Assignment 3

1. Let \mathfrak{h} be an abelian Lie algebra and V be a diagonalizable representation of \mathfrak{h} , i.e., $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$ where $V_{\lambda} := \{ v \in V : Hv = \lambda(H)v \text{ for all } H \in \mathfrak{h} \}$. If U is a \mathfrak{h} -invariant subspace of V, prove that U is graded, i.e.,

$$U = \bigoplus_{\lambda \in \mathfrak{h}^*} (U \cap V_\lambda).$$

- 2. Prove that the Lie algebra $\mathfrak{sl}_n\mathbb{C}$ is simple. *Hint:* Use the root space decomposition, and the above exercise.
- 3. Let (ρ, V) be a finite dimensional representation of \mathfrak{sl}_2 , with weight space decomposition $V = \bigoplus_{i \in \mathbb{Z}} V_i$. Define the following operator on V:

$$w := (\exp \rho(F)) (\exp -\rho(E)) (\exp \rho(F))$$

Prove that w is an invertible operator on V which maps V_j to V_{-j} for all $j \in \mathbb{Z}$.

- 4. Let $\mathfrak{g} := \mathfrak{sl}(V)$ for some finite dimensional vector space V. Let P be an invertible operator on V. Show that the map $X \mapsto PXP^{-1}$ is a Lie algebra automorphism of \mathfrak{g} .
- 5. Consider the Lie algebra $\mathfrak{g} := \mathfrak{sl}_2$. Let $H' := \begin{bmatrix} 3 & 1 \\ 0 & -3 \end{bmatrix}$. Show that H' is a semisimple element of \mathfrak{g} . Further, find elements E' and F' such that [H', E'] = 2E', [H', F'] = 2F', [E', F'] = H'. More generally, given an arbitrary diagonalizable matrix H' in \mathfrak{sl}_2 , how would you find the E' and F'?