ROOT SYSTEMS

Let Δ denote a root system in the Euclidean space $(V, (\cdot, \cdot))$, with Weyl group W.

- (1) Let α, β be non-proportional roots in Δ . Prove that r_{α} and r_{β} commute $\iff n_{\alpha,\beta} = n_{\beta,\alpha} = 0$. More generally, determine the order of the element $r_{\alpha}r_{\beta} \in W$ as a function of $n_{\alpha,\beta} n_{\beta,\alpha}$.
- (2) If Δ is an irreducible root system, then V is an irreducible representation of the group W. As a corollary, show that given any root α , the W-orbit of α spans V. Hint: Show that if $U \subset V$ is a W-invariant subspace, then each root is either in U or in U^{\perp} .
- (3) (a) If α, β ∈ Δ are such that n_{α,β} = n_{β,α} = −1, then ∃w ∈ W such that β = wα.
 (b) If Δ is an irreducible root system, and α, β are roots of the same length, then ∃w ∈ W such that β = wα (*Hint:* use (a) and the preceding problem).
- (4) If Δ is an irreducible root system and $\alpha, \beta \in \Delta$, show that $\frac{(\beta,\beta)}{(\alpha,\alpha)}$ can only take one of the values 1, 2, 1/2, 3, 1/3. Further, at most two root lengths occur in Δ .
- (5) Let Δ be a root system with simple roots $\{\alpha_i : i = 1 \cdots l\}$. If $\alpha = \sum_i c_i \alpha_i$ is a root, prove that $c_i(\alpha_i, \alpha_i)/(\alpha, \alpha) \in \mathbb{Z}$ for all *i*.
- (6) Let Δ be an irreducible root system, C a chamber of Δ , Δ^+ the corresponding set of positive roots, and B the set of simple roots. Let

$$\rho := \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$$

Prove that:

- (a) $r_{\alpha}(\rho) = \rho \alpha$ for all $\alpha \in B$.
- (b) $\frac{2(\rho,\alpha)}{(\alpha,\alpha)} = 1$ for all $\alpha \in B$.
- (c) $\rho \in C$.
- (7) Prove that if there is an inclusion of Dynkin diagrams $X \hookrightarrow Y$, then the root system of X can be obtained from the root system $(V(Y), \Delta(Y))$ of Y as follows: take V(X)to be the subspace of V(Y) spanned by the simple roots corresponding to the vertices of X, and $\Delta(X) := V(X) \cap \Delta(Y)$ (i.e., show that $\Delta(X)$ is indeed a root system, with Dynkin diagram X).
- (8) The Exceptional Root systems: In each part below, do the following:
 - Find the elements of Δ explicitly, and check that Δ is a root system.
 - Choose a chamber C appropriately, and find the corresponding Δ^+ and B(C).
 - Check that the configuration of roots in B(C) gives the required Dynkin diagram.

Consider the vector space $V_n := \mathbb{R}^n$ with the standard inner product (\cdot, \cdot) , and standard orthonormal basis $\{\epsilon_i : i = 1 \cdots n\}$. Let $x_n := \sum_{i=1}^n \epsilon_i \in V_n$. Define the lattice $L_n := \bigoplus_{i=1}^n \mathbb{Z}\epsilon_i$. Finally, let $\tilde{V}_n := x_{n+1}^{\perp} \subset V_{n+1}$.

(a) E_8 : Let L be the following lattice in V_8 :

$$L := \{ \sum_{i=1}^{8} a_i \epsilon_i : a_i \in \frac{1}{2} \mathbb{Z}, \ a_i \equiv a_j \pmod{\mathbb{Z}}, \ \sum_{i=1}^{8} a_i \in 2\mathbb{Z} \}$$

Then $\Delta(E_8) := \{ \alpha \in L : (\alpha, \alpha) = 2 \}.$

- (b) E_6 and E_7 : Obtain these using the diagram inclusions $E_6 \hookrightarrow E_7 \hookrightarrow E_8$.
- (c) F_4 : Let $L := L_4 \oplus \mathbb{Z}(\frac{1}{2}x_4) \subset V_4$. Then $\Delta(F_4) := \{ \alpha \in L : (\alpha, \alpha) = 1 \text{ or } 2 \}.$
- (d) G_2 : $\Delta(G_2) := \{ \alpha \in L_3 \cap \tilde{V}_2 : (\alpha, \alpha) = 2 \text{ or } 6 \} \subset \tilde{V}_2.$
- (9) A root subsystem of a root system (V, Δ) is a subset $\Delta' \subset \Delta$ such that Δ' is invariant under the reflections r_{α} for $\alpha \in \Delta'$. In this case, Δ' becomes a root system in $V' := \operatorname{span} \Delta'$.

As observed earlier, if there is a diagram inclusion $X \hookrightarrow Y$, then $\Delta(X)$ occurs as a root subsystem of $\Delta(Y)$. For each X and Y below, show that $\Delta(X)$ occurs as a root subsystem of $\Delta(Y)$, though there is no diagram inclusion.

- (a) $X = D_l, Y = B_l \ (l \ge 4).$
- (b) $X = D_8, Y = E_8$.
- (c) $X = B_4, Y = F_4.$
- (d) $X = A_2, Y = G_2.$

In fact, this implies that there is an inclusion of the corresponding Lie algebras. For example D_l occurring inside B_l corresponds to the obvious inclusion $\mathfrak{so}_{2l} \hookrightarrow \mathfrak{so}_{2l+1}$.