THE WEYL GROUP

Let W be the Weyl group of a root system Δ . Fix a decomposition $\Delta = \Delta^+ \cup \Delta^-$ and let $B = \{\alpha_i : i = 1 \cdots l\}$ be the corresponding basis of Δ . Let $S := \{r_i : i = 1 \cdots l\}$ be the simple reflections in W, where we denote $r_i := r_{\alpha_i}$; recall that S generates W. Define the length of an element of W by

$$l(w) := \min\{k \ge 0 : w = r_{i_1} r_{i_2} \cdots r_{i_k} \text{ for some } 1 \le i_j \le l\}$$

In other words, this is the smallest number k such that w can be written as a product of k simple reflections.

- (1) Prove the following simple properties of length:
 - (a) $l(w^{-1}) = l(w)$ for all $w \in W$.
 - (b) $l(w_1w_2) \leq l(w_1)l(w_2)$ for all $w_1, w_2 \in W$.
 - (c) $l(w_1w_2) \ge |l(w_1) l(w_2)|$.
- (2) Prove that there is a well-defined sign homomorphism $\epsilon : W \to \{\pm 1\}$ such that $\epsilon(r_i) = -1 \forall i$.
- (3) Prove that $l(wr_i) = l(w) \pm 1$ for all $w \in W, r_i \in S$.
- (4) **Theorem:** If $w \in W$ and $r_i \in S$, then (a) $l(wr_i) = l(w) 1 \iff w\alpha_i \in \Delta^-$ and (b) $l(wr_i) = l(w) + 1 \iff w\alpha_i \in \Delta^+$.

Prove this theorem using the following steps:

- (a) Assume $w\alpha_i \in \Delta^-$. Write $w = r_{i_k}r_{i_{k-1}}\cdots r_{i_1}$ where k = l(w). Define the right subwords, $w_0 = 1, w_1 := r_{i_1}, w_2 := r_{i_2}r_{i_1}, \cdots, w_k := r_{i_k}r_{i_{k-1}}\cdots r_{i_1} = w$. Now $w_0\alpha_i \in \Delta^+$ while $w_k\alpha_i \in \Delta^-$. There is a smallest j such that $w_j\alpha_i \in \Delta^+$ but $w_{j+1}\alpha_i \in \Delta^-$. Prove now that $w_j\alpha_i$ must be a simple root (which one ?).
- (b) If $w\beta = \gamma$ for $w \in W$, $\beta, \gamma \in \Delta$, prove that $r_{\gamma} = wr_{\beta}w^{-1}$.
- (c) Use this to obtain an expression for wr_i as a product of k-1 simple reflections.
- (d) Finally show that all other assertions of the theorem can be deduced from what has been proved above (by replacing w with wr_i).
- (5) The inversion set I(w) of $w \in W$ is defined to be:

$$I(w) := \{ \alpha \in \Delta^+ : w\alpha \in \Delta^- \}.$$

Show that if $l(wr_i) = l(w) + 1$, then $I(wr_i) = \{\alpha_i\} \cup r_i(I(w))$. Hence show (by induction) that l(w) = |I(w)| for all $w \in W$.

- (6) (a) Show that if C is a chamber, then so is $-C := \{-x : x \in C\}$.
 - (b) By the simple transitivity of the W-action on the set of chambers, there is a unique $w_0 \in W$ such that $w_0(C) = -C$. Prove that $w_0^2 = 1$.
 - (c) Prove that w_0 is the unique longest element of the Weyl group W (length being measured wrt the simple reflections obtained from the basis corresponding to C).
 - (d) Prove that $l(w_0\sigma) = l(w_0) l(\sigma)$ for all $\sigma \in W$.
 - (e) For the root system A_{n-1} constructed in lecture, recall $W \cong S_n$. Find w_0 , and compute its length.