euclidean algorithm as in the case of integers. If G(x) is the GCD of K(x) and

L(x), then there exist polynomials A(x) and B(x) such that A(x)K(x) +B(x)L(x) = G(x).

Two polynomials are said to be coprime if their GCD is 1. If K(x) and L(x) are relatively

prime, then there exist A(x) and B(x) such that A(x)K(x) + B(x)L(x) = 1. One may find

A(x) and B(x) from the Euclidean algorithm.

Corollary 5.1.4. If K(x) and L(x) are coprime and both divide P (x), then their product

K(x)L(x) divides P (x).

Proof. Find A(x) and B(x) such that A(x)K(x) + B(x)L(x) = 1. Multiplying by P (x), we

get P (x)A(x)K(x) + P (x)B(x)L(x) = P (x). Since L(x) divides P (x), the first term on the

left is divisible by K(x)L(x). Similarly, since K(x) divides P (x), the second term on the left

is divisible by K(x)L(x). Thus K(x)L(x) also divides the right hand side. �

Corollary 5.1.5. If K(x) and L(x) are coprime and K(x) divides P (x)L(x), then K(x)

divides P (x).

Proof. Find A(x) and B(x) such that A(x)K(x) + B(x)L(x) = 1. Multiplying by P (x), we

get P (x)A(x)K(x) + P (x)B(x)L(x) = P (x). The first term on the left is evidently divisible

by K(x)L(x). Similarly, since K(x) divides P (x)L(x), the second term on the left is also

divisible by K(x). Thus K(x) divides the right hand side. �

13



[ss:crt]
5.2. Proper fractions as sums of partial fractions: Chinese Remainder Theorem.

The next theorem is the analogue for polynomials with real coefficients of the familiar prime

factorization of integers.
[t:factor]

Theorem 5.2.1. Every monic polynomial D(x) with real coefficients has a unique expres-

sion, up to reordering of the factors, as a product in the following form:

D(x) = (x− a1)k1 · · · (x− ar)krQ`1
1 · · ·Q`s

s (67)

where the a1, . . . , ar are distinct reals, the Qj are distinct polynomials each of the form

x2 + bjx + cj with b2j − 4cj < 0, and the ki, `j are positive integers.6 Here k1 + · · · + kr +

2`1 + · · ·+ `s = degD(x).

Proof. To prove existence, proceed by induction on the degree of D(x). If it is of degree 1

then is of the form x− a and we are done. Suppose that D(x) has degree at least 2. If D(x)

has a real root a, then D(x) is divisible by x − a, and we get a factorization (67) of D(x)

from that of the quotient D(x)/(x− a) by multiplication by x− a.

Suppose that D(x) does not have a real root. By the fundamental theorem of algebra, there

is a non-real complex root, say α, of D(x). By Corollary 5.1.2, ᾱ is then also a root of D(x).

Since x− α and x− ᾱ are relatively prime, both divide D(x). Put Q(x) = (x− α)(x− ᾱ).

Then Q = x2− (α+ ᾱ)x+αᾱ. Then (α+ ᾱ)2− 4αᾱ = (α− ᾱ)2 < 0, because α− ᾱ is purely

imagainary and non-zero. Now the factorization (67) for D(x) is obtained from that of its

quotient by Q(x) by multiplication by Q(x). This finishes the proof of existence.

Uniqueness of the factorization is proved in the standard way just as the unqiueness of

prime factorization for integers. �

The crucial result that underlies the method of partial fractions is this:
[t:crt]

Theorem 5.2.2. (Chinese Remainder Theorem) Let K(x) and L(x) be relatively prime

polynomials of degrees k and ` respectively. Given a polynomial f(x) of degree less than

k+ `, there exist unique polynomials S(x) and T (x) of degress less than k and ` respectively,

such that

f(x)

K(x)L(x)
=
S(x)

K(x)
+
T (x)

L(x)
or, equivalently, f(x) = S(x)L(x) + T (x)K(x) (68)

Proof. Suppose that S1(x) and T1(x) also have the desired properties. Then, we have (S(x)−
S1(x))L(x) = (T1(x)− T (x))K(x). Since L(x) and K(x) are coprime, K(x) divides S(x)−
S1(x). But since S(x) − S1(x) has degree less than k, it follows that it is zero. So S(x) =

S1(x). Similarly T (x) = T1(x) and the uniqueness is proved.

Since K(x) and L(x) are coprime polynomials, there exist A(x) and B(x) such that

A(x)K(x) + B(x)L(x) = 1. Divide f(x)B(x) by K(x) and let S(x) be the remainder.

Divide f(x)A(x) by L(x) and let T (x) be the remainder.

Clearly S(x) and T (x) have degrees less than k and ` respecively. Consider f(x) −
S(x)L(x) − T (x)K(x). This has degree less than k + `. We claim that it is divisible by

6In case D(x) = 1, the right hand side is an empty product, and empty products are by convention 1.
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K(x). Since the last term is divisible by K(x), it is enough to show that f(x)− S(x)L(x) is

divisible by K(x). In turn, it is enough to show that f(x)B(x)− S(x)L(x)B(x) is divisible

by K(x), since K(x) and B(x) are relatively prime. Since B(x)L(x) = 1 − A(x)K(x), we

have f(x)B(x)− S(x)L(x)B(x) = f(x)B(x)− S(x)(1− A(x)K(x)) = (f(x)B(x)− S(x)) +

A(x)K(x). The first parenthetical term on the right is divisible by K(x) by the choice of

S(x), and the second is evidently divisible by K(x). Our claim is thus proved.

In a similar fashion, we can prove that f(x)− S(x)L(x)− T (x)K(x) is divisble by L(x).

Being divisible both by L(x) and K(x), it is divisible also by their product K(x)L(x). But

being of degree less than their product, it equals zero: that is f(x) = S(x)L(x) + T (x)L(x).

The theorem is thus proved. �
[ss:puthread]

5.3. Expression as partial fractions of a proper fraction. Let N(x)/D(x) be a proper

fraction with D(x) non-zero and monic. Consider the factorization (67) of D(x). Let K(x)

denote the highest power of one of the irreducible factors that divides D(x) (say (x − a)k1

if r 6= 0, Q`1
1 otherwise) and L(x) the product of the remaining factors, so that D(x) =

K(x)L(x). Apply Theorem 5.2.2 to get

N(x)

D(x)
=

S(x)

K(x)
+

T (x)

L(x)
(69)

Repeat the process with L(x) and T (x) in place of D(x) and N(x). Iterating this process as

many times as required, we get

N(x)

D(x)
=

A1(x)

(x− a1)k1
+ · · · +

Ar(x)

(x− ar)kr
+

B1(x)

Q`1
1

+ · · · +
Bs(x)

Q`s
s

(70)

The polynomials A1(x), . . .Ar(x), B1(x), . . . , Br(x) are uniquely determined of degrees less

than k1, . . . , kr, 2`1, . . . , 2`s respectively.

Now we apply the Taylor expansions to the polynomials Ai and Bj (see Exericses 2, 3):

Ai(x) = ci0 + ci1(x− ai) + ci2(x− ai)2 + · · · + cik1−1(x− ai)
ki−1 (71)

Bj(x) = cj0 + cj1Qj + cj2Q
2
j + · · · + cj`1−1Q

`1−1
j (72)

Dividing (71) by (x − ai)ki and (72) by Q
`j
j , and substituting into (70), we get, finally, the

expression as a sum of partial fractions for the proper fraction N(x)/D(x):

N(x)

D(x)
=

∑
1≤i≤r

∑
0≤p≤ki−1

cip
(x− ai)ki−p

+
∑
1≤j≤s

∑
0≤q≤`j−1

cjq

Q
`j−q
j

(73)

[ss:integrate]
5.4. Anti-derivatives of partial fractions. Thanks to (73), to integrate a proper fraction

N(x)/D(x) with D(x) non-zero and monic, it is enough to know how to integrate 1/(x−a)k

and (bx+ c)/(x2 + 1)k (since any quadratic factor Qj in (67) has no real roots, it may, after

a linear change of variables and up to a non-zero factor, be written in the form (x2 + 1)).

The anti-derivative (always up to addition of a constant) of 1/(x− a)k is log |x− a| in case

k = 1, and −1/(k− 1)(x− a)k−1 if k ≥ 2. The anti-derivative of x/(x2 + 1) is log(x2 + 1)/2,

of x/(x2 + 1)k is −1/2(k− 1)(x2 + 1)k−1 if k ≥ 2. Finally, the anti-derivative of 1/(x2 + 1) is
15



tan−1 x and that of 1/(x2 + 1)k for k ≥ 2 may be found by the substitution x = tan y which

reduces us to the integration of cos2(k−1) y (with respect to y).

6. Exercises
[s:exercises]

Throughout, m stands for a positive integer. Solutions are available on the version of these

notes on the home page of the author at http://www.imsc.res.in/~knr/

(1) Show that there is a unique polynomial of degree less than m that takes on specific
values at m given values of the argument. With reference to the question raised
in (11), the uniqueness part of this result is implicitly assumed in the method of
plugging in values but not in the method of equating coefficients.
Solution: The existence of such a polynomial has been proved by Lagrange interpolation

in §2.4. In the first item below we give a proof of uniqueness. In the second item below we

give another proof which also proves existence at the same time.

(a) (A proof of uniqueness) Given two polynomials f(x) and g(x) both having the desired

properties, consider their difference. It has degree at most m and vanishes at the m

distinct values of the argument, which let us denote a1, . . . , am. This means that the

difference polynomial is divisible by each of x− a1, . . . , x− am. These linear factors

being pairwise coprime, the polynomial is divisible by their product, which evindently

has degree m. Since the only polynomial of degree less than m that is divisible by a

polynomial of degree m is the zero polynomial, it follows that f(x)− g(x) is zero. �
(b) (Another proof of uniqueness and existence) This uses the van der Monde matrix. A

polynomial of degree less than m has the general form f(x) = c1 + c2x + c3x
2 + · · ·+

cmxm−1. To say that it has specified values v1, . . . , vm at m distinct values a1, . . . ,

am of x means that:

f(ai) = vi = c1 + c2ai + c3ai
2 + · · ·+ cmai

m−1 for 1 ≤ i ≤ m (74)

These conditions may be written as a single matrix equation:
1 a1 a21 . . . am−11

1 a2 a22 . . . am−12
...

...
...

...
...

1 am a2m . . . am−1m




c1
c2
...

cm

 =


v1
v2
...

vm

 (75)

The m × m matrix in the above equation is called the van der Monde matrix. If

we show that it is invertible, in other words, that it has non-zero determinant, then

it follows that there is a unique set of coefficients c1, . . . , cm satisfying the above

equation, and we are done.

We claim that the determinant of the van der Monde matrix is given by

(a2 − a1) (a3 − a1) · · · · · · (am−1 − a1) (am − a1) ·
(a3 − a2) · · · · · · (am−1 − a2) (am − a2) ·

· · · · · · · · · · · · ·
· · · · · · · · · ·

(am−1 − am−2) (am − am−2) ·
(am − am−1)

(76)
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Indeed, each of the terms in the standard expansion has degree 1 + 2 + · · ·+ (m−1) =

m(m− 1)/2, so the determinant is a polynomial of degree at most m(m− 1)/2 (total

degree in the ai). On the other hand, since the determinant vanishes if any two of the

ai are equal, it is divisible by each of the linear factors (ai− aj), 1 ≤ j < i ≤ m. Thus

it is a constant multiple of the product (76) and the constant of multiplication can be

determined to be 1 by examining the coefficient of some term, e.g., a2a
2
3 · · · am−1m . �

(2) Let f(x) be a polynomial and a a constant. Then there exists a unique expression (meaning

there is a unique sequence of coefficients c0, c1, . . . ) of the following form, in which only

finitely many coefficients ci are non-zero:

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ ci(x− a)i + · · · (77)

This expression is called the Taylor series expansion of f(x) around a. The largest i such

that ci does not vanish is the degree of f(x). The coefficient ci is the ith derivative of f(x)

divided by i! evaluated at a.

Solution: To prove uniqueness, suppose that there were two expressions for the same poly-

nomial. Then the difference of the two expressions would on the one hand be zero as a

polynomial; on the other, it would have degree equal to the largest integer such that the

sequences of coefficients of the two expressions do not match at that point. We are thus

lead to a contradiction. Alternatively, just observe that the coefficient ci is forced to be the

ith derivative of f(x) divided by i! evaluated at a.

For existence, proceed by induction on the degree of f(x). If f(x) is of degree 0 then

it is a constant and we just take c0 to be this constant and the remaining ci to be zero.

Suppose now that f(x) has positive degree. We take c0 to be f(a). Since f(x) − c0 van-

ishes at a, it is divisible by x − a, and the quotient g(x) having degree 1 less than f

has an expression as above, multiplying which by x − a, we get the expression for f(x):

f(x) = c0 + (x− a) · expression for g(x). �

(3) This generalizes the Taylor expansion of Exercise 2. The polynomial Q(x) below of degree 2

could be replaced by one of higher degree and the conclusion would hold with appropriate

modifications. Let f(x) be a polynomial and Q(x) a quadratic polynomial (with coefficient

of x2 non-zero). Then there exists a unique expression (meaning there is a unique sequence

of linear forms c0, c1, . . . ) of the following form, in which only finitely many linear forms

ci are non-zero:

f(x) = c0 + c1Q + c2Q
2 + · · ·+ ciQ

i + · · · (78)

The largest i such that ci does not vanish is such that deg f(x) is either 2i or 2i + 1.

Solution: To prove uniqueness, suppose that there were two expressions for the same poly-

nomial. Then the difference of the two expressions would on the one hand be zero as a

polynomial; on the other, it would have degree equal to 2i or 2i + 1 where i is the largest

integer such that the sequences of linear forms of the two expressions do not match at that

point. We are thus lead to a contradiction.

For existence, proceed by induction on the degree of f(x). We take c0 to be the remain-

der when f(x) is divided by Q(x). If f(x) is of degree at most 1, then we are done (by

taking ci = 0 for i ≥ 1). If deg f(x) ≥ 2, let g(x) be the quotient obtained when f(x) is

divided by Q(x), and apply the induction hypothesis to g(x). The expression for f(x) is
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obtained from that of g(x) as follows: f(x) = c0 + Q(x) · expression for g(x). �

(4) Show that there is a unique polynomial of degree less than m all of whose derivatives of

orders less than m take on specific values at a given value of the argument. (The derivative

of zeroth order is the polynomial itself, so its value at the given value of the argument is

in particular also specified.) The uniqueness part of this result is implicitly assumed in

the method of repeatedly differentating and evaluating but not in the method of equating

coefficients.

Solution: This follows from the statement of Exercise 2. Indeed, let a be the given value of

the argument. In the right hand side of (77), let us put Ai = 0 for i ≥ m and equal to the

specified value of the ith derivative divided by i!. The resulting polynomial f(x) has the

desired properties.

To prove uniqueness, suppose that there were two polynomials both meeting the desired

conditions. Their difference would be of degree less than m and all its derivatives of orders

less than m would vanish at a. The Taylor series (77) of this polynomial would thus be

zero, proving the equality of the original two polynomials. �

(5) In the Taylor expansion (77) of a polynomial f(x) around any integer a, observe that if the

coefficients of f(x) are all integers, then so are all the coefficients Ai.[x:litaylor]
(6) Let d1, . . . , dm be a sequence of positive integers and a1, . . . , am a sequence of distinct

real numbers. Show that there exists a unique polynomial of degree less than d1 + · · ·+ dm
whose derivatives of all orders less than di have specified values at ai, for every i, 1 ≤ i ≤ m.

The case when all the di are 1 is Lagrange interpolation (Exercise 1 and §2.4) and the case

when m = 1 is the Taylor expansion (Exercise 2).

Solution: To prove uniqueness, suppose that f and g are two polynomials that meet the

desired requirements, consider their difference. Since f − g has derivatives of all orders less

than di vanishing at ai, it is divisible by (x− ai)
di (by Exercise 2). Since the (x− ai)

di as i

varies are all pairwise coprime, their product also divides f − g. But then, since f − g has

degree less than d1 + · · ·+ dm, it is zero.

To prove existence, we make an observation. Let H(x) and F (x) be polynomials, let a

be a real number such that H(a) 6= 0, and let p be a positive integer. The derivatives of

orders less than p of F (x) and G(x) = F (x)/H(x) are related thus:

F = GH F ′ = GH ′ + G′H

F (2) = GH(2) + 2G′H ′ + G(2)H
(79)

and more generally

F (k) =
∑

0≤j≤k

(
k

j

)
H(k−j)G(j) for 0 ≤ k < p (80)

Thus to specify the values at a of (F (x)/H(x))(j), for all 0 ≤ j < p, is equivalent to specify

the values at a of F (x)(j) for all 0 ≤ j < p, for fixed H(x) with H(a) 6= 0. Indeed, the

equations above say the following: if we think of the two sets of values as p × 1 column

matrices, they are related by a lower triangular p × p matrix with diagonal entries all

being H(a).
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Thanks to the observation above, it suffices to show that existence of a polynomial f(x)

of degree less than d1 + · · · + dm with the following property: for every i, 1 ≤ i ≤ m, the

derivatives at ai of f(x)/hi(x) of all orders less than di have arbitrarily specified values,

where hi(x) =
∏

p 6=i(x− ap)
dp . We claim that such an f(x) is given by

f(x) =
m∑
i=1

di∑
j=1

Aj
i

p(x)

(x− ai)j
(81)

where p(x) =
∏m

i=1(x−ai)di and Aj
i is (di−j)! times the desired value at ai of the derivative

of order di − j of f(x)/hi(x).

Indeed, each term on the right hand side has degree less than d1+ · · ·+dm, and therefore

so does f(x). Dividing (81) by hi(x):

f(x)

hi(x)
=
∑
p 6=i

dp∑
q=1

Aq
p

(x− ai)
di

(x− ap)q
+

di∑
q=1

Aj
i (x− ai)

di−j (82)

Each term in the first sum on the right hand side is a product of (x − a)di with a regular

function not vanishing at a, so all its derivatives of orders less than di are zero when

evaluated at a. Thus

1

(di − j)!

(
f(x)

hi(x)

)(di−j)
(ai) = Aj

i (83)

and we are done. �

(7) In the following expression, f(x) is a polynomial of degree less than r1 + · · ·+ rn:

f(x)

(x− a1)r1 · · · (x− an)rn
=

∑
1≤i≤n

∑
1≤j≤ri

Aj
i

(x− ai)j

Show that Aj
i is given by the following formula:

with Fi =
f(x)

(x− a1)r1 · · · (x− ai−1)ri−1(x− ai+1)ri+1 · · · (x− an)rn

Aj
i =

F
(ri−j)
i (ai)

(ri − j)!
where F

(ri−j)
i denotes the derivative of order ri − j of Fi.

(8) Suppose that a student of yours came up with the following “solution” to the problem of

finding
∫
dx/(x2 + 1) (whereas the standard answer is tan−1 x + C):

Put
1

x2 + 1
=

1

(x + i)(x− i)
=

A

x + i
+

B

x− i

Multiplying by (x+ i)(x− i), and then plugging in successively x = −i and x = i,

we get A = i/2, B = −i/2. Thus∫
1

x2 + 1
dx =

∫
i

2(x + i)
dx −

∫
i

2(x− i)
dx

=
i

2
(log(x + i)− log(x− i)) + constant =

i

2
log

x + i

x− i
+ constant

Is this a valid answer? How would you react?
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(9) Suppose that you are accosted by a “troublesome” student with the following “solution”

to the very first example considered in this article. How would you react?:

To compute ∫
1

x2 − 9
dx

put x = 3iy, so that dx = 3idy and x2 = −9y2. Substituting these values,∫
1

x2 − 9
dx =

∫
3i

−9y2 − 9
dy =

1

3i

∫
1

y2 + 1
dy

=
1

3i
tan−1 y + constant =

1

3i
tan−1(

x

3i
) + constant
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