Assignment 8

Unless specified otherwise, R will denote a PID.

(1) Let a_i ∈ R for 1 ≤ i ≤ n. Let d be a gcd of a₁, a₂, ..., a_n.
(a) Prove that there exists a matrix Q ∈ GL_n(R) such that

$$[a_1 \ a_2 \ \cdots \ a_n] Q = [d \ 0 \ \cdots \ 0]$$

- (b) If d is a unit, prove that there exists $A \in GL_n(R)$ whose first row is $[a_1 \ a_2 \ \cdots \ a_n]$
- (2) Suppose A is a Z-matrix of size 4×4 with det A = 360. Write down the possibilities for the normal form of A. Using this or otherwise, show that the gcd of the entries of A is 1, i.e.,

$$gcd(a_{ij}: 1 \le i, j \le 4) = 1$$

- (3) Let $A, B \in M_n(R)$. If the normal forms of A, B are C, D respectively, is it true that the normal form of AB is CD?
- (4) Let $R = \mathbb{Z}$ and suppose

$$M = \frac{\mathbb{Z}}{24\mathbb{Z}} \oplus \frac{\mathbb{Z}}{20\mathbb{Z}} \oplus \frac{\mathbb{Z}}{150\mathbb{Z}} \oplus \frac{\mathbb{Z}}{28\mathbb{Z}}$$

Find the invariant factors and elementary divisors of M.

- (5) Let $R = \mathbb{Q}[x]$ and suppose $M = M_1 \oplus M_2 \oplus M_3$ where M_i are cyclic *R*-modules with ann $M_i = (g_i)$ where $g_1(x) = (x-1)^3$, $g_2(x) = (x-1)(x^2+2)^2$ and $g_3(x) = (x^4-4)$.
 - (a) Find the invariant factors and elementary divisors of M.
 - (b) Redo the problem assuming $R = \mathbb{R}[x]$ and $R = \mathbb{C}[x]$ instead.
- (6) Determine the number of non-isomorphic abelian groups of order: (i) 360, (ii) p^n where p is prime and $n \ge 1$, (iii) $p^n q^m$ where p, q are primes and $n, m \ge 1$.
- (7) Let M be a finitely generated torsion module over R. Then:
 - (a) M is simple (see Problem 7 of Assignment 7) iff it is isomorphic to R/(p) where p is a prime in R.
 - (b) M is *indecomposable*, i.e., cannot be written as a direct sum of two proper submodules, iff M is isomorphic to $R/(p^e)$ for some prime $p \in R$ and some $e \ge 1$.
- (8) For a finitely generated *R*-module *M*, we define rank *M* to be the rank of the free *R*-module M/M_{tor} , i.e., $M/M_{\text{tor}} \cong R^{\text{rank }M}$. Suppose *M* is isomorphic to R^n/K for some submodule *K* of R^n ; recall that *K* is free, of rank *k* say. Prove that rank M = n k.

(9) Suppose M is a finitely generated R-module and $N \subset M$ is a submodule. Prove that N and M/N are finitely generated. Using the earlier problem, show that

 $\operatorname{rank} M = \operatorname{rank} N + \operatorname{rank} M/N$