ASSIGNMENT 7

(1) Recall that the free Lie algebra generated by a vector space V is a Lie algebra F(V) together with a linear map $i: V \to F(V)$ which has the following universal property: given a Lie algebra L and a linear map $f: V \to L$, there is a unique Lie algebra homomorphism $\tilde{f}: F(V) \to L$ such that $\tilde{f}i = f$.

Prove that the following gives a construction of F(V). Take the tensor algebra TV and let F(V) be the Lie subalgebra of TV generated by V (note that V sits inside TV as the first tensor component). Further prove that the universal enveloping algebra of F(V) is TV, by showing the appropriate universal property.

(2) Let M be an abelian group and let \mathfrak{g} be an M-graded Lie algebra, i.e., \mathfrak{g} admits a decomposition

$$\mathfrak{g} = \bigoplus_{\alpha \in M} \mathfrak{g}_{\alpha}$$

satisfying $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$ for all $\alpha,\beta \in M$. Prove that this induces an *M*-grading on $U\mathfrak{g}$ as well (where for an associative algebra *A*, an *M*-grading would be a decomposition $A = \bigoplus_{\alpha \in M} A_{\alpha}$ satisfying $A_{\alpha}A_{\beta} \subset A_{\alpha+\beta}$ for all $\alpha,\beta \in M$).

- (3) (a) A Lie algebra homomorphism $f : \mathfrak{g}_1 \to \mathfrak{g}_2$ induces an algebra homomorphism $f : U\mathfrak{g}_1 \to U\mathfrak{g}_2$.
 - (b) A Lie algebra automorphism of \mathfrak{g} induces an algebra automorphism of $U\mathfrak{g}$.
 - (c) A Lie algebra antihomomorphism $f : \mathfrak{g}_1 \to \mathfrak{g}_2$ (i.e, f([x,y] = [f(y), f(x)] for all $x, y \in \mathfrak{g}_1$) induces an algebra antihomomorphism $\tilde{f} : U\mathfrak{g}_1 \to U\mathfrak{g}_2$ (i.e., $\tilde{f}(uv) = \tilde{f}(v)\tilde{f}(u)$ for all $u, v \in U\mathfrak{g}_1$).
- (4) Let \mathfrak{g} be a Lie algebra. Prove that $U\mathfrak{g}$ has no zero divisors.
- (5) Let (V, Δ) be a root system and let S be a set of simple roots (for some choice of chamber). A diagram automorphism of Δ is an element $\sigma \in \operatorname{GL}(V)$ such that $\sigma(S) = S$ and $n_{\alpha,\beta} = n_{\sigma\alpha,\sigma\beta}$ for all $\alpha, \beta \in S$ (here the $n_{\alpha,\beta}$ denotes the Cartan integers). Use Serre's theorem to show that if \mathfrak{g} is a finite dimensional simple Lie algebra, and σ is a diagram automorphism of its root system, then σ induces a Lie algebra automorphism of \mathfrak{g} . Further, for each Dynkin diagram (types A-G), find its group of diagram automorphisms.