Assignment 4

- 1. Let V be an irreducible representation (not necessarily finite dimensional) of \mathfrak{sl}_3 . If V contains a nonzero vector v such that $E_{13}v = E_{21}v = E_{32}v = 0$, then prove that V must be the one dimensional trivial representation.
- 2. Let $\mathfrak{g} := \mathfrak{sl}_n$ for some $n \ge 2$. Let $\mathfrak{n}^- := \text{ span } \{E_{ji} : i < j\}$ denote the set of strictly lower triangular matrices in \mathfrak{g} . Let

$$M := \{ [X_1, [X_2, [\cdots, [X_k, E_{1n}]]] : X_i \in \mathfrak{n}^-, i = 1 \cdots k, k \ge 1 \}.$$

Prove that span $M = \mathfrak{g}$. Hint: Show that E_{1n} is the highest weight vector for the adjoint representation.

- 3. Let V be a finite dimensional representation of \mathfrak{sl}_3 . Show that V contains a nonzero weight vector v (i.e an eigenvector for \mathfrak{h}) such that $E_{13}v = E_{23}v = E_{21}v = 0$.
- 4. (a) Let $\mathfrak{g} := \mathfrak{sl}_n$ for some $n \ge 2$ and let \mathfrak{h} be the set of diagonal matrices (Cartan subalgebra). Find all elements $H \in \mathfrak{h}$ for which $C(H) = \mathfrak{h}$, where $C(H) := \{X \in \mathfrak{g} : [X, H] = 0\}$ is the centralizer of H in \mathfrak{g} .
 - (b) More generally, let \mathfrak{g} be a finite dimensional simple Lie algebra, \mathfrak{h} a Cartan subalgebra, and let Δ denote the set of roots of \mathfrak{g} . For $H \in \mathfrak{h}$, prove that

$$C(H) = \mathfrak{h} \oplus \bigoplus_{\substack{\alpha \in \Delta \\ \alpha(H) = 0}} \mathfrak{g}_{\alpha}$$

Hint: First use problem 1 of assignment 3.

- 5. Prove Schur's lemma in our context: Let V, W be irreducible finite dimensional representations of a Lie algebra \mathfrak{g} (over \mathbb{C}).
 - (a) Any g-linear map $T: V \to W$ must be zero or an isomorphism.
 - (b) Any g-linear map $T: V \to V$ must be of the form cI for some $c \in \mathbb{C}$.
 - (c) The space $\operatorname{Hom}_{\mathfrak{g}}(V, W)$ of \mathfrak{g} -linear maps from V to W is at most one dimensional.
- 6. Let V be a finite dimensional vector space and $f: V \times V \to \mathbb{C}$ be a nondegenerate (not necessarily symmetric) bilinear form. Recall from lecture that the corresponding linear map $T_f: V \to V^*$ defined by $v \mapsto f(v, \cdot)$ is an isomorphism. Now, suppose V is a representation of a Lie algebra \mathfrak{g} . We say that f is \mathfrak{g} -invariant if it satisfies

$$f(Xv, w) + f(v, Xw) = 0$$
 for all $v, w \in V, X \in \mathfrak{g}$.

- (a) f is \mathfrak{g} -invariant $\iff T_f$ is \mathfrak{g} -linear.
- (b) V admits a nondegenerate \mathfrak{g} -invariant bilinear form $\iff V$ is isomorphic to V^* as \mathfrak{g} -representations.
- (c) If V is irreducible, so is V^* .
- (d) If V is irreducible, and $V \cong V^*$, then there is a unique g-invariant nondegenerate bilinear form on V, upto scaling.
- (e) Finally, if \mathfrak{g} is a finite dimensional simple Lie algebra, prove that the Killing form on \mathfrak{g} is the unique (upto scaling) associative form on \mathfrak{g} .